力矩式自整角机工作原理及应用
- 格式:ppt
- 大小:936.50 KB
- 文档页数:54
《控制电机》论文指导老师: __***__学生姓名: ___**____学号: _**********_班级: __Z电气111_专业:电气工程及其自动化电气工程学院2014.5.1引言本篇论文是基于这一学期以来对《控制电机》这门学科学习与个人感悟而撰写的。
本篇论文选择的课题是力矩式自整角机。
全篇论文主要阐述了力矩式自整角机的原理、主要特性以及力矩式自整角机的应用,从这三个方面展示出个人对力矩式自整角机的学习及认识整角机作为精密旋转伺服元件广泛地应用在近代技术的各个领域。
随着科学的发展,自整角机面临着许多特殊要求和特殊应用,研讨这些新课题,有利于发展新品种。
七十年代以来,国内发展了控制-力矩式自整角机(ZKL)系列。
这种自整角机同时兼有控制式自整角变压器和力矩式自整角机的双重功能,既可以在控制式系统中作自整角变压器,经过线路换接,又可在力矩式系统中作自整角接收机。
其结构特征是定子(或转子)放置星形连接的三相整步绕组(和传统的自整角机三相绕组相同),转子(或定子)放置两个空间垂直的单相绕组,其中一个绕组作为控制式自整角变压器的输出绕组,另一绕组作为力。
由于我国经济发展迅速,工农业生产和日常生活中使用的电动机种类和数量日益增加,且性能各异,因此,必须熟悉各类电动机和负载机械设备的类型、结构、性能及用途等,使其能安全、高效、经济地去拖动各种负载机械设备。
本篇论文对力矩式自整角机既有理论论述,又有实际应用介绍,具有全面性、系统性、实用性、可读性的特点,避免繁琐的数学运算和高深的理论,从实际出发,深入浅出,涉及的范围广,内容丰富,特别是有具体的实例介绍,对于学习力矩式自整角机的应用具有重要的参考价值。
力矩式自整角机的原理及应用1160601150 周灵一、力矩式自整角机的工作原理:力矩式自整角机的原理图如图1所示。
假定各相整步绕组参数相同,两台自整角机参数相同。
在自整角机中,以a相整步绕组轴线和励磁绕组轴线之间的夹角,作为转子的转角。
自整角机工作原理
自整角机是一种常见的数控机床,它的工作原理是通过数控系统控制机床的运动,实现对工件进行加工。
自整角机主要用于对金属板材进行切割、折弯、成型等加工,广泛应用于航空、汽车、电子、建筑等领域。
自整角机的工作原理可以分为以下几个步骤:
1. 设计加工程序:首先,操作人员需要根据工件的要求,设计出相应的加工程序。
这个过程通常是通过计算机辅助设计软件完成的,可以实现对工件的三维建模、切割路径规划等操作。
2. 加载工件:将待加工的金属板材放置在机床工作台上,并通过夹具固定住。
这个过程需要注意工件的位置和方向,以确保加工的精度和质量。
3. 调整机床参数:根据加工程序的要求,操作人员需要对机床的参数进行调整。
这些参数包括切割速度、切割深度、刀具半径等,可以通过数控系统进行设置。
4. 开始加工:当机床参数设置完成后,操作人员可以启动机床,开始加工。
在加工过程中,数控系统会根据加工程序的要求,控制机床的运动轨迹和刀具的位置,实现对工件的切割、折弯、成型等操作。
5. 完成加工:当加工完成后,机床会自动停止运动。
操作人员可以将加工好的工件取下,并进行检查和质量控制。
总的来说,自整角机的工作原理是通过数控系统控制机床的运动,实现对金属板材进行加工。
这种机床具有加工精度高、生产效率高、操作简单等优点,是现代制造业中不可或缺的设备之一。
力矩式自整角机工作原理及应用一、工作原理1.传感器测量力矩:力矩传感器采用一种特殊的结构,当受到力矩作用时,传感器会产生相应的位移或变形。
传感器通过测量这一位移或变形来得到受到的力矩大小。
2.控制器分析输入信号:传感器测量到的位移或变形信号被传输到控制器中,控制器会根据输入的信号进行分析和处理,并计算出当前物体的力矩大小。
3.电动机自动调整:控制器会将计算得出的力矩大小与预设的目标力矩进行比较,如果两者不一致,控制器会根据差异的大小和方向来控制电动机的转动。
电动机通过改变输出的力矩来使物体保持在平衡的状态。
4.执行机构调整物体:根据电动机的转动,执行机构会相应地调整物体的位置或角度,使物体受到的力矩等于目标力矩,从而达到自动调整的效果。
二、应用领域1.机器人:力矩式自整角机在机器人中起到非常重要的作用。
通过测量机器人关节处的力矩,控制器可以精确地调整机器人的姿态和位置,使其保持平衡或完成特定动作。
2.汽车悬挂系统:力矩式自整角机可以用于汽车悬挂系统中,通过测量车轮受到的力矩来实现自动调整。
这可以提高车辆的稳定性和行驶舒适度。
3.航空航天领域:在航空航天领域中,力矩式自整角机可以应用于飞机和航天器的姿态控制。
它可以通过测量受到的力矩来调整飞机或航天器的姿态,并保持它们的稳定性和平衡。
4.医疗领域:力矩式自整角机可以应用于医疗设备中,如手术机器人和康复设备。
通过测量受到的力矩,可以帮助医生或康复师调整机器人或设备的姿态,准确地进行手术或康复治疗。
5.工业生产:力矩式自整角机还可以应用于工业生产中的自动化系统。
它可以通过测量工业设备受到的力矩,实现设备的自动调整和控制,提高生产效率和产品质量。
6.体育训练:力矩式自整角机可以应用于体育训练中,如体操、滑雪和击球运动等。
通过测量运动员受到的力矩,可以帮助教练和运动员调整姿态和动作,提高训练效果和竞技表现。
总之,力矩式自整角机通过测量物体受到的力矩并自动调整,可以应用于多个领域,实现力矩的精确测量和自动控制,提高系统的稳定性和性能。
自整角机工作原理
自整角机是一种能够自动调整角度的机械设备,其工作原理是通过激光测距和电动机的控制,实现对角度的精准调整。
自整角机广泛应用于建筑、测绘、航空等领域,能够提高工作效率和准确性。
自整角机的工作原理可以简单概括为以下几个步骤:激光测距、计算角度、控制电动机、调整角度。
自整角机通过激光测距技术获取目标物体与自身的距离。
激光发射器发射出一束激光,并通过光电二极管接收激光反射回来的信号,根据光的传播速度和信号的时间延迟计算出目标物体与自身的距离。
接着,自整角机根据测得的距离和设定的参考点,计算出目标物体与参考点之间的角度。
通过激光测距仪内部的算法,将距离转化为角度,并将计算结果传输给控制系统。
然后,控制系统根据计算得到的角度,通过电动机控制机械结构的旋转,使其达到设定的角度。
电动机根据控制信号转动,带动机械结构的旋转,使得自整角机的角度得到精确调整。
自整角机完成角度调整后,可以进行下一步的工作。
例如,在建筑领域中,自整角机可以用于测量建筑物的角度,确保建筑物的垂直度和水平度;在测绘领域中,自整角机可以用于测量地形地貌的角度,提供准确的地理信息;在航空领域中,自整角机可以用于飞行器的导航和姿态控制,确保飞行的稳定性和安全性。
自整角机通过激光测距和电动机的控制,实现对角度的自动调整。
其工作原理简单明了,通过精确的测量和计算,实现对目标物体与参考点之间角度的准确调整。
自整角机的应用广泛,可以提高工作效率和准确性,对于建筑、测绘、航空等领域具有重要意义。
实验一力矩式自整角机实验一.实验目的1.了解力矩式自整角机精度和特性的测定方法。
2.掌握力矩式自整角机系统的工作原理和应用知识。
二.预习要点1.力矩式自整角机的工作原理。
2.力矩式自整角机精度与特性的测试方法。
3.力矩式自整角机比整步转矩的测量方法。
三.实验项目1.测定力矩式自整角发送机的零位误差。
2.测定力矩式自整角机的静态误差。
四.实验设备及仪器1.NMEL系列电机系统教学实验台主控制屏(NMEL-II)2.自整角机实验仪60T2则+180+60+240+120+300刻度盘实际转角误差注意:机械角度超前为正误差,滞后为负误差,取其正、负最大误差绝对值之和的一半,此误差值即为发送机的零位误差0,以角分表示。
力矩式自整角发送机的精度由零位误差来确定。
2.测定力矩式自整角机的静态误差jt在力矩式自整角机系统中,静态协调时,接收机与发送机转子转角之差即静态误差jt,以角度表示。
实验接线仍如图6-3所示。
将发送机和接收机的励磁绕组加额定励磁电压220V,待稳定后,把发送机和接收机调整在0位置,缓慢旋转发送机刻度盘,每转过20,测取接收机实际转过的角度并记录于表6-6中。
发送机转角020406080100120140160接收机转角误差发送机转角180200220240260280300320340接收机转角误差注意:接收机转角超前为正误差,滞后为负误差,正、负最大误差绝对值之和的一半为力矩式接收机的静态误差。
六.实验报告1.根据实验结果,求出被试力矩式自整角发送机的零位误差0。
2.根据实验结果,求出被试力矩式自整角接收机的静态误差jt。
实验二控制式自整角机参数的测定一.实验目的1.通过实验测定控制式自整角机的主要技术参数。
2.掌握控制式自整角机的工作原理和运行特性。
二.预习要点1.控制式自整角机的工作原理和运行特性。
2.控制式自整角机的主要技术指标。
三.实验项目1.测自整角变压器输出电压与失调角的关系U2=f()。
实验一力矩式自整角机实验一.实验目的1.了解力矩式自整角机精度和特性的测定方法。
2.掌握力矩式自整角机系统的工作原理和应用知识。
二.预习要点1.力矩式自整角机的工作原理。
2.力矩式自整角机精度与特性的测试方法。
3.力矩式自整角机比整步转矩的测量方法。
三.实验项目1.测定力矩式自整角发送机的零位误差。
2.测定力矩式自整角机的静态误差。
四.实验设备及仪器1.NMEL系列电机系统教学实验台主控制屏(NMEL-II)2.自整角机实验仪T2T3注意:机械角度超前为正误差,滞后为负误差,取其正、负最大误差绝对值之和的一半,此误差值即为发送机的零位误差∆θ0,以角分表示。
力矩式自整角发送机的精度由零位误差来确定。
2.测定力矩式自整角机的静态误差∆θjt在力矩式自整角机系统中,静态协调时,接收机与发送机转子转角之差即静态误差∆θjt,以角度表示。
实验接线仍如图6-3所示。
将发送机和接收机的励磁绕组加额定励磁电压220V,待稳定后,把发送机和接收机调整在0︒位置,缓慢旋转发送机刻度盘,每转过20︒,测取接收机实际转过的角度并记录于表6-6中。
注意:接收机转角超前为正误差,滞后为负误差,正、负最大误差绝对值之和的一半为力矩式接收机的静态误差。
六.实验报告1.根据实验结果,求出被试力矩式自整角发送机的零位误差∆θ0。
2.根据实验结果,求出被试力矩式自整角接收机的静态误差∆θjt。
实验二控制式自整角机参数的测定一.实验目的1.通过实验测定控制式自整角机的主要技术参数。
2.掌握控制式自整角机的工作原理和运行特性。
二.预习要点1.控制式自整角机的工作原理和运行特性。
2.控制式自整角机的主要技术指标。
三.实验项目1.测自整角变压器输出电压与失调角的关系U2=f(θ)。
2.测定比电压uθ。
3.测定零位电压u0。
四.实验设备及仪器1.NMEL系列电机系统教学实验台主控制屏(NMEL-II)2.自整角机实验仪五.实验方法1.测定控制式自整角变压器输出电压与失调角的关系U2=f(θ)接线如图6-5所示。