德拜驰豫及弛豫极化的微观机制
- 格式:pptx
- 大小:1.14 MB
- 文档页数:31
第二章 变化电场中的电介质2-1 什么是瞬时极化、缓慢极化?它们所对应的微观机制代表什么?极化对电场响应的各种情况分别对何种极化有贡献? 答案略2-2 何谓缓慢极化电流?研究它有何意义?在实验中如何区分自由电荷、束缚电荷随产生的传到电流? 答案略2-3 何谓时域响应、频域响应?两者的关系如何?对材料研究而言,时域、频域的分析各由什么优缺点? 答案略2-4 已知某材料的极化弛豫函数ττ/1)(t e t f -=,同时材料有自由电荷传导,其电导率为γ,求该材料的介质损耗角正切δtg 。
解 :由弛豫函数 ττ/1)(t e t f -=可知 德拜模型极化损耗 P tg δ,漏导损耗 G tg δ 如果交变电场的频率为 ω; 则P tg δ=22)(τϖεεωτεε∞∞+-s s G tg δ=)11(220τωεεεωεγ+-+∞∞s 该材料的介质损耗正切为:δtg =P tg δ+G tg δ 2-5在一平板介质(厚度为d ,面积为S )上加一恒定电压V ,得到通过介质的总电流为Vt e I -+=βα,已知介质的光频介电常数为 ∞ε,求单位体积内的介质损耗、自由电子的电导损耗、极化 弛豫与时间的关系。
若施加频率为ω的交变电场,其值又为多少?并求出介质极化弛豫函数f (t )。
解 :在电场的作用下(恒场)介质中的功率损耗即为介质 损耗电功 dt t VI Vdq dA )(==)1()()(0Vt ttVt e Vt Vdt e dt t VI A ---+=+==⎰⎰βαβαV t I Ve V tAW Vt )(=+=∂∂=-βα 单位体积中的介电损耗 :)(1Vt Ve V ds ds W w -+==βα自由电子电导损耗 : dsVw α=1极化弛豫损耗 : Vte dsV w -=βα电导率 :dsV R V I s d R ραρ====0, , 电流 : Vt e I -+=βα 其中 α=R I 为传导电流 Vt r e I -=β为极化电流另一方面 dt dPs dt s d dt dQ I r r r r ===)(σ ττεεε/00)(t s r e E dt dP -∞-=故 Vt t sr e e E I --∞=-=βτεεετ/00)( 有 d sV d VE V s βεεετ=-==∞20)(,,120sVd s εβεε+=∞因而,加交变电场w 时 :221)(τωεεεε+-+='∞∞s r极化损耗 : 2211)(τωωτεεε+-=''∞s r电导损耗 : sVdrωεαωεγε002=='' 单位体积中的极化损耗功率 :)1(2)(21222220210τωτωεεεεωε+-=''=∞d V E W s r r 单位体积中的电导损耗功率 :dsV W G α= G r W W W += 弛豫函数 :Vt t Ve e f --==ττ/12-6若介质极化弛豫函数ττ/1)(t e t f -=,电导率为γ,其上施加电场E(t)=0 (t<0);E(t)=at (t>0 , a 为常数) 求通过介质的电流密度。