期末复习题解答
- 格式:doc
- 大小:546.28 KB
- 文档页数:14
【期末复习专题卷】人教版数学八年级上册专题03 解答题一、解答题(共36小题)1.(2022秋•蕲春县期中)如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B =40°,∠C=72°,求∠AEC和∠DAE的度数.2.(2022秋•贵州期中)如图,已知:AD、CE是△ABC的高.试判断∠1与∠2的关系.并说明理由.3.(2022秋•香坊区校级期中)如图,DE⊥AC于E,BF⊥AC于F,∠1+∠2=180°,求证:∠AGF=∠ABC.4.(2022秋•东莞市校级期中)如图,在△ABC中,∠A=40°,∠ABD=30°,∠ACB =80°,且CE平分∠ACB,求∠BEC的度数.5.(2022秋•孝义市期中)如图,已知△ABC中,AD是BC边上的高,BE平分∠ABC,AD与BE相交于点P,∠ABC=70°,∠C=40°,求∠CAD和∠DPE的度数.6.(2022秋•西乡塘区校级期中)按要求完成下列各小题.(1)一个多边形的内角和比它的外角和多900°,求这个多边形的边数.(2)如图,若正五边形ABCDE和长方形AFCG按如图方式叠放在一起,求∠EAF 的度数.7.(2022秋•西城区校级期中)三角形内角和定理的推论:三角形的一个外角等于与它不相邻的两个内角的和.请完成这个定理的证明.已知:如图,∠ACD是△ABC的一个外角.求证:∠ACD=∠A+∠B.8.(2022秋•甘井子区期中)如图,点C是∠MAN的平分线上一点,CE⊥AB于E,B、D分别在AM、AN上,且2AE=AD+AB.求证:∠1+∠2=180°.9.(2022秋•海淀区校级期中)如图.在△ABC和△AEF中,AE=AB,AC=AF,∠CAF =∠BAE.求证:△ABC≌△AEF.10.(2022秋•广安区校级期中)如图,已知DE⊥AC于点E,BF⊥AC于点F,AD=BC,DE=BF.求证:(1)△AED≌△CFB;(2)AB∥DC.11.(2022秋•通山县期中)如图,点B,C,D在同一条直线上,∠B=∠D=90°,△ABC≌△CDE,AB=7,BC=24,CE=25.(1)求△ABC的周长;(2)求△ACE的面积.12.(2022秋•扬州期中)如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC=2,∠BAC=40°;(1)求∠BAD的度数;(2)若∠ADG=115°,求△CDG的面积.13.(2022秋•阳信县期中)如图,△ABC中,AB=AC,点D,E是BC上不与点B,C 重合的两点,且AD=AE.(1)求证:BD=CE.(2)过点B作BF∥AE交AD的延长线于点F,求证:△BDF是等腰三角形.14.(2022秋•北仑区期中)如图,点B,C分别在射线AM,AN上,点E,F都在∠MAN 内部的射线AD上,已知AB=AC,且∠BED=∠CFD=∠BAC.(1)求证:△ABE≌△CAF;(2)试判断EF,BE,CF之间的数量关系,并说明理由.15.(2022秋•姑苏区期中)在如图所示的正方形网格中,每个小正方形的边长都是1,已知△ABC的三个顶点的坐标分别为A(﹣3,6),B(﹣1,2),C(﹣5,4).(1)作出△ABC关于y轴对称的△A1B1C1.并写出点A1的坐标 .(2)在第(1)题的变换下,若点M(m,n)是线段AC上的任意一点,那么点M 的对应点M1的坐标为 .(3)在y轴上找一点P,使PA=PB,则P点坐标为 .16.(2022秋•扬州期中)如图,在等边△ABC中,点E在线段AB的延长线上,点D 在直线BC上,且ED=EC.若△ABC的边长为1,AE=3,求CD的长.17.(2022秋•通山县期中)如图,在△ABC中,BC=38.DG,EF分别垂直平分AB,AC,垂足分别为G,F,求△DAE的周长,18.(2022秋•阳信县期中)如图,在平面直角坐标系xOy中,点O(0,0),A(﹣1,2),B(2,1).(1)在图中画出△AOB关于y轴对称的△A1OB1,并直接写出点A1和点B1的坐标;(2)在x轴上画出点P,使得PA+PB的值最小(保留作图痕迹).19.(2022秋•鹿城区校级期中)如图,BD是等腰三角形ABC底边AC上的高线,DE∥BC,交AB于点E,求证:△BED是等腰三角形.证明:∵AB=BC,BD⊥AC∴∠1=∠ (等腰三角形 )∵ED∥BC∴∠1=∠ ( )∴∠ =∠ (等量代换)∴BE=ED(在同一个三角形中, )即△BDE是等腰三角形.20.(2022秋•临湘市期中)如图,在△ABC中,DE,DF分别为BC,AB边的垂直平分线,连接AD,CD.(1)若∠B=40°,求∠ACD的度数;(2)判断∠B与∠ACD之间的数量关系,并说明理由.21.(2022秋•北仑区期中)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC 于点E,∠B=69°,∠FAE=18°,求∠C的度数.22.(2022秋•任城区期中)因式分解:(1)x3+10x2+25x;(2)a4﹣8a2b2+16b4.23.(2022秋•如东县期中)已知(a m)n=a4,(a m)2÷a n=a3.(1)求mn和2m﹣n的值;(2)已知4m2﹣n2=15,求m+n的值.24.(2022秋•朝阳区校级期中)(1)计算:(a4)3+a8•a4;(2)计算:[(x+y)m+n]2;(3)已知2x+3y﹣2=0,求9x•27y的值.25.(2022秋•望城区期中)望城区某居民小组正在进行美丽乡村建设,为了提升居民的幸福指数,规划将一长为(9a﹣1)米、宽为(3b﹣5)米的矩形场地打造成居民健身场所.具体规划为:在这个场地中分割出一块长为(3a+1)米、宽为b米的矩形场地建篮球场,其余的地方安装各种健身器材,其中用于作篮球场的地面铺设塑胶地面,用于安装健身器材的区域建水泥地面.(1)求安装健身器材的区域面积;(2)在做施工预算时了解到铺设塑胶地面每平方米需100元,铺设水泥地面每平方米需50元,那么当a=9,b=15时,建设该居民健身场所所需地面费用为多少?26.(2022秋•西乡塘区校级期中)完全平方公式:(a±b)2=a2±2ab+b2,适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因为ab=1,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)若(4﹣x)(x﹣5)=﹣8,求(4﹣x)2+(x﹣5)2的值;(3)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=6,两正方形的面积和S1+S2=18,求图中阴影部分面积.27.(2022秋•安溪县期中)对于形如x2+2ax+a2可用“配方法”将它分解成(x+a)2的形式,如在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,它不会改变整个式子的值,其变化过程如下:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这种“因式分解”的方法称为“配方法”.请完成下列问题:(1)利用“配方法”分解因式:x2+4xy﹣5y2;(2)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC 的周长;(3)在实数范围内,请比较多项式2x 2+2x ﹣3与x 2+3x ﹣4的大小,并说明理由.28.(2022秋•鲤城区校级期中)我们知道,通过计算几何图形的面积可以解释代数恒等式的正确性,同样,利用几何图形的面积也可以解释不等式的正确性.请解答下列问题:(1)如图1,可以写出代数恒等式:(a +b +c )2= ;若a +b +c =11,ab +bc +ac =38,则a 2+b 2+c 2= ;(2)如图2,两个边长为a 、b 、c 的直角三角形和一个直角边为c 的等腰直角三角形拼成一个直角梯形,请根据梯形的面积推导a 、b 、c 之间的数量关系(要求写出推导过程);(3)如图3,已知线段的长度a 、b 、c 、a '、b '、c '满足a +a '=b +b '=c +c '=k .试画出一个几何图形,并在图形中标出线段的长度a 、b 、c 、a '、b '、c ',使得该几何图形的面积可以解释不等式ab '+bc '+a 'c <k 2.(不要求尺规作图)29.(2022秋•任城区期中)先化简,再求值:(1―x 1x 1)÷2x 2x 22x 1,x 取一个合适的值代入.30.(2022秋•西城区校级月考)计算:(1)(x 2y )2⋅xy x 2―xy 2xy 2÷2x ;(2)a 2b 3•(a 2b ﹣2)﹣2.31.(2022秋•沙坪坝区校级期中)某学校利用寒假维护其教学楼,若甲、乙两工程队合作10天可完成;若甲工程队先单独施工5天,再由乙工程队单独施工20天也可完成.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)现将该教学楼工程分成两部分,甲工程队做其中一部分工程用了m 天,每天需付施工费3万元,乙工程队做另一部分工程用了n 天,每天需付施工费1.4万元,若m ,n 都是正整数,乙工程队做的时间不到17天,求出此项工程总施工费用的最小值.32.(2022秋•贵港期中)先化简,再求值(1)(x 1x 21+x x 1)÷x 1x 22x 1,其中x =―12;(2)a 4a 24÷(4a 2―a ―2),其中a 满足a 2﹣2a ﹣1=0.33.(2022秋•文登区期中)计算:(1)x x 24―12x 4+1x 2;(2)3x 3―x 3x 3•x 23x x 26x 9;(3)(2a 1a 1―a +1)÷+1.34.(2022秋•三台县期中)我们知道:12×23=13,12×23×34=14,……,(1)12×23×34×⋯⋯×n n 1= .(2)试根据上面规律,计算:(119―1)(120―1)(121―1)……(12011―1).35.(2022秋•九龙坡区校级期中)某天运动员小伟沿平路从家步行去银行办理业务,到达银行发现没有带银行卡(停留时间忽略不计),立即沿原路跑回家,已知平路上跑步的平均速度是平路上步行的平均速度的4倍,已知小伟家到银行的平路距离为2800米,小伟从离家到返回家共用50分钟.(1)求小伟在平路上跑步的平均速度是多少?(2)小伟找到银行卡后,发现离银行下班时间仅剩半小时,为了节约时间,小伟选择另外一条近的坡路去银行,小伟先上坡再下坡,用时9分钟到达银行,已知上坡的平均速度是平路上跑步的平均速度的57,下坡的平均速度是平路上跑步的平均速度的54,且上坡路程是下坡路程的2倍,求这段坡路的总路程是多少米?36.(2022秋•淅川县期中)阅读下列文字,并解决问题.已知x 2y =3,求2xy (x 5y 2﹣3x 3y ﹣4x )的值.分析:考虑到满足x 2y =3的x ,y 的可能值较多,不可能逐一代入求解,故考虑整体思想,将x 2y =3整体代入.解:2xy (x 5y 2﹣3x 3y ﹣4x )=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab=2,求(2a3b2﹣3a2b+4a)•(﹣2b)的值;(2)已知x―1x =3,求x2+1x2的值.参考答案一、解答题(共36小题)1.解:∵∠BAC+∠B+∠C=180°,∠B=40°,∠C=72°,∴∠BAC=68°,∵AE平分∠BAC,∠BAC=34°,∴∠BAE=∠CAE=12∴∠AEC=∠B+∠BAE=74°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣∠AEC=16°.2.解:∠1=∠2,理由如下:∵AD、CE是△ABC的高,∴∠ADB=∠CEB=90°,∴∠1+∠B=900,∠2+∠B=900,∴∠1=∠2.3.证明:∵DE⊥AC,BF⊥AC,∴∠AFB=∠AED=90°,∴BF∥DE,∴∠2+∠3=180°,又∵∠1+∠2=180°,∴∠1=∠3,∴GF∥BC,∴∠AGF=∠ABC.4.解:∵∠BDC是△ABD的外角,∠A=40°,∠ABD=30°,∴∠BDC=∠A+∠ABD=70°,∵CE平分∠ACB,∠ACB=80°,∠ACB=40°,∴∠DCE=12∴∠BEC=∠BDC+∠DCE=110°.5.解:∵△ABC中,∠ABC=70°,∠C=40°,AD是BC边上的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣40°=50°;∵BE平分∠ABC,∴∠CBE=1∠ABC=35°,2∵∠BPD=90°﹣∠CBE=55°,∴∠DPE=180°﹣∠BPD=180°﹣55°=125°.6.解:(1)解:设边数为n,根据题意,得(n﹣2)×180°=360°+900°,所以(n﹣2)×180°=1260°,所以n﹣2=7,所以n=9.答:这个多边形的边数是9.(2)正五边形内角和为540°,∴其每个内角为540°÷5=108°.∵长方形每个内角为90°,∴∠F=90°,∴∠ABC=108°,∠ABF=180°﹣∠ABC=180°﹣108°=72°,∴∠BAF=180°﹣∠F﹣∠ABF=180°﹣90°﹣72°=18°,∠EAF=∠EAB+∠BAF=108°+18°=126°.7.证明:∵∠A+∠B+∠ACB=180°,∠ACB+∠ACD=180°,∴∠A+∠B+∠ACB=∠ACB+∠ACD,∴∠A+∠B=∠ACD.8.证:∠1与∠2互补.法1:作CF⊥AN于F(如图),∵∠3=∠4,CE⊥AM,∴CF=CE,∠CFA=∠CEA=90°,∴△ACF ≌△ACE (AAS ),∴AF =AE .∵2AE =AD +AB∴AE =12(AD +AB )=12(AF ﹣DF +AE +EB )=AE +12(BE ﹣DF ),∴BE ﹣DF =0,∴BE =DF ,∴△DFC ≌△BEC (SAS ),∴∠5=∠2,∵∠1+∠5=180°,∴∠1+∠2=180°;法2:在AM 上截取AF =AD ,连接CF (如图),∵∠3=∠4,AC 为公共边,∴△ADC ≌△AFC (SAS ),∴∠1=∠5,∵2AE =AD +AB ,∴AE =12(AD +AB )=12(AF +AE +EB )=12(AE ﹣EF +AE +EB ),∴EB ﹣EF =0,∴EF =EB ,又∵CE ⊥AB ,∴BC =FC ,∴∠2=∠6,∵∠5+∠6=180°,∴∠1+∠2=180°.9.证明:∵∠CAF=∠BAE,∴∠CAF+∠CAE=∠BAE+∠CAE,即∠EAF=∠BAC,在△ABC和△AEF中,AB=AE∠BAC=∠EAF,AC=AF∴△ABC≌△AEF(SAS).10.证明:(1)在Rt△AED与Rt△CFB中,AD=BCDE=BF,∴Rt△AED≌Rt△CFB(HL);(2)∵△AED≌△CFB,∴AE=CF,∴AF=CE,在△AFB与△CED中,AF=CE∠AFB=∠CED,DE=BF∴△AFB≌△CED(SAS),∴∠BAF=∠DCE,∴AB∥DC.11.解:(1)∵△ABC≌△CDE,CE=25,∴AC=CE=25,∵AB=7,BC=24,∴△ABC的周长=AB+BC+AC=7+24+25=56;(2)∵∠B=90°,∴∠ACB+∠BAC=90°,∵△ABC≌△CDE,∴∠ECD=∠CAB,∴∠ACB+∠ECD=90°,∴∠ACE=90°,∵AC=CE=25,∴△ACE的面积=12×25×25=6252.12.解:∵BD⊥AE于点B,DC⊥AF于点C,且DB=DC=2,∴AD是∠BAC的平分线,∠BAC=40°,∴∠BAD=∠CAD=12∠BAC=20°;(2)∵∠ADG=115°,∴∠DGC=180°﹣∠CAD﹣∠ADG=45°,在Rt△CDG中,∴∠CDG=90°﹣45°=45°,∴∠DGC=∠CDG,∴CD=CG,∵DC=2,∴CG=2,∴△CDG的面积=12×2×2=2.13.(1)证明:∵AB=AC,∴∠ABD=∠C,∵AD=AE,∴∠ADE=∠AED,∴180°﹣∠ADE=180°﹣∠AED,∴∠ADB=∠AEC,在△ABD和△ACE中,∠ADB=∠AEC∠ABD=∠CAB=AC,∴△ABD≌△ACE(AAS),∴BD=CE.(2)证明:∵BF∥AE,∴∠FBD=∠AED,∵∠FDB=∠ADE=∠AED,∴∠FBD=∠FDB,∴FB=FD,∴△BDF是等腰三角形.14.(1)证明:∵∠BED=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∴∠ABE=∠CAF,同理:∠BAE=∠ACF,在△ABE和△CAF中,∠ABE=∠CAFAB=AC,∠BAE=∠ACF∴△ABE≌△CAF(ASA);(2)EF+CF=BE,理由如下:∵△ABE≌△CAF,∴AE=CF,BE=AF,∵AE+EF=AF,∴CF+EF=BE.15.解:(1)如图,△A1B1C1为所作,点A1的坐标为(3,6);(2)点M(m,n)关于y轴的对称点M1的坐标为(﹣m,n);故答案为:(﹣m,n);(3)P点坐标为(0,5);故答案为(0,5).16.解:过点E作EF⊥CD于点F,∵△ABC是等边三角形,边长为1,AE=3,∴BE=AE﹣AB=2,∠ABC=60°,∵EF⊥CD,∴∠EFB=90°,∴∠BEF=90°﹣60°=30°,BE=1,∴BF=12∴CF=BF+BC=2,∵ED=EC,EF⊥CD,∴DF=CF=2,∴CD=DF+CD=4.17.解:∵DG,EF分别垂直平分AB,AC,∴AD=BD,AE=EC,∴△DAE的周长=AD+DE+AE=BD+DE+EC=BC=38.18.解:(1)如图,△A1OB1为所求,A1(1,2),B1(﹣2,1);(2)如图,点P为所作.19.证明:∵AB=BC,BD⊥AC,∴∠1=∠2(等腰三角形三线合一),∵DE∥BC(已知),∴∠DBC=∠EDB(两直线平行,内错角相等),∴∠ABD=∠EDB,∴BE=DE(在同一个三角形中,等角对等边),∴△BDE是等腰三角形.故答案为:2;三线合一;3;两直线平行,内错角相等;2;3;等角对等边.20.解:(1)连接BD并延长,交AC于H,∵DE,DF分别为BC,AB边的垂直平分线,∴DA=DB,DC=DB,∴∠DAB=∠DBA,∠DCB=∠DBC,∴∠ADH=∠DAB+∠DBA=2∠DBA,∠CDH=∠DCB+∠DBC=2∠DBC,∴∠ADC=2∠ABC=80°,∵DA=DB,DC=DB,∴DA=DC,∴∠ACD=∠CAD=1(180°﹣80°)=50°;2(2)∠B+∠ACD=90°,理由如下:∵∠ACD+∠CAD+∠ADC=180°,∴2∠ACD+2∠ABC=180°,∴∠ACD+∠ABC=90°.21.解:∵DE是线段AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∴∠FAC=∠EAC+∠EAF=∠EAC+18°,∵AF平分∠BAC,∴∠BAC=2∠FAC=2∠EAC+36°=2∠C+36°,∵∠B+∠BAC+∠C=180°,∴69°+2∠C+36°+∠C=180°,解得∠C=25°.22.解:(1)原式=x(x2+10x+25)=x(x+5)2;(2)原式=(a2﹣4b2)2=(a+2b)2(a﹣2b)2.23.解:(1)∵(2m)n=4,(a m)2÷a n=a3,∴2mn=22,a2m﹣n=a3,∴mn=2,2m﹣n=3;(2)∵4m2﹣n2=15,∴(2m+n)(2m﹣n)=15,∵2m﹣n=3,∴2m+n=5,联立得2m+n=5 2m―n=3,解得m=2 n=1,∴m+n=3.24.解:(1)原式=a4×3+a8+4=a12+a12=2a12;(2)原式=(x+y)2(m+n);(3)9x•27y=(32)x•(33)y=32x•33y=32x+3y,由2x+3y﹣2=0,可得2x+3y=2,原式=32=9.25.解:(1)(9a﹣1)(3b﹣5)﹣b(3a+1)=27ab﹣45a﹣3b+5﹣3ab﹣b=24ab﹣45a﹣4b+5(平方米),答:安装健身器材的区域面积为(24ab﹣45a﹣4b+5)平方米;(2)根据题意,得需要总费用为100b(3a+1)+50(24ab﹣45a﹣4b+5)=300ab+100b+1200ab﹣2250a﹣200b+250=1500ab﹣2250a﹣100b+250,当a=9,b=15时,总费用为1500×9×15﹣2250×9﹣100×15+250=181000(元),答:建设该居民健身场所所需地面费用为181000元.26.解:(1)∵x+y=8,∴(x+y)2=64,即x2+2xy+y2=64,又∵x2+y2=40,∴2xy=64﹣40,∴xy=12,答:xy的值为12;(2)设m=4﹣x,n=x﹣5,则m+n=﹣1,mn=(4﹣x)(x﹣5)=﹣8,∴(4﹣x)2+(x﹣5)2=m2+n2=(m+n)2﹣2mn=(﹣1)2﹣2×(﹣8)=1+16=17;(3)设AE =a ,FG =b ,则AB =6=a +b ,由题意可知S 1+S 2=a 2+b 2=18,∵(a +b )2=a 2+2ab +b 2,∴36=18+2ab ,∴ab =9,∴阴影部分的面积为12ab =92,答:阴影部分的面积为92.27.解:(1)原式=x 2+4xy +4y 2﹣4y 2﹣5y 2=(x +2y )2﹣9y 2=(x +2y +3y )(x +2y ﹣3y )=(x +5y )(x ﹣y );(2)∵a 2+b 2+c 2+50=6a +8b +10c ,∴a 2﹣6a +9+b 2﹣8b +16+c 2﹣10c +25+50﹣9﹣16﹣25=0,则(a ﹣3)2+(b ﹣4)2+(c ﹣5)2=0,∵a ,b ,c 是△ABC 的三边长,∴a =3,b =4,c =5,∴C △abc =3+4+5=12;(3)2x 2+2x ﹣3﹣(x 2+3x ﹣4)=2x 2+2x ﹣3﹣x 2﹣3x +4=x 2﹣x +1=x 2―x +14―14+1=(x ―12)2+34∵(x ―12)2≥0,∴(x ―12)2+34≥34,∴2x 2+2x ﹣3>x 2+3x ﹣4.28.解:(1)图1中最大的正方形面积S =(a +b +c )2,最大的正方形面积是由3个小正方形的面积,6个小长方形的面积相加得到的,∴S =(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;当a +b +c =11,ab +bc +ac =38时,112=a 2+b 2+c 2+2×38,解得a 2+b 2+c 2=45,故答案为:a 2+b 2+c 2+2ab +2ac +2bc ,45;(2)∵S 梯形=12×(a +b )(a +b )=12(a +b )2,S 梯形=12×c 2+2×12×ab =12c 2+ab ,∴12c 2+ab =12(a +b )2,∴a 2+b 2=c 2;(3)∵a +a '=b +b '=c +c '=k ,∴以k 为边长作正方形,如图所示,∵S 正方形=k 2,∴由题可知ab '+bc '+a 'c <k 2.29.解:原式=(x 1x 1―x 1x 1)•(x 1)22(x 1)=2x 1•(x 1)22(x 1)=x 1x 1,由分式有意义的条件可知:x 可取0,∴原式=11=―1.30.解:(1)原式=x 24y 2•xyx 2―12y •x 2=x 4y ―x 4y=0.(2)原式=a2b3•(a﹣4b4)=a﹣2b7=b7a2.31.解:(1)设甲工程队单独完成此项工程需要x天,则甲工程队的工作效率为1x,乙工程队的工作效率为(110―1x),依题意得:5×1x +20(110―1x)=1,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴1÷(110―1x)=1÷(110―115)=30.答:甲工程队单独完成此项工程需要15天,乙工程队单独完成此项工程需要30天.(2)由题意得:m15+n30=1,整理得:2m+n=30,∴m=15―12n,设此项工程总施工费用为w,则w=3m+1.4n=3×(15―12n)+1.4n=﹣0.1n+45,∵﹣0.1<0,∴w随n的增大而减小,当n最大时,w最小,∵n<17,m,n都是正整数,∴n的最大值为16,∴当n=16时,w的最小值=﹣0.1×16+45=43.4,答:此项工程总施工费用的最小值为43.4万元.32.解:(1)原式=x1x(x1)(x1)(x1)⋅(x1)2x1=(x1)(x ⋅(x1)2x1=x﹣1,当x=―12时,原式=―12―1=―32;(2)原式=a 4a 24÷=a 4(a 2)(a 2)⋅a 2a 24a =a 4(a 2)(a 2)⋅a 2a(a 4) =―1a(a 2) =―1a 22a ,∵a 2﹣2a ﹣1=0,∴a 2﹣2a =1,当a 2﹣2a =1时,原式=―11=―1.33.解:(1)原式=x (x 2)(x 2)―12(x 2)+1x 2=2x 2(x 2)(x 2)―x 22(x 2)(x 2)+2x 42(x 2)(x 2) =3x 62(x 2)(x 2) =32x 4;(2)原式=3x 3―x 3x 3•x(x 3)(x 3)2=3x 3―xx 3 =3x x 3=﹣1;(3)原式=(2a 1a 1―a 21a 1)÷(a 2)2a 1+1=•a 1(a 2)2+1=a(a 2)a 1•a 1(a 2)2+1=―a a 2+a 2a 2 =―2a 2.34.解:(1)12×23×34×⋯⋯×n n 1=1n 1,故答案为:1n 1;(2)(119―1)(120―1)(121―1)……(12011―1)=(―1819)×(―1920)×(―2021)×……×(―20102011)=―182011.35.解:(1)设小伟在平路上跑步的平均速度是x 米/分钟,则小伟在平路上步行的平均速度是14x 米/分钟,依题意得:280014x +2800x =50,解得:x =280,经检验,x =280是原方程的解,且符合题意.答:小伟在平路上跑步的平均速度是280米/分钟.(2)设这段坡路的总路程是y 米,则上坡路程是23y 米,下坡路程是13y 米,依题意得:23y 57×280+13y 54×280=9,解得:y =2100.答:这段坡路的总路程是2100米.36.解:(1)∵ab =2,∴(2a 3b 2﹣3a 2b +4a )•(﹣2b )=﹣4a 3b 3+6a 2b 2﹣8ab=﹣4•(ab )3+6•(ab )2﹣8ab=﹣4×23+6×22﹣8×2=﹣4×8+6×4﹣8×2=﹣32+24﹣16=﹣24;(2)∵x ―1x =3,∴x 2+1x 2=(x ―1x )2+2=32+2=9+2=11.。
人教版五年级下册数学期末解答综合复习题(含解析)1.妈妈去永辉市场买黄瓜。
如果妈妈买了3kg黄瓜用去了20元钱。
(1)1元钱可以买多少千克黄瓜?(计算结果用分数表示)(2)1kg黄瓜卖多少元钱?(计算结果用分数表示)2.两个师博加工相同的零件,张师傅5天加工3个,李师傅9天加工5个,哪位师傅的工作效率高?3.一本故事书有48页,安安8天看完。
(列式计算)(1)平均每天看了这本书的几分之几?(2)3天看了这本书的几分之几?4.8个好朋友合伙团购了20千克核桃,约定平均分,每人分到这些核桃的几分之几?每人分到多少千克核桃?5.(1)填表。
规律写下来。
(3)根据上面的发现,如果a与b的积是300,a与b的最大公因数是5,那么a与b的最小公倍数是()。
6.向前小学五年级有70多名同学。
同学们分组参加植树活动,每4名同学一组或者每6名同学一组都正好分完。
向前小学五年级有多少名同学?7.一座喷泉由内外双层构成。
外面每隔8分钟喷一次,里面每隔6分钟喷一次。
中午12:45同时喷过一次后,下次同时喷水是几时几分?8.某市第一实验小学五(1)班有学生40~50人,将这些学生按每组6人分,正好分完,按每组8人分,也正好分完。
这个班有多少人?9.食堂运来一车煤共54吨,上午用去了16,下午比上午多用去总数的124,还剩2532吨。
(1)一共用去了这车煤的几分之几?(2)用去了多少吨?10.有红、黄、蓝三条丝带,红丝带比黄丝带长7m20,蓝丝带比黄丝带短3m10,红丝带与蓝丝带相差多少米?11.工程队修一条公路,第一天修了34千米,比第二天少修16千米。
这个工程队两天共修了多少千米?12.一杯牛奶,喝了25L,如果再喝12L,正好喝了这杯牛奶的一半。
这杯牛奶一共有多少L13.一个无盖的长方体玻璃鱼缸,长8分米,宽5分米,高4分米。
(1)做这个鱼缸至少需要玻璃多少平方分米?(2)在鱼缸里注入120升水,水深多少分米?(玻璃厚度忽略不计)14.一个花坛(如图),高0.7米,底面是边长1.2米的正方形,四周用砖砌成,厚度是0.2米,中间填满泥土。
会计学期末复习题解答一、单选题1.会计的基本职能是(C)。
A.记录和计算B.确认和计量C.核算和监督D.分析和考核2.下列各项中,属于会计总体目标的是(B)。
A.进行价值管理B.提高经济效益C.向会计信息使用者提供决策有用的信息D.反映企业管理层受托责任的履行情况3.下列会计等式,不正确的是(D)。
A.资产=权益B.资产=负债+所有者权益C.收入-费用=利润D.资产+收入=负债+所有者权益+费用4.下列各项中,构成资产计价尺度的是(A)。
A.货币B.使用价值C.价值D.购买力货币5. 某企业1月份发生下列支出:(1)支付本年度保险费7200元;(2)支付去年第4季度借款利息9600元;(3) 支付本年度报刊订阅费5400元,按照权责发生制原则,该企业1月份应负担的费用(D)。
A.22200元 B.4250元 C.12600元 D.1050元6.下列各项中,作为开设账户依据的是(D)。
A.会计准则B.会计制度规定C.会计报表D.会计科目7.下列有关会计科目与会计账户的说法中,不正确的是(C)。
A.会计账户是对会计要素进一步分类核算的工具,是会计信息的载体。
B.会计账户必须具有一定的结构C.会计科目作为分类核算的依据,需要反映会计要素增减变动的金额及结果D.会计科目是会计账户开设的依据8.下列各项中,应作为所有者权益类账户期末余额计算公式的是( C)。
A.借方期末余额=借方期初余额+借方本期发生额-贷方本期发生额B.借方期末余额=借方期初余额+贷方本期发生额-借方本期发生额C.贷方期末余额=贷方期初余额+贷方本期发生额-借方本期发生额D.贷方期末余额=贷方期初余额+借方本期发生额-贷方本期发生额9.在具体账户的左、右两方中究竟哪一方记录增加额,那一方记录减少额,取决于个账户的(B)和()。
A.记账方法,记账形式B.记账方法,记账规则C.经济内容,记账方法D.经济内容,记账形式10.下列各项中,属于复式记账作用的是( C)。
计算机控制技术期末复习试题附答案一、选择题1. 下面哪个不是计算机控制系统的组成部分?A. 控制器B. 传感器C. 运算器D. 计算机主机答案:D2. 控制器的作用是什么?A. 输入信息B. 处理信息C. 输出信息D. 以上都是答案:B3. 在控制系统中,传感器的作用是什么?A. 输入信息B. 处理信息C. 输出信息D. 以上都是答案:A4. 控制器与执行器之间的信息传递通常采用哪种形式?A. 电信号B. 光信号C. 音频信号D. 无线信号答案:A二、填空题1. 在控制系统中,PID是什么的缩写?答案:比例-积分-微分2. 当一个过程变量小于或大于设定值时,控制器需要发出一个____信号来调节执行器。
答案:控制3. 开环控制系统中,控制器完全依赖于____来判断并调节执行器。
答案:设定值三、解答题1. 请解释闭环控制系统和开环控制系统的区别。
答案:闭环控制系统和开环控制系统是两种基本的控制系统结构。
闭环控制系统通过传感器获得反馈信息,将反馈信息与设定值进行比较后进行调节,以使系统输出接近设定值。
开环控制系统则没有反馈环节,控制器仅仅根据设定值来调节执行器。
闭环控制系统具有较好的稳定性和鲁棒性,能够减小外界干扰对系统的影响,但由于需要进行反馈调节,系统可能存在一定的响应延迟。
开环控制系统较为简单,但容易受到干扰的影响,对系统稳定性要求较高。
四、简答题1. 请简述计算机控制技术在工业自动化中的应用。
答案:计算机控制技术在工业自动化中广泛应用,其主要作用是实现对生产过程的自动控制。
通过传感器获取实时数据,计算机控制系统可以实时监测和控制生产过程中的各项参数,将实际数值与设定值进行比较,并通过执行器调节控制。
这种自动化控制能够提高生产效率、降低成本,同时还可以减少人为操作中的误差,提高产品的质量稳定性。
在工业生产中,计算机控制技术广泛应用于各种制造过程中,如汽车制造、电子设备制造、化工生产等。
通过计算机控制技术,可以实现生产过程中的自动监测、自动调节、自动报警等功能,从而提高生产效率,降低生产成本,提高产品的一致性和稳定性。
人教版中学七年级下册数学期末复习题含答案一、选择题1.如图,直线a ,b 被直线c 所截,∠1的同旁内角是( )A .∠2B .∠3C .∠4D .∠52.下列各组图形可以通过平移互相得到的是( )A .B .C .D .3.在平面直角坐标系中,下列各点在第二象限的是( )A .()1,10B .()6,4-C .()0,1-D .()3,7- 4.下列两个命题:①过一点有且只有一条直线和已知直线平行;②垂直于同一条直线的两条直线互相平行,其中判断正确的是( )A .①②都对B .①对②错C .①②都错D .①错②对 5.如图,直线////AB CD EF ,点O 在直线AB 上,下列结论正确的是( )A .12390∠+∠-∠=︒B .12390∠+∠+∠=︒C .321180∠+∠-∠=︒D .132180∠+∠-∠=︒6.下列说法错误的是( )A .3的平方根是3B .﹣1的立方根是﹣1C .0.1是0.01的一个平方根D .算术平方根是本身的数只有0和1 7.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为( )A .90°B .75°C .65°D .60°8.如图,在平面直角坐标系xOy 中,点()1,0P .点P 第1次向上跳动1个单位至点()11,1P ,紧接着第2次向左跳动2个单位至点()21,1P -,第3次向上跳动1个单位至点3P ,第4次向右跳动3个单位至点4P ,第5次又向上跳动1个单位至点5P ,第6次向左跳动4个单位至点6P ,…….照此规律,点P 第200次跳动至点200P 的坐标是( )A .()51,100B .()26,50C .()26,50-D .()51,100-九、填空题9.若a 、b 为实数,且满足|a ﹣2|+3b -=0,则a ﹣b 的立方根为_____.十、填空题10.若点()3,P m 与(),6Q n -关于x 轴对称,则2m n -=____________________________. 十一、填空题11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.十二、填空题12.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.十三、填空题13.将一条长方形纸带按如图方式折叠,若1108∠=︒,则2∠的度数为________°.十四、填空题14.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.十五、填空题15.点31,25()P m m +-到两坐标轴的距离相等,则m =________.十六、填空题16.如图,在平面直角坐标系中,边长为1的等边△OA 1A 2的一条边OA 2在x 的正半轴上,O 为坐标原点;将△OA 1A 2沿x 轴正方向依次向右移动2个单位,依次得到△A 3A 4A 5,△A 6A 7A 8…,则顶点A 2021的坐标为 __________________.十七、解答题17.计算:(1)|23-|+22;(2)22312127(6)(5)+----十八、解答题18.已知a +b =5,ab =2,求下列各式的值.(1)a 2+b 2;(2)(a ﹣b )2.十九、解答题19.如图,已知∠1+∠AFE =180°,∠A =∠2,求证:∠A=∠C +∠AFC证明:∵ ∠1+∠AFE =180°∴ CD ∥EF ( , ) ∵∠A=∠2 ∴( ) ( , ) ∴ AB ∥CD ∥EF ( , )∴ ∠A = ,∠C = ,( , )∵ ∠AFE =∠EFC +∠AFC ,∴ = .二十、解答题20.将△ABO 向右平移4个单位,再向下平移1个单位,得到三角形A ′B ′O ′(1)请画出平移后的三角形A ′B ′O ′.(2)写出点A ′、O ′的坐标.二十一、解答题21.例如∵479.<<即273<<,∴7的整数部分为2,小数部分为72-,仿照上例回答下列问题;(1)17介于连续的两个整数a 和b 之间,且a <b ,那么a = ,b = ; (2)x 是172+的小数部分,y 是171-的整数部分,求x = ,y = ; (3)求(17)y x -的平方根.二十二、解答题22.如图1,用两个边长相同的小正方形拼成一个大的正方形.(1)如图2,若正方形纸片的面积为12dm ,则此正方形的对角线AC 的长为 dm . (2)如图3,若正方形的面积为162cm ,李明同学想沿这块正方形边的方向裁出一块面积为122cm 的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由.二十三、解答题23.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°.求∠APC 的度数.小明的思路是:过P 作PE ∥AB ,通过平行线性质,可得∠APC =∠APE +∠CPE =50°+60°=110°.问题解决:(1)如图2,AB ∥CD ,直线l 分别与AB 、CD 交于点M 、N ,点P 在直线I 上运动,当点P 在线段MN 上运动时(不与点M 、N 重合),∠PAB =α,∠PCD =β,判断∠APC 、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P 在线段MN 或NM 的延长线上运动时.请直接写出∠APC 、α、B 之间的数量关系;(3)如图3,AB ∥CD ,点P 是AB 、CD 之间的一点(点P 在点A 、C 右侧),连接PA 、PC ,∠BAP 和∠DCP 的平分线交于点Q .若∠APC =116°,请结合(2)中的规律,求∠AQC 的度数.二十四、解答题24.如图1,点O 在MN 上,90,,AOB AOM m OCQ n ∠=︒∠=︒∠=︒,射线OB 交PQ 于点C ,已知m ,n 满足:220(70)0m n -+-=.(1)试说明MN //PQ 的理由;(2)如图2,OD 平分AON ∠,CF 平分OCQ ∠,直线OD 、CF 交于点E ,则OEF ∠=______︒;(3)若将AOB ∠绕点O 逆时针旋转()090αα<<︒,其余条件都不变,在旋转过程中,OEF ∠的度数是否发生变化?请说明你的结论.二十五、解答题25.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM =30°,∠OCD =45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN 与CD相交于点E,求∠CEN的度数;(3)将图①中的三角板OMN绕点O按每秒30°的速度按逆时针方向旋转一周,在旋转的过程中,在第____________秒时,直线MN恰好与直线CD垂直.(直接写出结果)【参考答案】一、选择题1.A解析:A【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解:直线a,b被直线c所截,∠1的同旁内角是∠2,故选:A.【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.2.C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案.【详解】解:观察图形可知图案C通过平移后可以得到.故选:C.【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键.3.D【分析】根据在第二象限的点的特征进行判断,即可得到答案.【详解】解:∵第二象限的点特征是横坐标小于零,纵坐标大于零,∴点(-3,7)在第二象限,故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】根据平行公理及其推论判断即可.【详解】解:①过直线外一点有且只有一条直线和已知直线平行,故错误;②在同一平面内,垂直于同一条直线的两条直线互相平行,故错误;故选:C.【点睛】本题主要考查了命题与定理,平行公理及其推论,属于基础知识,要牢牢掌握.5.D【分析】根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.【详解】解:∵AB∥EF,∴∠1+∠AOF=180°,∵CD∥AB,∴∠3=∠AOC,又∵∠AOF=∠AOC−∠2=∠3-∠2,∴∠1+∠3-∠2=180°.故选:D.【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.6.A【分析】根据平方根、立方根、算术平方根的概念进行判断即可.【详解】解:A、3的平方根是±3,原说法错误,故此选项符合题意;B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.【点睛】本题考查了平方根、立方根、算术平方根的概念,掌握平方根、立方根、算术平方根的概念是解题的关键.7.B【分析】根据平行线的性质可得∠FDC=∠F=30°,然后根据三角形外角的性质可得结果.【详解】解:如图,∵EF∥BC,∴∠FDC=∠F=30°,∴∠1=∠FDC+∠C=30°+45°=75°,故选:B.【点睛】本题主要考查了平行线的性质以及三角形外角的性质,熟知三角板各个角的度数是解本题的关键.8.A【分析】设第n次跳动至点Pn,根据部分点An坐标的变化找出变化规律P4n(n + 1,2n),Pn+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2解析:A【分析】设第n次跳动至点P n,根据部分点A n坐标的变化找出变化规律P4n(n + 1,2n),P n+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2n +2),依此规律结合200 = 50 ×4,即可得出点P200的坐标.【详解】解:设第n次跳动至点P n,观察发现:P(1,0),P1(1,1),P2(-1,1),P3(-1,2),P4(2,2),P5(2,3),P6(-2,3),P7(-2,4),P8(3,4),P9(3,5),...,∴P4n+1(n + 1,2n +1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2n+2),P4n(n + 1,2n),(n为自然数),∵200 = 50 × 4,∴P200(50+1 ,50×2),即(51,100).故选A.【点睛】本题考查了规律型中点的坐标,解题的关键是准确找到点的坐标变化规律.九、填空题9.-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.【详解】解:∵|a﹣2|+=0,|a﹣2|≥0,≥0∴a﹣2=0,3﹣b=0∴a=2,b=3∴,故答案为:解析:-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.【详解】解:∵|a﹣0,|a﹣2|≥0∴a﹣2=0,3﹣b=0∴a=2,b=3∴==-,1故答案为:﹣1.【点睛】本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a、b的值.十、填空题10.0【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点与关于轴对称∴∴,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点解析:0【分析】根据平面直角坐标系中关于x 轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】∵点(3,)P m 与(,6)Q n -关于x 轴对称∴36n m =-=-,∴262(3)0m n -=--⨯-=,故答案为:0.【点睛】本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键.十一、填空题11.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.十二、填空题12.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.十三、填空题13.36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB∥CD,如图∴∠GEC=∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED+∠GEC=180゜∴∠2=解析:36【分析】根据平行线的性质、折叠的性质即可解决.【详解】∵AB ∥CD ,如图∴∠GEC =∠1=108゜由折叠的性质可得:∠2=∠FED∵∠2+∠FED +∠GEC =180゜∴∠2=11(180)(180108)3622GEC ︒-∠=⨯︒-︒=︒ 故答案为:36【点睛】本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 十四、填空题14.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数.故解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【详解】∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P 表示的数p .故答案为:p .【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答. 十五、填空题15.或.【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点到两坐标轴的距离相等,∴,或,解得,或,故答案为:或.【点睛】本题考查了点到坐标轴的距解析:6-或45. 【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点31,25()P m m +-到两坐标轴的距离相等, ∴31=25m m +-,31=25m m +-或31=(25)m m +--,解得,=6m -或4=5m , 故答案为:6-或45. 【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值. 十六、填空题16.(1346.5,).【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标.【详解】解:是等边三角形,边长为1,,,,…观察图形可知,3个点一个循解析:(1346.5. 【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A 2021的坐标.【详解】解:12OA A 是等边三角形,边长为11A y ∴==112A ⎛ ⎝⎭,2(1,0)A ,3(2,0)A ,45(2A ,5(3,0)A 6(4,0)A … 观察图形可知,3个点一个循环,每个循环向右移动2个单位2021÷3=673…1,673×2=1346,故顶点A 2021的坐标是(1346.5故答案为:(1346.5 【点睛】本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的关键. 十七、解答题17.(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解.【详解】(1)||+2==(2)==3.【点睛】此题主要考查实数与二次根式的运算解析:(12)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解.【详解】(1)-+(22(=11365+--=3.【点睛】此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则.十八、解答题18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.十九、解答题19.同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【分析】根据同旁内角互补,两直线平行可得 CD ∥EF ,根据∠A=∠2利用同位角相等,两直线平行,AB ∥CD ,根据平行同一直线的两条直线平行可得AB ∥CD ∥EF 根据平行线的性质可得∠A =∠AFE ,∠C =∠EFC ,根据角的和可得 ∠AFE =∠EFC +∠AFC 即可.证明:∵ ∠1+∠AFE =180°∴ CD ∥EF (同旁内角互补,两直线平行), ∵∠A=∠2 ,∴( AB ∥CD ) (同位角相等,两直线平行),∴ AB ∥CD ∥EF (两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A = ∠AFE ,∠C = ∠EFC ,(两直线平行,内错角相等)∵ ∠AFE =∠EFC +∠AFC ,∴ ∠A = ∠C +∠AFC .故答案为同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键. 二十、解答题20.(1)见解析;(2)A′,O′【分析】(1)分别作出A ,B ,O 的对应点A′,B′,O′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A′B′O′即为所求作.(2)A′(解析:(1)见解析;(2)A ′()2,1,O ′()41-,【分析】(1)分别作出A ,B ,O 的对应点A ′,B ′,O ′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A ′B ′O ′即为所求作.(2)A ′(2,1),O ′(4,−1).本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型. 二十一、解答题21.(1),;(2);(3)【分析】(1)根据的范围确定出、的值;(2)求出,的范围,即可求出、的值,代入求出即可;(3)将代入中即可求出.【详解】解:(1),,,,故答案是:,;(解析:(1)4a =,5b =;(2)4,3x y =;(3)8±【分析】(1a 、b 的值;(221的范围,即可求出x 、y 的值,代入求出即可;(3)将4,3x y ==代入)y x 中即可求出.【详解】解:(1)1617<45∴<<,4a ∴=,5b =,故答案是:4a =,5b =;(2)4175<,627∴<,314<<,2264-,1的整数部分为:3;故答案是:4,3x y =;(3)174,3x y ==,3)464y x ∴==,)y x ∴的平方根为:8=±.【点睛】本题考查了估算无理数的大小的应用、求平方根,解题的关键是读懂题意及求出45<.二十二、解答题22.(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】解:解析:(1)2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】解:(1)∵正方形纸片的面积为21dm ,∴正方形的边长1AB BC dm ==, ∴AC =.(2)不能;根据题意设长方形的长和宽分别为3xcm 和2xcm .∴长方形面积为:2?312x x =,解得:x =∴长方形的长边为.∵4,∴他不能裁出.【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键.二十三、解答题23.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P 作PE ∥AB ,根据平行线的判定与性质即可求解;(2)分点P 在线段MN 或NM 的延长线解析:(1)∠APC =α+β,理由见解析;(2)∠APC =α-β或∠APC =β-α;(3)58°【分析】(1)过点P 作PE ∥AB ,根据平行线的判定与性质即可求解;(2)分点P 在线段MN 或NM 的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.【详解】解:(1)如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC =β-α;(3)如图3,过点P ,Q 分别作PE ∥AB ,QF ∥AB ,∵AB ∥CD ,∴AB ∥QF ∥PE ∥CD ,∴∠BAP =∠APE ,∠PCD =∠EPC ,∵∠APC =116°,∴∠BAP +∠PCD =116°,∵AQ 平分∠BAP ,CQ 平分∠PCD ,∴∠BAQ =12∠BAP ,∠DCQ =12∠PCD ,∴∠BAQ +∠DCQ =12(∠BAP +∠PCD )=58°,∵AB ∥QF ∥CD ,∴∠BAQ =∠AQF ,∠DCQ =∠CQF ,∴∠AQF +∠CQF =∠BAQ +∠DCQ =58°,∴∠AQC =58°.【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键. 二十四、解答题24.(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m 及n ,从而可求得∠MOC=∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由220(70)0m n -+-=可求得m 及n ,从而可求得∠MOC =∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也易得∠COE 的度数,由三角形外角的性质即可求得∠OEF 的度数;(3)不变,分三种情况讨论即可.【详解】(1)∵200m -≥,2(70)0n -≥,且220(70)0m n -+-= ∴200m -=,2(70)0n -=∴m =20,n =70∴∠MOC =90゜-∠AOM =70゜∴∠MOC =∠OCQ =70゜∴MN ∥PQ(2)∵∠AON =180゜-∠AOM =160゜又∵OD 平分AON ∠,CF 平分OCQ ∠ ∴1802DON AON ∠=∠=︒,1352OCF OCQ ∠=∠=︒∵80MOE DON ∠=∠=︒∴10COE MOE MOC ∠=∠-∠=︒∴∠OEF =∠OCF +∠COE =35゜+10゜=45゜故答案为:45.(3)不变,理由如下:如图,当0゜<α<20゜时,∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠MOC =∠OCQ =2x∵∠AON =360゜-90゜—(180゜-2x )=90゜+2x ,OD 平分∠AON∴∠DON =45゜+x∵∠MOE =∠DON =45゜+x∴∠COE =∠MOE -∠MOC =45゜+x -2x =45゜-x∴∠OEF =∠COE +∠OCF =45゜-x +x =45゜当α=20゜时,OD 与OB 共线,则∠OCQ =90゜,由CF 平分∠OCQ 知,∠OEF =45゜ 当20゜<α<90゜时,如图∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠NOC =180゜-∠OCQ =180゜-2x∵∠AON =90゜+(180゜-2x )=270゜-2x ,OD 平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜综上所述,∠EOF的度数不变.【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.二十五、解答题25.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形内角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根据两直线平行,同旁内角互补即可求出∠CEN的度数.(3)画出图形,求出在MN⊥CD时的旋转角,再除以30°即得结果.【详解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如图,MN⊥CD时,旋转角为360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒时,直线MN恰好与直线CD垂直.【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角∠DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去∠DOM的度数.。
人教版五年级数学下册期末解答复习题附答案图文1.把3m彩带平均分给4个小朋友,每人分到几米?2.五(1)班有3个小组参加植树活动,第一组5人种6棵树。
第二组8人种7棵。
第三组9人种10棵。
哪个组每人种树最多?3.某汽车公司生产线年产A品牌汽车18万台、B品牌汽车24万台,该汽车公司年产的A 品牌汽车占这两种汽车总量的几分之几?4.谁采茶速度快?5.一堆橘子,2个2个地拿正好拿完,3个3个地拿正好拿完,5个5个地拿正好拿完,这些橘子最少多少个?如果不超过200个,最多多少个?6.李老师奖励学生糖果,每人分9颗或12颗都正好分完,李老师至少准备了多少颗糖果?7.一包糖果在100粒以内,每3粒一数余1粒,每4粒一数也余1粒,每5粒一数还余1粒,请问这包糖果共有多少粒?8.同学们参加跳绳比赛,分成6人一组和分成9人一组,都正好分完。
如果这些学生的总人数在40人以内,可能是多少人?9.某电视剧首播时,爸爸因为工作忙只看了27,端午假期,又接着看了这部电视剧的12。
爸爸再看这部电视剧的几分之几就看完了?①请你先画图说明:②再列式计算。
10.在“清理白色垃圾,倡导低碳生活”的活动中,五(1)班同学清理塑料垃圾76千克,五(2)班同学比五(1)班多清理23千克。
五(1)班和五(2)班同学一共清理塑料垃圾多少千克?11.芳芳和依依同读一篇文章,芳芳用了415小时,依依用了0.3小时,谁的阅读速度快一些?快多少小时?12.农民伯伯给果树浇水,第一天上午浇了所有果树的14,下午浇了所有果树的310,剩下的第二天下午要浇完。
(1)第一天一共浇了所有果树的几分之几?(2)第二天下午要浇几分之几?13.将一个棱长为6cm的正方体熔铸成一个长为12cm,宽为2cm的长方体,则长方体的高为多少cm?长方体的表面积是多少?14.一个无盖的长方体玻璃鱼缸,长8分米,宽5分米,高4分米。
(1)做这个鱼缸至少需要玻璃多少平方分米?(2)在鱼缸里注入120升水,水深多少分米?(玻璃厚度忽略不计)15.一个花坛(如图),高0.7米,底面是边长1.2米的正方形,四周用砖砌成,厚度是0.2米,中间填满泥土。
人教版中学七7年级下册数学期末解答题综合复习题一、解答题1.如图,用两个面积为28cm的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.2.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为3dm,宽为2dm,且两块纸片面积相等.(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为22dm和23dm,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:2 1.414≈)≈,3 1.7323.如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?4.如图,用两个边长为152的小正方形拼成一个大的正方形,(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm25.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长二、解答题6.已知:AB//CD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH.(1)如图1,求证:GF//EH;(2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明.7.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由).(2)如图②中,AB//CD,又能得出什么结论?请直接写出结论.(3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为.8.如图,已知直线12//l l ,点A B 、在直线1l 上,点C D 、在直线2l 上,点C 在点D 的右侧,()80,2,ADC ABC n BE ∠=︒∠=︒平分,ABC DE ∠平分ADC ∠,直线BE DE 、交于点E .(1)若20n =时,则BED ∠=___________; (2)试求出BED ∠的度数(用含n 的代数式表示);(3)将线段BC 向右平行移动,其他条件不变,请画出相应图形,并直接写出BED ∠的度数.(用含n 的代数式表示)9.已知,AB ∥CD .点M 在AB 上,点N 在CD 上.(1)如图1中,∠BME 、∠E 、∠END 的数量关系为: ;(不需要证明) 如图2中,∠BMF 、∠F 、∠FND 的数量关系为: ;(不需要证明)(2)如图3中,NE 平分∠FND ,MB 平分∠FME ,且2∠E +∠F =180°,求∠FME 的度数;(3)如图4中,∠BME =60°,EF 平分∠MEN ,NP 平分∠END ,且EQ ∥NP ,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ 的度数.10.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答.问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.三、解答题11.阅读下面材料:小颖遇到这样一个问题:已知:如图甲,//,AB CD E 为,AB CD 之间一点,连接,,35,37BE DE B D ∠=︒∠=︒,求BED ∠的度数.她是这样做的: 过点E 作//,EF AB 则有,BEF B ∠=∠ 因为//,AB CD 所以//.EF CD ① 所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠ 即BED ∠=_ ; 1.小颖求得BED ∠的度数为__ ; 2.上述思路中的①的理由是__ ; 3.请你参考她的思考问题的方法,解决问题:已知:直线//,a b 点,A B 在直线a 上,点,C D 在直线b 上,连接,,AD BC BE 平分,ABC DE∠平分,ADC ∠且,BE DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若,ABC ADC αβ∠=∠=,则BED ∠的度数为 ;(用含有,αβ的式子表示).(2)如图2,当点B 在点A 的右侧时,设,ABC ADC αβ∠=∠=,直接写出BED ∠的度数(用含有,αβ的式子表示).12.已知,如图①,∠BAD =50°,点C 为射线AD 上一点(不与A 重合),连接BC . (1)[问题提出]如图②,AB ∥CE ,∠BCD =73 °,则:∠B = .(2)[类比探究]在图①中,探究∠BAD 、∠B 和∠BCD 之间有怎样的数量关系?并用平行....线的性质....说明理由. (3)[拓展延伸]如图③,在射线BC 上取一点O ,过O 点作直线MN 使MN ∥AD ,BE 平分∠ABC 交AD 于E 点,OF 平分∠BON 交AD 于F 点,//OG BE 交AD 于G 点,当C 点沿着射线AD 方向运动时,∠FOG 的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值.13.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n ∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)14.如图,已知AM ∥BN ,∠A =64°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)①∠ABN 的度数是 ;②∵AM ∥BN ,∴∠ACB =∠ ; (2)求∠CBD 的度数;(3)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律; (4)当点P 运动到使∠ACB =∠ABD 时,∠ABC 的度数是 . 15.如图1,//AB CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠+∠=∠;(2)在图2中,画BEP ∠的平分线与DFP ∠的平分线,两条角平分线交于点Q ,请你补全图形,试探索EQF ∠与EPF ∠之间的关系,并证明你的结论;(3)在(2)的条件下,已知BEP ∠和DFP ∠均为钝角,点G 在直线AB 、CD 之间,且满足1BEG BEP n ∠=∠,1DFG DFP n∠=∠,(其中n 为常数且1n >),直接写出EGF ∠与EPF ∠的数量关系.四、解答题16.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图 1,MN 是平面镜,若入射光线 AO 与水平镜面夹角为∠1,反射光线 OB 与水平镜面夹角为∠2,则∠1=∠2 .(现象解释)如图 2,有两块平面镜 OM ,ON ,且 OM ⊥ON ,入射光线 AB 经过两次反射,得到反射光线 CD .求证 AB ∥CD . (尝试探究)如图 3,有两块平面镜 OM ,ON ,且∠MON =55︒ ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 相交于点 E ,求∠BEC 的大小.(深入思考)如图 4,有两块平面镜 OM ,ON ,且∠MON = α ,入射光线 AB 经过两次反射,得到反射光线 CD ,光线 AB 与 CD 所在的直线相交于点 E ,∠BED =β , α 与 β 之间满足的等量关系是 .(直接写出结果)17.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 18.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处. (1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.19.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒;(1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.20.(1)如图1所示,△ABC 中,∠ACB 的角平分线CF 与∠EAC 的角平分线AD 的反向延长线交于点F ;①若∠B =90°则∠F = ;②若∠B =a ,求∠F 的度数(用a 表示);(2)如图2所示,若点G 是CB 延长线上任意一动点,连接AG ,∠AGB 与∠GAB 的角平分线交于点H ,随着点G 的运动,∠F +∠H 的值是否变化?若变化,请说明理由;若不变,请求出其值.【参考答案】一、解答题1.(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析.【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.【详解】解:(1)两个正方形面积之和为:2×8=16(cm2),∴拼成的大正方形的面积=16(cm2),∴大正方形的边长是4cm;故答案为:4;(2)设长方形纸片的长为2xcm,宽为xcm,则2x•x=14,解得:7x2x7,∴不存在长宽之比为2:1且面积为214cm的长方形纸片.【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键.2.(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(16dm;(2)不同意,理由见解析【分析】(1)设正方形边长为dm x ,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答. 【详解】解:(1)设正方形边长为dm x ,则223x =⨯,由算术平方根的意义可知x =. (2)不同意.因为:两个小正方形的面积分别为22dm 和23dm 和3.1≈,即两个正方形边长的和约为3.1dm ,所以3.13>,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为22dm 和23dm 的正方形纸片. 【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.3.(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】 解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能. 【解析】 【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可; (2)把正方形的边长与大长方形的长比较即可. 【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:32x yx y =⎧⎨+=⎩, 解得: 1.50.5x y =⎧⎨=⎩, ∴长是1.5m,宽是0.5m.(2)∵正方形的面积为7平方米, ∴米,∵∴他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.4.(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】解:(1)∵大正方形的面积是:∴大正解析:(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】2⨯解:(1)∵大正方形的面积是:(2∴=30;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x•3x=720,解得:x,4x>30,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2.故答案为(1)30;(2)不能.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式.5.(1)5;;(2);;(3)能,.【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正解析:(1)5;5;(2)51-;15-;(3)能,10.【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.【详解】试题分析:解:(1)拼成的正方形的面积与原面积相等1×1×5=5,边长为5,如图(1)(2)斜边长=222222+=,故点A 表示的数为:222-;点A 表示的相反数为:222-(3)能,如图拼成的正方形的面积与原面积相等1×1×10=1010考点:1.作图—应用与设计作图;2.图形的剪拼.二、解答题6.(1)见解析;(2),证明见解析.【分析】(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.【详解析:(1)见解析;(2)902FME α∠=︒-,证明见解析.【分析】(1)由平行线的性质得到CEH EHB ∠=∠,等量代换得出GFB EHB ∠=∠,即可根据“同位角相等,两直线平行”得解;(2)过点M 作//MQ AB ,过点G 作//GP AB ,根据平行线的性质及角平分线的定义求解即可.【详解】(1)证明://AB CD ,CEH EHB ∴∠=∠,GFB CEH ∠=∠,GFB EHB ∴∠=∠,//GF EH ∴;(2)解:902FME α∠=︒-,理由如下:如图2,过点M 作//MQ AB ,过点G 作//GP AB ,//AB CD ,//MQ CD ∴,AFM FMQ ∴∠=∠,QME MEC ∠=∠,FME FMQ QME AFM MEC ∴∠=∠+∠=∠+∠,同理,FGE FGP PGE AFG GEC ∠=∠+∠=∠+∠,FM 平分AFG ∠,EM 平分GEC ∠,2AFG AFM ∴∠=∠,2GEC MEC ∠=∠,2FGE FME ∴∠=∠,由(1)知,//GF EH ,180FGE GEH ∴∠+∠=︒,GEH α∠=,180FGE α∴∠=︒-,2180FME α∴∠=︒-,902FME α∴∠=︒-.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.7.(1)AB//CD ,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180°【分析】(1)过点E作EF//AB,利用平行线的性质则可得出解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D;(3)(n-1)•180°【分析】(1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD;(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D;(3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论.【详解】解:(1)过点E作EF//AB,∴∠B=∠BEF.∵∠BEF+∠FED=∠BED,∴∠B+∠FED=∠BED.∵∠B+∠D=∠E(已知),∴∠FED=∠D.∴CD//EF(内错角相等,两直线平行).∴AB//CD.(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,∵AB∥CD,∴AB∥EM∥FN∥GH∥CD,∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,即∠E+∠G=∠B+∠F+∠D.由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠F n-1+∠D.故答案为:∠E1+∠E2+…∠E n=∠B+∠F1+∠F2+…∠F n-1+∠D.(3)如图,过点M作EF∥AB,过点N作GH∥AB,∴∠APM+∠PME=180°,∵EF∥AB,GH∥AB,∴EF∥GH,∴∠EMN+∠MNG=180°,∴∠1+∠2+∠MNG =180°×2,依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°.故答案为:(n-1)•180°.【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.8.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n=20时,∠ABC=40°,过E作EF∥AB,则EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;当点B在点A右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=12∠ABC=n°,∠CDE=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.9.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;∠BME,进而可求解.(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=12(∠BME+∠END)﹣12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.10.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC= 解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒,128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下:如图3,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由:如图5,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.三、解答题11.;2.平行于同一条直线的两条直线平行;3.(1);(2).【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据B解析:1.72;2.平行于同一条直线的两条直线平行;3.(1)1122αβ+;(2)1118022αβ-+. 【分析】1、根据角度和计算得到答案;2、根据平行线的推论解答;3、(1)根据角平分线的性质及1的结论证明即可得到答案;(2)根据BE 平分,ABC DE ∠平分,ADC ∠求出11,22ABE CDE αβ∠=∠=,过点E 作EF ∥AB ,根据平行线的性质求出∠BEF =12α,11801802DEF CDE β∠=︒-∠=︒-,再利用周角求出答案.【详解】1、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以//.EF CD ①所以,FED D ∠=∠所以,BEF FED B D ∠+∠=∠+∠即BED ∠=72;故答案为:72;2、过点E 作//,EF AB则有,BEF B ∠=∠因为//,AB CD所以EF ∥CD (平行于同一条直线的两条直线平行),故答案为:平行于同一条直线的两条直线平行;3、(1)∵BE 平分,ABC DE ∠平分,ADC ∠∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,由1可得∠BED =BEF FED ABE CDE ∠+∠=∠+∠,∴∠BED =1122αβ+, 故答案为:1122αβ+;(2)∵BE 平分,ABC DE ∠平分,ADC ∠ ∴1111,2222ABE ABC CDE ADC αβ∠=∠=∠=∠=, 过点E 作EF ∥AB ,则∠ABE =∠BEF =12α, ∵//,AB CD∴EF ∥CD ,∴180CDE DEF ∠+∠=︒,∴11801802DEF CDE β∠=︒-∠=︒-, ∴11360360(180)22BED DEF BEF βα∠=︒-∠-∠=︒-︒--=1118022αβ-+.【点睛】此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.12.(1);(2),见解析;(3)不变,【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作∥,类似(1)利用平行线的性质,得出三个角的关系; (3)运用解析:(1)23︒;(2)BCD A B ∠=∠+∠,见解析;(3)不变, 25FOG ∠=︒【分析】(1)根据平行线的性质求出50A DCE ∠=∠=︒,再求出BCE ∠的度数,利用内错角相等可求出角的度数;(2)过点C 作CE ∥AB ,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出FOG ∠的度数,可得结论.【详解】(1)因为CE ∥AB ,所以50A DCE ∠=∠=︒,B BCE ∠=∠因为∠BCD =73 °,所以23BCE BCD DCE ∠=∠-∠=︒,故答案为:23︒(2)BCD A B ∠=∠+∠,如图②,过点C 作CE ∥AB ,则A DCE ∠=∠,B BCE ∠=∠.因为BCD DCE BCE ∠=∠+∠,所以BCD BAD B ∠=∠+∠,(3)不变,设ABE x ∠=,因为BE 平分ABC ∠,所以CBE ABE x ∠=∠=.由(2)的结论可知BCD BAD ABC ∠=∠+∠,且50BAD ︒∠=,则:502BCD x ∠=︒+.因为MN ∥AD ,所以502BON BCD x ∠=∠=︒+,因为OF 平分BON ∠, 所以1252COF NOF BON x ∠=∠=∠=︒+. 因为OG ∥BE ,所以COG CBE x ∠=∠=,所以2525FOG COF COG x x ∠=∠-∠=+-=︒︒.【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系.13.(1)120º,120º;(2)160;(3)【分析】(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出 60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据 ADB ADH BDH ∠=∠+∠即可得到结果;(2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可;(3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠,1CBD CBN n ∠=∠求解即可;【详解】解:(1)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒, ∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH , ∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.14.(1)① ②;(2);(3)不变,,理由见解析;(4)【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1)①116,︒ ②CBN ;(2)58︒;(3)不变,:2:1APB ADB ∠∠=,理由见解析;(4)29.︒【分析】(1)①由平行线的性质,两直线平行,同旁内角互补可直接求出;②由平行线的性质,两直线平行,内错角相等可直接写出;∠ABN,即可求出结果;(2)由角平分线的定义可以证明∠CBD=12(3)不变,∠APB:∠ADB=2:1,证∠APB=∠PBN,∠PBN=2∠DBN,即可推出结论;(4)可先证明∠ABC=∠DBN,由(1)∠ABN=116°,可推出∠CBD=58°,所以∠ABC+∠DBN=58°,则可求出∠ABC的度数.【详解】解:(1)①∵AM//BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM//BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM//BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM//BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM//BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等.15.(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,,再根据角平分线性质可得;(3)由(2)结论可得:.【详解】(1)证明:如图1,过解析:(1)见解析;(2)2360EPF EQF ∠+∠=︒;见解析;(3)360EPF n EGF ∠+∠=︒【分析】(1)过点P 作//PG AB ,根据平行线性质可得;(2)由(1)结论可得:EPF AEP CFP ∠=∠+∠,EQF BEQ DFQ ∠=∠+∠,再根据角平分线性质可得EQF BEQ DFQ ∠=∠+∠()13602EPF =︒-∠; (3)由(2)结论可得:()1EGF BEG DFG BEP DFP n ∠=∠+∠=∠+∠()1360EPF n =︒-∠. 【详解】(1)证明:如图1,过点P 作//PG AB ,∵//AB CD ,∴//PG CD ,∴1AEP ∠=∠,2CFP ∠=∠,又∵12EPF ∠+∠=∠,∴AEP CFP EPF ∠+∠=∠;(2)如图2,由(1)可得:EPF AEP CFP ∠=∠+∠,EQF BEQ DFQ ∠=∠+∠,∵BEP ∠的平分线与DFP ∠的平分线相交于点Q ,∴1()2EQF BEQ DFQ BEP DFP ∠=∠+∠=∠+∠ []()11360()36022AEP CFP EPF =︒-∠+∠=︒-∠, ∴2360EPF EQF ∠+∠=︒;(3)由(2)可得:EPF AEP CFP ∠=∠+,EGF BEG DFG ∠=∠+∠, ∵1BEG BEP n ∠=∠,1DFG DFP n∠=∠, ∴1()EGF BEG DF nG BEP DFP ∠=∠+∠=∠+∠ []()11360()360AEP CFP EPF n n=︒-∠+∠=︒-∠, ∴360EPF n EGF ∠+∠=︒;【点睛】考核知识点:平行线性质和判定的综合运用.熟练运用平行线性质和判定是关键.四、解答题16.【现象解释】见解析;【尝试探究】BEC 70;【深入思考】 2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】∠BEC = 70︒;【深入思考】 β = 2α.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB ∥CD ;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.17.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,。
人教小学五年级下册数学期末解答综合复习题含解析1.妈妈买回来一些毛线用来织毛衣和手套,织毛衣用去710千克,比织手套多用去23千克。
妈妈买回的毛线一共有多少千克?2.一台拖拉机耕地,第一天耕这块地的13,第二天耕这块地的25,还剩下这块地的几分之几没有耕?3.学校购进一批书,其中38是文艺书,25是科技书,其余为故事书。
(1)故事书的本数占这批书的几分之几?(2)科技书比文艺书多的本数占这批图书的几分之几?4.小红准备办板报,计划分三个栏目,其中“生活乐园”占25版,“开心一刻”占14,那么“知识城堡”占多少版?哪个栏目的版面最大?5.柏树和松树一共有6500棵。
松树的棵树是柏树的1.5倍。
松树有多少棵?(列方程解答)6.甲、乙两辆汽车同时从相距720千米的两地相向而行,4小时后相遇。
已知甲车的速度是乙车速度的1.25倍。
甲车每小时比乙车多行多少千米?(用方程解决问题)7.爸爸的年龄是小聪的9倍,妈妈的年龄是小聪的7.5倍,爸爸比妈妈大6岁,小聪今年几岁?(列方程)8.某学校的四年级学生比五年级少80人,五年级人数是四年级的1.4倍。
四、五年级各有学生多少人?9.王老师把24支圆珠笔和36本笔记本分别平均奖给若干名线上学习中的“进步之星”。
(1)“进步之星”最多有多少人?(2)每人分得多少支圆珠笔和多少本笔记本?10.六年级学生参加义务劳动,若6人一组多3人,若8人一组多5人,六年级至少有多少人参加了义务劳动?11.五(1)班给优秀少先队员发奖品,有笔记本24本,水彩笔36支,平均分给每个优秀少先队员正好分完而且没有剩余,每名优秀少先队员至少可分到多少本笔记本?多少支水彩笔?12.一座喷泉由内外双层构成。
外面每隔10分钟喷一次,里面每隔6分钟喷一次。
中午12:45同时喷过一次后,下次同时喷水是几时几分?13.“元旦”快要到了,某超市购进540只小中国结,比购进的大中国结的4倍少60只,超市购进多少只大中国结?14.学校的足球数先减去26,再乘3就和篮球一样多。
2024六年级上册数学期末试卷复习题(含答案)一、填空题1、在括号里填上合适的单位名称。
一块橡皮的体积大约8( )。
一桶纯净水大约有15( )。
2、根据下图中的数据,手指和掌心长度的最简整数比是( ),比值是( )。
3、六年级一班有36人,其中23喜欢跳舞,34喜欢唱歌,没有人既不喜欢跳舞又不喜欢唱歌。
既喜欢跳舞又喜欢唱歌的有( )人。
4、一种钢管长56米,重115吨,这种钢管每米重( )吨,5吨钢管长( )米。
5、下图中,四边形ABCD是长方形,已知甲、乙两圆相等,那么甲、丙两圆的周长比是( ),面积比是( ).(填最简整数比)6、两个完全相同的瓶子里装满糖水,第一个瓶子糖和水的质量比是1:9,第二个瓶子糖和水的质量比是1:10。
把这两个瓶子里的糖水溶液混合,这时糖和水的质量比是( )。
7、甲、乙、丙3个同学称体重,甲、乙合称是84千克,乙、丙合称是82千克,甲、丙合称是78千克,甲的体重是( )千克,乙的体重是( )千克。
8、小军买了3支圆珠笔和2支钢笔共16.5元,钢笔的单价是圆珠笔的4倍。
钢笔的单价是( )元,圆珠笔的单价是( )元。
9、两个长方形重叠部分的面积相当于大长方形面积的16,相当于小长方形面积的14,大方形和小长方形的面积比是( )。
10、如图所示,摆第7个图形需要( )根小棒。
二、选择题11、在扇形统计图中,其中一个扇形的圆心角是72°,则这个扇形所表示的数量占总数量的( )%。
A .72B .60C .40D .2012、两根同样长的铁丝,一根用去45米,另一根用了全长的45,剩下的两根相比( )。
A .第一段长B .第二段长C .一样长D .无法确定13、下面说法正确的是( )。
A .一根绳子长65%米B .今年汽车生产量比去年减少15%C .淘气班期末考试的合格率为101%14、在3:2中,如果前项加上9,要使比值不变,后项应( )。
A .加上9 B .乘9 C .加上615、下面各组数中,互为倒数的是( )。
一.单项选择题1.订购机票系统处理来自各个终端的服务请求,处理后通过终端回答用户,所以它是一个(D)。
A.分时系统B.多道批处理系统C.计算机网络D.实时信息处理系统2.批处理操作系统的目的是(B)。
A.提高系统与用户的交互性能B.提高系统资源利用率C.降低用户作业的周转时间D.减少用户作业的等待时间3.用户可以通过(B)两种方式来使用计算机。
A.命令方式和函数方式B.命令方式和系统调用方式C.命令方式和文件管理方式D.设备管理方式和系统调用方式4.操作系统在计算机系统中位于(C)之间。
A.CPU和用户之间B.中央处理器CPUC.计算机硬件和用户D.计算机硬件和软件之间5.实时系统中的进程调度,通常采用(C)算法。
A.先来先服务B.时间片轮转C.抢占式的优先数高者优先D.响应比高者优先6.下面有关选择进程调度算法的准则中不正确的是(D)。
A.尽快响应交互式用户的请求B.尽量提高处理器利用率C.尽可能提高系统吞吐量D.适当增长进程有就绪队列中的等待时间7.以下不可能引起进程调度的是(B)。
A.一个进程完成工作后被撤消B.一个进程从就绪状态变成了运行状态C.一个进程从等待状态变成了就绪状态D.一个进程从运行状态变成了等待状态或就绪状态8.作业的全部信息都已通过输入机输入,并由操作系统将其存放在磁盘的某些盘区中等待运行,这种状态称为作业的(C)。
A.提交状态B.运行状态C.后备状态D.完成状态9.作业由(B)三部分组成。
A.程序、代码和作业说明书B.程序、数据和作业说明书C.程序、数据结构和作业说明书D.数据、数据结构和作业说明书10.下列不属于作业的输入方式的是( A )。
A.终端输入方式B.联机输入方式C.脱机输入方式D.网络输入方式11.在系统把作业信息输入到输入井中后,根据作业说明书等信息为作业建立( C )。
A.作业表B.作业名C.作业控制块JCBD.作业缓冲区26.下面不属于作业调度算法的评估标准的是(B)。
《法理学》期末复习题及参考答案1、下列关于法的判断中,正确的是()。
A、法可以管制人的思想;B、合同具有法律效力,故合同是法;C、所有国家机关的内部规章制度都是法;D、法的根本属性是其阶级性。
2、“有配偶而重婚的,或者明知他人有配偶而与之结婚的,处2年以下有期徒刑或者拘役。
”这一法律规范中,()是该规范的假定部分。
A、“处2年以下有期徒刑或者拘役”;B、“有配偶而重婚的,或者明知他人有配偶而与之结婚的”;C、“有配偶而重婚的”;D、“有配偶而重婚的,或者明知他人有配偶而与之结婚的,处2年以下有期徒刑或者拘役”。
3、结婚登记会引起()。
人、法律关系的发生;8、法律关系的变更;做法律关系客体的变更;口、法律关系的消灭。
4、法的历史类型更替的根本原因是()。
A、生产关系发展的要求;B、阶级矛盾不可调和;C、社会革命力量的推动;D、社会基本矛盾运动的规律。
5、违法行为最基本、最本质的特征是()。
A、主观存在过错;B、应受法律制裁性;C、违法性;D、社会危害性。
6、法律所保护而为违法行为所侵犯的社会关系,是()。
A、违法行为的客观方面;B、违法行为的主观方面;C、违法行为的客体;D、违法行为的主体。
7、一国或一地区现行法律规范按不同的法律部门组成的有机联系的统一整体,是()。
A、法系;B、立法体系;C、法学体系;口、法律体系。
8、法律调整是一种()。
A、个别性调整;B、规范性调整;C、习惯性调整;D、具体性调整。
9、法律调整的对象是划分部门法的()。
A、唯一标准;B、次要原则;C、主要标准;D、主观标准。
10、大陆法系是以()为基础发展起来的各国法律的总称。
A、法国民法典;B、德国民法典;C、罗马法;D、美国法。
11、下列对法的认识,正确的是()。
A、法可以调整人与人之间的一切关系;B、好的法律文件必然会导致公正的法律后果;C、法是唯一的统治工具;D、法与现实生活总有一定程度的不适应。
12、在司法实践中,当行为发生在新法事实之前,而新法与旧法规定不同时,应当适用()。
大学数学期末考试复习题第一章一、选择题1.下列各组函数中相等的是. …….. ……..…………………………………………………………………………………….( ) A .2ln )(,ln 2)(x x g x x f ==B .0)(,1)(x x g x f ==C .1)(,11)(2-=-⋅+=x x g x x x f D .2)(|,|)(x x g x x f ==2.下列函数中为奇函数的是. ……. …….. …………………………………………………………………………………….( ). A .)1ln()(2++=x x x f B .||)(x e x f = C .x x f cos )(= D .1sin )1()(2--=x xx x f3.极限⎪⎭⎫⎝⎛+++∞→22221lim n n n n n 的值为………………………………………………………………………..…….( ) A .0 B .1 C .21D .∞ 4.极限xxx x sin lim+∞→的值为.. …….. ……..……………………………………………………………………………...…….( )A .0B .1C .2D .∞5.当0→x 时,下列各项中与 23x 为等价无穷小的是…………………………………………………….( )A .)1(3-xe x B .x cos 1- C .x x sin tan - D .)1ln(x + 6.设12)(-=xx f ,则当0→x 时,有…………………………………………………………………………..…….( ). A .)(x f 与x 是等价无穷小 B .)(x f 与x 同阶但非等价无穷小 C .)(x f 是比x 高阶的无穷小 D .)(x f 是比x 低阶的无穷小7.函数)(x f 在点x 0可导是)(x f 在点x 0连续的____________条件. ………...………………....…..( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要8.设函数⎪⎩⎪⎨⎧<≤--<≤≤≤-=01,110,21,2)(2x x x x x x x f ,则下述结论正确的是……………………………………….( )A .在0=x ,1=x 处间断B .在0=x ,1=x 处连续C .在0=x 处间断,在1=x 处连续D .在1=x 处间断,在0=x 处连续 9.极限xx x 10)1(lim -→-的值为.. …….. ……..…………………………………………………………………………………….( )A .1B .e -C .e1D .e 二、填空题10.函数ln y x =的定义域为(用区间表示) . 11. 函数xxy -+=11的定义域为(用区间表示) . 12. 已知x xx f +=1)(,则=))((x f f . 13. 函数x x y 2353+-=的反函数为 .14. =→xx x 1sin lim 20 .15. 当________=α时,αx 与x 2sin 是0→x 时的同阶无穷小.16. 设21)1(lim e kx xx =+→,则=k .17. 设1sin lim0-=→xkxx ,则=k .18. =⎪⎭⎫ ⎝⎛+++∞→11232lim x x x x .9. 设⎪⎩⎪⎨⎧≤+>=0,0,1sin )(2x x a x xx x f 在点0=x 处连续,则=a . 三、解答与证明题20. 求下列数列极限 (1)⎪⎪⎭⎫⎝⎛+⨯++⨯+⨯∞→)1(1321211lim n n n (2))12(lim +-+∞→n n n n (3)⎪⎭⎫⎝⎛++++++∞→n n n n n n n n 22221lim (4)n n n nx 10...21lim +++∞→ 21. 求下列函数极限(1)15723lim 2323+++-∞→x x x x x (2)134lim 22++∞→x x x(3)503020)12()23()32(lim ++-∞→x x x x (4)11lim 31--→x x x (5)28lim 32--→x x x (6))1311(lim 31x x x ---→ (7))1(lim x x x -++∞→ (8)xx x x ln )1(lim1-→(9)xx x sin ln lim 0→ (10)x xx 3sin 2sin lim 0→(11)30sin tan lim xx x x -→ (12)x x x 10)51(lim -→ 22. 若432lim23=-+-→x ax x x ,求a 的值. 23. 若已知411lim21=-++→x b a x x ,求a,b 值. 24. 当 a 取何值时,函数)(x f 在 x =0 处连续:(1)⎩⎨⎧≥+<=0,0,)(x x a x e x f x . (2)⎪⎩⎪⎨⎧≤+>-+=0),cos(0,11)(x x a x xx x f . 25. 证明(1)方程01423=+-x x 在区间)1,0(内至少有一个根.(2)方程x e x 3=在)1,0(内至少有一个根.第二章一、选择题1、设函数)(x f 在点0x 可导,则=-+→hx f h x f h )()2(lim000( ).(A ) )(0x f '-; (B) )(0x f '; (C) )(20x f '; (D) )(20x f '-. 2、设函数)(x f 是可导函数,且13)1()1(lim-=--→xx f f x ,则曲线)(x f y =在点))1(,1(f 处切线的斜率是 ……………………………………………( ). (A) 3; (B) 1- ; (C) 13 ; (D) 3-.3、设)()()(x a x x f ϕ-=,其中)(x ϕ在a x =处连续,则)(a f '= ………( ). (A) )(a ϕ ; (B)0; (C)a ; (D))(a a ϕ.4、若0x 为函数)(x f 的极值点,则…………………………………………( ). (A)0)(0='x f ; (B)0)(0≠'x f ; (C)0)(0='x f 或不存在; (D))(0x f '不存在.5、设)0)(1ln(≠+=a ax y ,则y ''= ( ).(A)22)1(ax a +; (B)2)1(ax a +; (C)22)1(ax a +-; (D)2)1(ax a +-. 6、由方程5ln =-y xe y 确定的隐函数)(x y y =的导数=dxdy( ). (A)1-y y xe e ; (B)y y xe e -1; (C)yy e xe -1; (D)y y e xe 1-.7、)2sin sin (lim xx x x x +∞→= ……………………………………… ( ).(A)2; (B)1; (C)3; (D)极限不存在.8、设x x y =)0(>x 则='y ( ).(A)x x ; (B) x x x ln ; (C) 1-x x ; (D))1(ln +x x x .9、曲线x y sin 1+=在点)1,0(处的切线方程是…………………………( ). (A)01=--y x (B)01=+-y x (C)01=++y x (D)01=-+y x 10.下列函数在所给区间满足罗尔定理条件的是……………………( )(A) 2(),[0,3]f x x x =∈ (B) 21(),[1,1]f x x x=∈-(C) (),[1,1]f x x x =∈-(D) ()[0,3]f x x =∈ 二、填空题11、 设x x y 2sin 2+=,则=dy .12、已知x x y n ln )3(=-,(N n n ∈≥,3),则)(n y = .13、已知过曲线24y x =-上点P 的切线平行于直线x y =,则切点P 的坐标为 . 14. 已知2)1(='f ,则=-+-→2)1()(lim31x x f x f x .15. 设x a y =(0>a 且1≠a ),则=)(n y .16. 曲线3)1(-=x y 的拐点是 . 17.设函数)(x f 在0x 处可导,则xx x f x x f x ∆∆--∆+→∆)()(lim000= .18.设⎩⎨⎧≥+<=0)(x x a x e x f x ,当a =_____时,)(x f 在x = 0处可导.19.若函数5)(23-+-=x x ax x f 在),(+∞-∞上单调递增,则a 的取值范围为 .20. 设由参数方程⎩⎨⎧-=-=)cos 1()sin (t a y t t a x (其中0>a )确定的函数为)(x y y =,则=dxdy. 三、解答与证明题21.设e x x e y +=,求y '. 22.求下列函数的二阶导数.(1) 设x e y x sin =,求y ''. (2) 设1arctan1xy x-=+,求y ''23. 求曲线21x y =在点(4,2)处的切线方程和法线方程. 24. 讨论下列函数在点0=x 处的连续性和可导性:(1) 0 0 )1ln()(⎩⎨⎧<≥+=x x x x x f , (2) 0 tan 01sin )(2⎪⎩⎪⎨⎧≤>=x x x xx x f . 25. 求由方程ln xy x y x e -=所确定的隐函数y 的导数dxdy. 26. 求极限: (1)]1)1ln(1[lim 0x x x -+→; (2)30sin tan lim xx x x -→; (3))arctan 2(lim x x x -+∞→π; (4)x x x +→0lim ;(5))1sin 1(lim 0x x x -→; (6)200sin lim xdt t xx ⎰→. 27. 设函数)(x y y =由参数方程⎩⎨⎧-=+=tt y t x arctan )1ln(2所确定,求22dx yd .28.求函数()(f x x =-. 29. 求函数32332y x x x =-++的凹凸区间、拐点. 30. 已知点)3,1(为曲线1423+++=bx ax x y 的拐点. (1) 求b a ,的值; (2)求函数1423+++=bx ax x y 的极值. 31. 设11xy x-=+,求()n y 32.设b a <<0,证明:a b ab ba a --<+ln ln 222. 33. 设0,()(0)0,x f x f ≥=连续,0'()x f x >当时,存在且'()f x 单调增加,证明:当0x >时函数()f x x 单调增加.34. 证明:当0>x 时,x x x x<+<+)1ln(1. 35. 证明:当0x >时,有1x x x e xe <-<成立.第三章一、选择题:1.下列凑微分正确的一个是 ( ) A .)2(sin cos x d xdx = ; B. )11(arctan 2xd xdx += C .)1(ln x d xdx = D. )1(12x d dx x -=2.若⎰+=,)(c x dx x f 则⎰-dx x f )32(= ( )A .2-3x+c ; B. c x +-31; C. x+c ; D. c x +-2)32(213.在以下等式中,正确的一个是 ( ) A .⎰=')()(x f dx x f B. ⎰=')(])([x f dx x f C .⎰=)(])([x f dx x f d D. ⎰='')(])([x f dx x f 4. 设x x f 3sin )(=',则⎰dx x f )(是 ( )A .cos3x ; B. cos3x+c ; C.c x +-3cos 31; D.2193sin c x c x++- 5. 若,0(),0x x x f x e x ≥⎧=⎨<⎩,则21()d f x x -=⎰( ). A. 13e -- B. 13e -+ C. 3e - D. 3e + 6. 下列定积分是负数的是( )(A )dx x ⎰20sin π(B)dx x ⎰20cos π(C)dx x ⎰ππ2sin (D)dx x ⎰ππ2cos7. 若4)12(1=+⎰dx x a,则a = ( )(A) 3 (B) 2 (C) 0 (D) 48.若⎰∞-=31dx e kx ,则k=( ) (A)31 (B)-31(C) 3 (D)-3 9.=+⎰)1(212x dt t t dx d ( ) (A )x x+12(B) 212-+x x(C) 241x x + (D) 2512x x +10.若,21)(21)(0-=⎰x f dt t f x且1)0(=f ,则=)(x f ( ) (A)2x e (B)x e 21 (C)x e 2 (D)x e 221 二、填空题: 1.x d xdx 3(arcsin ________312=-).2.⎰=+________________912dx x .3.若⎰+=,3cos )(c x dx x f 则f (x )= .4. ⎰='____________________)()(22dx x f x xf . 5. F(x ) =dt t x ⎰+223,则=')1(F _________.6. 极限020cos d limxx t t x→⎰= ;7. 23423sin 1x e xdx x x -++⎰= 8.设()f x 连续,(0)1f =,则曲线0()d xy f x x =⎰在()0,0处的切线方程是 ;三、解答题:1、2x dx 2、⎰-+322x x dx3、⎰+dx x x214、422331.1x x dx x ⎛⎫++ ⎪+⎝⎭⎰ 5、cos 2.cos sin xdx x x -⎰6、dx x x ⎰-42 7、⎰-+211xdx8、⎰xdx x arctan 29、1x ⎰10、10d e ex xx-+⎰11、10x ⎰12、22()e d xx x x --+⎰;13.40d 1cos2xx xπ+⎰;14.41x ⎰;15.1d ln x x x+∞⎰16.2203sin d limx x t t x→⎰;17.求曲线xxe y e y -==,及直线1=x 所围成的平面图形的面积.18. 求由曲线)cos 2(2θ+=a r 所围图形的面积19. 由曲线2y x =和2x y =所围成的图形绕y 轴旋转后所得旋转体体积. 20. 计算曲线)3(31x x y -=上相应于31≤≤x 的一段弧的弧长大学数学期末考试复习题参考答案第一章一、选择题1、D2、A3、C4、B5、C6、B7、A8、C9、D二、填空题10、]3,0( 11、)1,1[- 12、x x21+ 13、)23(2353≠-+=x x x y 14、0 15、1 16、2 17、-1 18、e 19、0三、解答与证明题20(1)⎪⎪⎭⎫⎝⎛+⨯++⨯+⨯∞→)1(1321211lim n n n )1113121211(lim +-++-+-=∞→n n n 1)111(lim =+-=∞→n n . (2)2111211lim12lim )12(lim=+++=+++=+-+∞→∞→∞→nn n n n n n n n n n . (3)因为 1212222222+≤++++++≤+n n n n n n n n n n n n ,而 11lim lim 2222=+=+∞→∞→n n n n n n n , 所以121lim 222=⎪⎭⎫⎝⎛++++++∞→n n n n n n nn . (4)因为n nn n n nn n n nn 101010...101010...211010=+++<+++<=,110lim 10lim 1==∞→∞→nn nn ,故1010...21lim =+++∞→n n n n n .21(1)15723lim2323+++-∞→x x x x x 33115723lim x xx x x +++-=∞→53=.(2)331341lim 134lim 2222=++=++∞→∞→xx x x x x . (3)503020)12()23()32(lim ++-∞→x x x x 503020122332lim ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=∞→x x x x 503020)02()03()02(++-=3023⎪⎭⎫⎝⎛=. (4)11lim31--→x x x 1)1)(1(lim333231-++-=→x x x x x 3)1(lim 3321=++=→x x x .(5)12)42(lim 28lim2232=++=--→→x x x x x x . (6)112lim 131lim )1311(lim 2132131-=+++-=--++=---→→→xx x x x x x x x x x . (7))1(lim x x x -++∞→011lim=++=+∞→xx x .(8)11)1(lim ln )1(lim11=--=-→→x x x x x x x x .(9)0sin lim ln sin lnlim 00==→→xxx x x x . (10)x xx 3sin 2sin lim0→3232lim 32lim 00===→→x x x x . (11)30sin tan limx x x x -→30)cos 1(tan lim x x x x -⋅=→3202lim x x x x ⋅=→21=. (12)xx x 1)51(lim -→ xt 51-== tt t 511lim -∞→⎪⎭⎫ ⎝⎛+511lim -∞→⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=t t t 5-=e .22 解 由题意知 0)2(lim 23=+-→a x x x ,即06232=+⨯-a ,从而3-=a .23 解 因1→x 时, 012→-x , 而函数极限存在, 则)1(0→→++x b a x即 0lim 1=++→b a x x从而01=++b a (1)故原式=)1)(1)(1(1lim 11lim121a a x x x x x a a x x x ++++--=-+-+→→ aa a x x x +=++++=→141)1)(1(1lim1即41141=+a(2) 由(1)(2)解得1,0-==b a .24 解 (1)因为 a x a x f x x =+=++→→)(lim )(lim 0,1lim )(lim 0==--→→x x x e x f ,而 ,)0(a f = 故要使 )(lim 0x f x -→)(lim 0x f x +→=)0(f =,须且只须 1=a .所以当且仅当1=a 时,函数)(x f 在0=x 处连续.(2)因为 21111lim 11lim )(lim 00=++=-+=+++→→→x xx x f x x x , a x a x f x x cos )cos(lim )(lim 00=+=--→→,而 ,cos )0(a f = 故要使 )(lim 0x f x -→)(lim 0x f x +→=)0(f =, 须且只须 21cos =a ,即32ππ±=k a )(Z k ∈. 所以当且仅当32ππ±=k a )(Z k ∈时,函数)(x f 在0=x 处连续.25 证 (1)令14)(23+-=x x x f ,则)(x f 在[0,1]上连续, 且,02)1(,01)0(<-=>=f f由零点定理知,),1,0(∈∃ξ使,0)(=ξf 即01423=+-ξξ,所以方程01423=+-x x 在(0,1)内至少有一个根.(2)设x e x f x3)(-=,则)(x f 在]1,0[上连续,且03)1(,01)0(<-=>=e f f ,故由零点定理知方程在)1,0(内至少有一个根.第二章一、选择题1、C2、D3、A4、C5、C6、B7、A8、D9、B 10、D 二、填空题11、dx x x )2cos 2(2+ 12、21x -13、)415,21(- 14、1215、nx a a )(ln 16、(1,0) 17、)(20x f ' 18、1. 19、),31(+∞ 20、t tcos 1sin -.三、解答与证明题21、解:1-+='e x ex e y .22、解:(1)(sin cos )xy e x x '=+,(sin cos )(cos sin )2cos x x x y e x x e x x e x ''=++-=.(2) 2111111x y x x x '-⎛⎫'=⎪+⎝⎭-⎛⎫+ ⎪+⎝⎭()()2222(1)1(1)(1)(1)1x x x x x x -+--+=⋅+++- 22212(1)(1)x x --==++ ()1211y x -'⎡⎤''=-+⎢⎥⎣⎦()()22222121x x x x -=+⋅=+ 23、解:2121-='x y ,所以4121)4(421=='=-x x y , 所以切线方程为)4(412-=-x y ,法线方程为)4(42--=-x y . 24、解:(1)因为0)(lim 0=+→x f x ,0)(lim 0=-→x f x ,所以,0)(lim 0=→x f x .且0)0(=f ,因此,函数在0=x 处连续.10lim 0)0()(lim )0(00'=--=--=++→→+x x x f x f f x x ,10)1ln(lim 0)0()(lim )0(00'=--+=--=+-→→-x x x f x f f x x ,所以函数在0=x 处可导. (2)因为0)(lim 0=+→x f x ,0)(lim 0=-→x f x ,所以,0)(lim 0=→x f x .且0)0(=f ,因此,函数在0=x 处连续.01sin lim 001sinlim 0)0()(lim )0(0200'==--=--=+++→→→+xx x x x x f x f f x x x , 10tan lim 0)0()(lim )0(00'=--=--=--→→-x x x f x f f x x ,所以函数在0=x 处不可导.25、解:两边同时对x 求导得,11ln ()xy y x y e y xy x ''--=+,所以,1ln xyxy yye x y x xe--'=+. 26、解:(1)原式=)1ln()1ln(limx x x x x ++-→=20)1ln(lim x x x x +-→=xx x 2111lim 0+-→=)1(21lim 0x x +→=21.(2)30sin tan lim x x x x -→=30)1cos 1(sin lim xx x x -→=x x x x x cos )cos 1(sin lim 30⋅-→121lim 320⋅⋅=→x x x x =21. (3))arctan 2(lim x x x -+∞→πx x x 1)arctan 2(lim -=+∞→π22111limxx x -+-=+∞→11lim 22=+=+∞→x x x .(4)xx x +→0lim =xx xx x x eeln lim ln 00lim +→+=→,0ln lim 0=+→x x x ,所以原极限10=e .(5))1sin 1(lim 0x x x -→ x x x x x sin sin lim 0-=→20sin lim xx x x -=→x x x 2cos 1lim 0-=→2sin lim 0x x →=0=. (6)2sin lim x dt t x x ⎰→=x x x 2sin lim 0→=21.27、解:22111221dy dy tdt t dx t dx dt t -+===+,22221()12241d dy d y t dt dx dx t dx t dt t +===+. 28、解:函数定义域为),(+∞-∞.'()f x =,令'()0f x =,得驻点1=x ,1x =-为不可导点.由上表可以看出,函数在),1(),1,(+∞--∞上单调上升,函数在(1,1)-上单调下降;函数在1-=x 处取得极大值0)1(=-f ,在1=x 处取得极小值343)1(-=f , 29、解:函数定义域为),(+∞-∞.2363y x x '=-+,666(1)y x x ''=-=-,令0y ''=,得x =1.当1x >时,0y ''>;当1x <时,0y ''<,所以函数的拐点为(1,3),在(-∞,1)上是凸的;在(1,+∞)上是凹的. 30、解:(1)b ax x y ++='232,a x y 26+=''.由条件,有⎩⎨⎧+=+++=a b a 2601413,解得9,3-=-=b a .(2)149323+--=x x x y ,函数定义域为),(+∞-∞.)3)(1(3963)(2-+=--='x x x x x f ,)1(666)(-=-=''x x x f .令0)(='x f ,得稳定点 11-=x ,32=x . 又012)1(<-=-''f ,012)3(>=''f故149323+--=x x x y 在点1-=x 处取极大值,极大值为19)1(=-f , 在点3=x 处取极小值,极小值为13)3(-=f .31. 解:122111x y x x--+==-+++()2121(1)y x '=-+,()()()312121y x ''=--+()()()41212(3)1y x '''=---+…… ()n y()()1121!1nn n x +=-+32. 证明:令x x f ln )(=, 则)(x f 在],[b a 上连续,在),(b a 内可导.所以由Lagrange 中值定理知,),(b a ∈∃ξ,使)()()(ξf ab a f b f '=--,即ξ1ln ln =--a b a b .又由),(b a ∈ξ,故22211ba ab +>>ξ.. 即222ln ln ba aa b a b +>--. 33. 证明:1)令()(0)f x F x x x=>()2'()()(2)'()xf x f x F x x-=2(0)0'()[()(0)]f xf x f x f x =-- 2'()'()(0)xf x xf x xξξ-<<微分中值定理 '()'()f x f xξ-=当0x >时,'()f x 单调增加 ∴'()'(),'()'()0f f x f x f ξξ<->即故有()'()0.(0,)f x F x x>+∞即在单调增加 34. 证明:令)1ln()(u u f +=,则)(u f 在],0[x 上满足Lagrange 中值定理条件,故),0(x ∈∃ξ,使)0)(()0()(-'=-x f f x f ξ,即)0(11)01ln()1ln(-+=+-+x x ξ,即ξ+=+1)1ln(x x . 又由),0(x ∈ξ,故x xx x <+<+ξ11,即x x xx <+<+)1ln(1. 35. 证明:令()[],0,t f t e t x =∈,()t f t e =在[]0,x 应用拉格朗日中值定理 ()00,0x e e e x x ξ-=-<ξ<x e 是单调增函数,0x e e e ξ∴<<,故有1xxx e xe <-<,0x > 证毕第三章一、选择题1-5 DCBDA 6-10 CBCDC 二、填空题 1.3 2. 11arctan 33x C + 3. -3sin3x 4. 221()+C 4f x5. -2 6. -1 7. 0 8.y x =三、解答题1. 572222=557x dx x dx dx x x C --=-+⎰⎰2.2111=23(3)(1)41311ln ||43dx dx dx dx x x x x x x x Cx ⎛⎫=- ⎪+-+--+⎝⎭-=++⎰⎰⎰⎰3. 22221(1)1=ln |1|+C 1212x d x dx x x x +=+++⎰⎰ 4. 42232233113arctan .11x x dx x dx x x C x x ⎛⎫++⎛⎫=+=++ ⎪ ⎪++⎝⎭⎝⎭⎰⎰5.22cos 2cos sin (cos sin )sin cos .cos sin cos sin x x x dx dx x x dx x x C x x x x-==+=-+--⎰⎰⎰ 6.dx x x ⎰-42=c xx +--)2arccos 24(tan 227.⎰-+211xdx =cxx x +-+-211arcsin8.⎰xdx x arctan 2=c x x x x +++-)1ln(6161arctan 312239.令t x tan =,则1x ⎰=3344111cos d ln sin 21cos tt t t ππππ-=+⎰=10. 10d e ex x x -+⎰=112200e 1d de e 1e 1x x x x x =++⎰⎰1arctan(e )arctan e 4xπ==-11.10x ⎰=102⎰2121216π===⎰12. 22()e d xx x x --+⎰=22220002e d 2de 2e2e d xxx x x x x x x ----=-=-+⎰⎰⎰262e=-13.40d 1cos2x x x π+⎰=442001d d tan 2cos 2x x x x x ππ=⎰⎰ 444000111ln 2tan tan d lncos 228284x x x x x πππππ=-=+=-⎰14. 41x⎰412ln x =⎰4112x x ⎤=-⎥⎦⎰124ln 2x ⎡⎤=-⎢⎥⎣⎦⎰ 14218ln 22d x x -=-⎰8ln24=-15. ee 11d d(ln )ln(ln )ln ln e x x x x xx +∞+∞+∞===+∞⎰⎰ 16. 2222032200sin d 2sin 22(2)8=333lim lim lim x x x x t t x x x x x →→→==⎰17.如图所示,解方程组xxy e y e-⎧=⎨=⎩,得交点(0,1),所求面积为 11100()d []2x x x x A e e x e e e e---=-=+=+-⎰18.解:∵1D :⎩⎨⎧+<<<<)cos 2(200θπθa r∴12220141122[2(2cos3)]4[4(sin 3sin 6)1823212D D S S a d a a ππθθπθθθπ==+=+++=⎰19. 思路: 该平面图形绕y 轴旋转而成体积V 可看作1D :⎩⎨⎧≤≤≤≤y x y 010绕y 轴旋转而成的体积1V ,减去2D :⎩⎨⎧≤≤≤≤2010yx y 绕y 而成的立体体积2V 所得,见轴旋转图解: πππ103)()(1222121=-=-=⎰⎰dy y dy y V V V20.解:122y '==, ∴3432322(21)214)1(113123313122-=+=+=-+='+=⎰⎰⎰x x dx xx dx x x dx y s ba。
2024年人教版四4年级下册数学期末解答复习题含答案经典1.民二小学调查了五年级学生到校方式情况。
其中步行的占总人数的15,乘坐公交车的占总人数的415,家长接送的占总人数的13。
步行和乘坐公交车的一共比家长接送的多占总人数的几分之几?2.小明读一本书,第一天看了13,第二天看了全书的25,还剩全书的几分之几没有看?3.某学校食堂原有面粉89吨,用去56吨后又运进23吨,这时食堂有面粉多少吨?4.一节课的课堂上学生探讨用310时,老师讲解用0.25时,其余的时间学生独立做作业。
已知每节课是23时,学生做作业用了多少时?5.为了大力弘扬中华民族扶危济困的传统美德。
学校举行为希望小学捐书的活动,四、五年级学生共捐书670本,其中五年级学生捐书的本数比四年级的1.2倍多10本。
四、五年级学生各捐书多少本?(用方程解答)6.甲、乙、丙三人分113个苹果,如果把甲分得的个数减去5,乙分得的个数减去24,丙把分得的个数送给别人一半后,三人的苹果个数就相同。
三人原来各分得苹果多少个?7.今年爸爸的年龄正好是明明年龄的4倍,爸爸比明明大27岁。
今年爸爸和明明的年龄分别是多少岁?(列方程解答)8.有两袋面粉,甲袋面粉的质量是乙袋面粉的1.2倍。
如果从甲袋往乙袋倒入6kg,两袋面粉就一样重。
原来两袋面粉的质量各是多少千克?9.下图中阴影部分是一个正方形,大长方形的周长是多少厘米?10.把下图所示的两根铁丝截成同样长的小段。
如果不允许剩余,那么每小段最长是多少分米?至少截成多少段?11.把下面两根彩带剪成同样长的短彩带,且不能有剩余。
每根短彩带最长是多少厘米?12.一张长方形纸,长是15厘米,宽是12厘米,要把它剪成边长都是整厘米的大小相同的正方形,且没有剩余,剪成的小正方形边长最长是多少厘米?能剪多少个?13.篮子里有相同数量的枣子和桔子。
老师把这些水果分给中(1)班的若干个小朋友,每人分得2个枣子和3个桔子。
这时候,桔子分完了,枣子还剩9个。
《行政领导学》期末复习题与答案(一)(答案仅供参考)选择题习题与解答一、单项选择题1.真正意义上决策与执行的分工出现在19世纪,它首先发生在()。
A.军事领域B.政治领域C.工厂D.经济领域2.从长远来看,在综合国力中起重要作用的主导因素是政治力和()。
A.经济力B.外交力C.领导力D.军事力3.领导具有双重属性,其中占据主导地位的是( )。
A.自然属性 B.社会属性C.权力属性 D.服务性4.在专家式领导中,“软专家"是指()。
A.精通业务和技术的专家B.擅长领导与管理的专家C.精通软件设计的专家D.公共关系方面的专家5.道家的政治思想是().A.以德治国B.仁政C.无为而治D.法治6.孔子提出“人存政举,人亡政息”的名言,体现了古代领导思想中的().A.人本思想 B.民本思想C.谋断分离的思想D.重视纳谏的思想7.权变领导理论的研究重点在( )。
A.领导者的个性特质B.不同领导行为和领导风格对领导绩效的影响C.领导者的影响力D.领导者、被领导者的行为和领导环境的关系8.领导的缓冲器、替代品与放大器理论是由以史蒂文为代表的研究者提出的具有()的领导理论。
A.权威理论色彩B.行为理论色彩C.权变理论色彩D.特质理论色彩9.我国领导学发展的关键时期是()。
A.20世纪30年代 B.20世纪80年代C.20世纪70年代 D.20世纪90年代10.在伯恩斯编制的测量超越型领导的问卷MLQ(Multifactor Leadership Questionnaire)中,超越型领导包括三个子维度,分别是领导魅力、个性化关怀和( )。
A.良好的沟通 B.协作精神C.智能激发 D.动机激励1.B 2.C 3.B 4.B 5.C 6.A 7.D 8.C 9.B 10.C二、多项选择题1.社会分工主要是在两个方向上展开的,他们是()。
A.横向分工B.纵向分工C.结构分工D.功能分工E.专业分工2.决策与执行的纵向分工是社会发展的必然产物,由此而产生的( )的分离,对领导学的产生起到了直接的推动作用。
人教版小学五年级数学下册期末解答复习题及解析1.拖拉机第一天耕一块地的14,第二天比第一天多耕这块地的110。
还剩下这块地的几分之几没有耕?2.一根绳子长23米,第一次剪掉这根绳子的16,第二次剪掉这根绳子的14,还剩下这根绳子的几分之几?3.服装厂计划生产一批服装,上半月完成计划的34,下半月完成计划的35,服装厂超额完成计划的几分之几?4.一台拖拉机耕地,第一天耕这块地的13,第二天耕这块地的25,还剩下这块地的几分之几没有耕?5.学校举行书画竞赛,四、五年级共有75人获奖,其中五年级获奖人数是四年级的1.5倍,四、五年级各有多少同学获奖?(先写出等量关系,再列方程解答)6.一架军用飞机从甲地向乙地执行运送抗震救灾物资的任务,原计划飞行速度是9千米/分。
由于任务紧急,实际飞行速度比计划多3千米/分,结果比计划提前半小时到达乙地。
甲、乙两地的航线距离是多少千米?7.一辆双层巴士共有乘客57人,下层乘客人数是上层乘客人数的2倍,上、下两层各有乘客多少人?8.阳光小学参加武术队的同学比参加合唱队的多60人,武术队的人数是合唱队人数的1.5倍。
学校武术队和合唱队各有多少人?(先写出等量关系式,再列方程解答)9.一个长5厘米、宽2.7厘米的长方形,沿对角线对折后,得到如图所示的几何图形,阴影部分的周长是多少厘米?10.六年级学生参加义务劳动,若6人一组多3人,若8人一组多5人,六年级至少有多少人参加了义务劳动?11.文峰城市广场是1路和2路公共汽车的起始站。
它们都是7时20分开始发车,1路车每4分钟发一辆车,2路车每6分钟发一辆车。
这两路公共汽车从7时20分第一次同时发车后,到几时几分第二次同时发车?将你的思考过程写在下面。
12.有一种地砖,长是45厘米,宽是30厘米,至少要用多少块这样的砖才能铺成一个实心的正方形?13.李明现在体重46.5千克,比出生时的14倍多1.7千克。
李明出生时的体重是多少千克?14.按规定,如果个人买票需要120元,个人买票所需的钱数比每张团体票的2倍少100元,每张团体票要多少钱?(用方程解答)15.校园里的杨树和松树一共有40棵,杨树的棵数是松树的3倍。
期末复习题第一章:利息与年金1、某人将10000元钱存入某金融机构,约定年利率为8%,每年计息一次,存期5年。
若按单利则到期后本利和为多少?若按复利则到期后本利和为多少?解:由已知:PV=10000,i=8%,n=5,若按单利计算 FV=PV (1+in )=10000(1+5×8%)=14000(元) 若按复利计算=+=+=5)08.01(10000)1(nr PV FV 14693.2807(元)答:5年后,按单利计算,本利和为14000元。
按复利计算,本利和为14693.2807元。
2、某人每年年底存入1000元,年利率是7%,到第5年年底,他的账户里有多少钱?解:这是一个求年金终值的问题。
P=1000元,年利率r=7%,n=5 所以,ii AFVA nn 1)1(-+==739.5750%71%)71(10005=-+⨯答:他的账户上有5750.74元。
3、某人想在今后的5年里,每月底从银行取1000元,银行年利率3.6%,那么他现在必须一次性存入银行多少钱? 解: 这是一个求年金现值的问题。
由公式ii A PVA no -+-⨯=)1(1此时,A=1000元,r=12%6.3=0.003 n=12×5=60所以.ii A PVA no -+-⨯=)1(153470003.0)003.01(1100060=+-⨯=-元.答: 他现在必须一次性存入银行53470元. 第二章 税收的计算1、某人2012年5月工资收入为5400 (已扣除三险一金)元,则当月的个人所得税为多少元。
起征点:3500元。
解:应纳税额为:5400-3500=1900元 所以应纳税:1900×10%-105=85元。
2、李老师2010年每月工资为1800元,12月份一次性领取年终奖12000元,张老师12月份应交个人所得税多少元?解: 李老师的工资不足3500元,所以不纳税.但一次性领取的年终奖扣除1700元后,剩余部分应纳税.(12000-1700)÷12 =858.33元, 适用税率为3%,,所以,应纳税额=858.33×3%=25。
8元。
3、某歌手为一企业拍广告,要求企业代个人纳税,税后收入为50万元,试计算该企业应付出总支出多少万元?为歌手代付的个人所得税多少万元?解:设演员取得的含税收入为X 万元,则就纳税所得额为X (1-20%)万元,已知税后所得为50万元,有: X-[X (1-20%)40%-0.7]=50解得:X=72.5万元.那么该酒厂实际支付 752.5万元,代演员支付个人所得税为22.5万元.4、陈刚承包某高校学生食堂,合同规定,每年的承包费为60万元,2010年1月初至2010年12月底,钟明取得经营利润110万元,试计算钟明公司2007年度应交纳个人所得税多少元?解:年度应纳税所得额=承包经营-承包费-每月必要费用扣减 =1100000-600000-2000×12 =476000元应纳税额=年度纳税所得额×适用税率-速算扣除数 =476000×35%-6750=159850元。
第三章 函数1、求下列函数的定义域: (1))13ln(4-+-=x x y解:要使函数有意义: 4311304≤<⇒⎩⎨⎧>-≥-x x x 所以,函数的定义域为:]4,31((2)2)1(log 28211+-+-=-x y x解:要使函数有意义:41141311)21(log)1(log 220102)1(log 0282212131211≤<⇒⎪⎩⎪⎨⎧>≤-≤-⇒⎪⎪⎩⎪⎪⎨⎧>≥-≤⇒⎪⎪⎩⎪⎪⎨⎧>-≥+-≥----x x x x x x x x x x 所以函数的定义域为:]4,1(2、已知)]([)]([,12)(,1)(2x f g x g f x x g x x f 及求+=-=解:x x x x f x g f 441)12()12()]([22+=-+=+=121)1(2)1()]([222-=+-=-=x x x g x f g3、已知12)12(2+=-x x f ,求()f x =)(u x ,x u 12112+=-=则令23211)]1(21[2)(22++=++=u u u u f所以2321)(2++=x x x f4、某厂每日生产某种产品x 件的总成本为:5001004.0)(2++=x x x C (元),产品的价格函数为:xP01.050-= (P 为价格,元/件),求日产量x 为多少时总利润最大,并求最大利润。
解:收入函数201.050)01.050()(xx x x Px x R -=-==所以利润函数5004005.0)5001004.0(01.050)()()(222-+-=++--=-=x x x x x x x C x R x L当。
ab ac ,L ab x 元时7500)05.0(41600)500)(05.0(4444001.04022=----⋅=-===-=即,当。
:,x 元最大利润为时利润最大7500400=第四章 极限与连续 1、求下列各函数的极限: (1)82352lim22+--+∞→x x x x x ; (2)xx x 42)1(lim +∞→; (3)xx x 35sin lim∞→ (4)2211lim 34x x x x →-+-(5)xx x x x +-∞→sin sin lim(6)xxx 1sinlim 0→解:(1)原式=32(2) 88242])21[(lim )1(lim e xxx xx x =+=+∞→∞→(3)3555sin lim3535sin lim 0==→→xx xx x x(4)2211lim34x x x x →-+-5241lim)4)(1()1)(1(lim11=++=+--+=→→x x x x x x x x(5)11sin 1sin limsin sin lim -=+-=+-∞→∞→xx xxxx x x x x (6)∞==→→xx x x x x 1sin 1lim 1sinlim002、讨论函数⎪⎩⎪⎨⎧>+=<≤=1,11,110,2)(x x x x x x f 在1=x 处的连续性.解:因为函数的左极限:22lim )(lim 11==--→→x x f x x右极限:2)1(lim )(lim 11=+=++→→x x f x x所以,函数的极限存在,2)(l i m 1=→x f x 但,1)1(=f 即:)1(2)(lim 1f x f x ≠=→所以,函数在1=x 处不连续。
3、已知函数⎩⎨⎧≥-<+=0,20,1)(2x b x x x x f 在点0=x 处连续,求b 的值。
解::因为函数的左极限:1)1(lim )(lim 20=+=--→→x x f x x 函数的右极限:b b x x f x x -=-=++→→)2(lim )(lim0并且b f -=)0( 要使函数在0=x 处连续,那么1)0()(lim )(lim0=-===+-→→b f x f x f x x 即b=-14、求函数1)1(22-+=x x y 的间断点,并说明是哪一类间断点。
解:当1±=x 时,函数无意义,所以1,1-==x x 是函数的间断点,因为:∞=-+=-+→→11lim1)1(lim1221x x x x x x 所以,1=x 是函数的第二类间断点。
又因为:02011lim1)1(lim1221=-=-+=-+-→-→x x x x x x 所以,1-=x是函数的第一类间断点。
5、 证明方程124246=-+-x x x x 在区间(1,2)内至少有一个根。
证明:令124)(246--+-=x xxxx f ,则()f x 在]2,1[上连续,且05)2(,07)1(>=<-=f f ,由零点定理,在)2,1(内至少存在一点ξ,使得.)21(0124246<<=--+-ξξξξξ即方程124246=-+-x x x x 在)2,1(内至少有一实根.第五章导数与微分1、求曲线12-=x y 在2=x对应点处的切线方程解:当2=x时,3=y ,即曲线经过点(2,3)切线的斜率:4)2(|22=='===x x x y k 所以代入点斜式。
)2(43-=-x y 整理得切线的方程:054=--y x 2、求曲线xy =在点)2,4(处的法线方程.解:切线的斜率:41|4='==x y k ,那法线的斜率为:4-=k所以代入点斜式:)4(42--=-x y 整理得法线方程:0184=-+y x3、已知x x e y xln +=,求y '解:1ln 1ln ++=⋅++='x e xx x e y xx4、.已知)cos 2ln(x x y +=,求y '解:x x x y cos 2sin 2+-='5、求由方程y x y x 222-=+所确定的隐函数)(x f y =的导数y '。
解:方程两边对x 求导得:y y y x '-='+2122 所以:x y y 21)22(-='+ yx y 2121+-='6、求方程0=+-yxe e xy 所确定的隐函数y 的导数.,0=x dxdy dx dy解:方程两边对x 求导得:0='+-'+y e e y x y yxyx ex e y dxdy +-=1||000-=+-====y x yx x ex e y dxdy7、已知函数x x e y x sin +=求微分dy =______________。
解:dy =dx x x e x )cos sin (++ 8、设),1ln(2xe y += 求.dy解:dx exe dy xx2212.+=9、x y 2cos =,则y ''=________________。
解:x x x y 2sin sin cos 2-=-='x y 2cos 2-=''10、求函数x x y ln cos 2=的二阶导数.解:xx x xx x x x y 22cos 2sin cos ln sin cos 2+-=+-='2222cos 2sin 2cos 2cos sin cos 22cos 2xxx x x xxx x x x y ++-=----=''第六章导数的应用1、选择:如果一个连续函数在闭区间上既有极大值,又有极小值,则( B )。