CT三维重建技术临床应用教程文件
- 格式:ppt
- 大小:31.88 MB
- 文档页数:80
CT三维重建指南三维重建是指利用计算机技术对真实世界中的物体、场景或图像进行建模和重建的过程。
它广泛应用于计算机图形、计算机视觉、虚拟现实、增强现实等领域。
本文将为您介绍CT三维重建的指南。
第一步:数据获取CT三维重建的第一步是获取CT扫描数据,这通常是通过医学影像设备执行扫描来完成的。
扫描过程中,设备将使用X射线通过身体不同部分,并记录所通过的组织对射线的吸收情况。
这些数据将以图像的形式输出,用于后续的三维重建。
第二步:数据预处理在开始三维重建之前,首先需要对数据进行预处理。
这通常包括去除噪声、增加对比度、正规化数据等操作,以优化后续重建过程的质量。
预处理步骤的目标是从原始数据中提取出有用的信息,并消除影响重建结果的干扰因素。
第三步:图像分割第四步:三维重建算法选择选择适当的三维重建算法是进行CT三维重建的关键一步。
常用的重建算法包括曲面重建、体素重建、点云重建等。
曲面重建算法通常用于重建光滑的物体、场景或人体器官。
体素重建算法则主要适用于重建复杂的物体或场景。
点云重建算法则适用于从离散的点云数据中重建三维模型。
选择合适的重建算法可以根据具体应用的需求来决定。
第五步:重建结果优化在进行三维重建后,通常需要对重建结果进行优化和改进。
这可以包括去除重建中的噪声、填补重建中的空洞、平滑或细化重建结果等。
优化重建结果的目的是提高模型的精度和真实性,并减少重建过程中可能引入的误差。
第六步:三维可视化最后一步是对重建结果进行可视化。
可视化可以通过将重建结果渲染成逼真的图像或视频,或在虚拟现实或增强现实环境中展示重建结果来实现。
对于医学图像,三维可视化可以帮助医生更好地理解病情,指导诊断和治疗。
总结:CT三维重建是一项复杂而庞大的工程,需要综合考虑数据获取、预处理、图像分割、重建算法选择、结果优化和可视化等多个步骤。
每个步骤都需要仔细设计和调整,以确保最终的重建结果准确可靠。
只有通过不断的实践和优化,才能获得高质量的CT三维重建模型。
医学图像处理中的3D重建与可视化技术教程在医学领域中,三维(3D)重建和可视化技术扮演着至关重要的角色。
通过将医学图像数据转化为三维模型,医生和研究人员可以更直观地理解和分析病理情况,从而帮助做出正确的诊断和治疗决策。
本文将介绍医学图像处理中的三维重建与可视化技术,并提供一些常用的工具和方法。
一、医学图像的三维重建1. 数据获取与准备首先需要获取医学图像数据,常见的包括CT(计算机断层成像)和MRI(磁共振成像)数据。
这些数据通常以二维切片的形式呈现,我们需要将其转化为三维模型。
另外,为了准确重建,还需要对数据进行预处理,包括去除噪声、图像配准(将不同采集时间点或不同成像模态的图像对齐)等。
2. 体素化体素化是将图像中的每个像素(或子像素)转化为一个三维体素的过程。
体素是三维空间中的一个小立方体单元。
通过将图像中的每个像素映射到对应的体素,我们可以得到一个离散的三维体素网格。
3. 表面重建一旦完成体素化,我们可以利用表面重建算法将离散的体素网格转化为连续的表面模型。
常用的表面重建方法包括曲面重建(如Marching Cubes算法)和几何流(Geometric Flow)等。
这些方法可以根据体素边界进行反推,从而得到一个连续的、网格化的三维模型。
4. 模型优化生成的三维模型可能存在一些缺陷,例如表面不光滑、几何形状不精确等。
因此,我们需要进行模型优化来提高重建结果的质量。
常见的模型优化算法包括平滑滤波、曲面拟合和形态学操作等。
二、医学图像的三维可视化1. 体像可视化体像可视化是将三维重建的结果以三维体像的形式呈现出来,以帮助医生和研究人员更直观地观察病理情况。
常见的体像可视化方法包括体绘制、体渲染和体切割等。
通过调整可视化参数,如透明度、颜色映射和光照等,可以得到清晰可辨的体像效果。
2. 表面可视化表面可视化是将三维重建的结果以表面模型的形式呈现出来,以更好地观察解剖结构和病变区域。
表面可视化技术可以将表面纹理、光照效果和透明度等进行调整,以提高可视化效果。
CT图片三维重建方法之3DSlicer篇3D Slicer导入Dicom数据之后才能应用的历史改写了,Png等格式的图像文件也能够导入到3D Slicer软件中进行重建等操作。
当然导入之后还要有一些参数的调整,不同的机器及不同的扫描参数,调整起来也不能千篇一律,不过还是有规律可寻的。
文中所述为本人的个人经验,如有不足之处还望批评指正。
基本条件1.首先需要有一个高质量的CT图像,以数字图像为佳,不建议用照片;2.取材于照片时曝光要均匀一致,不能有局部曝光不足等情况;3.图像不能有梯形失真,如果有则需要软件进行校正;4.图像如有缩放,要求所有图像等比例缩放;5.要保证所有图像的层距一致,不宜中间某幅图像丢失;6.图像在背景中的位置不能人为改动,即使位置改动也要求所有单幅图像都有一致性的改动;7.如为截图,要求所有截图的尺寸一致;8.图像的命名遵循一定规则,注意先后次序,先I后S,也就是从颅底层面到顶部层面排序,注意不能使用中文;9.图像需要有比例尺等参考,图像间距已知;10.仅需要轴位层面即可,其他注意事项可在文末留言。
虽说现在的PACS系统都提供Dicom文件格式,但也有部分医院只提供Png或Jpeg格式的图像。
以下图为例,扫描层距为5mm,图像格式为Png,来源于医众软件。
首先将上幅图像分解为大小一致的30张图片,保存为Png格式,用截图软件或其他方法都可以,注意不要保存到中文目录中。
将一组图片全部导入到3D Slicer软件中,不能按照常规导入Dicom数据的方法。
按照下图所示,拖动一幅图像到3D Slicer软件界面中,勾选Show Options(显示选项)。
去掉Single File(单幅图像)前面的对勾,点击OK,则会将一组图像文件作为一个序列导入到软件中。
导入后的图像轴位显示比例正常,矢状位及冠状位显示比例失调。
已知数据层距为5mm,在模块Volumes中对Image Spacing (图像间距)进行设定,第三个框为轴位层面之间距离(层距)设定为5mm。
C T三维重建指南1、脊柱重建:腰椎:西门子及GE图像均发送至西门子工作站,进入3D选项卡A、椎体矢状位及冠状位:a.选择骨窗薄层图像(西门子1mm70s;),载入3D重建,调整定位线,使椎体冠状位、矢状位定位线与解剖位置一致,并将横断位定位线与两者垂直,将三幅图像模式改为MPR;b.横断位作为定位相,做矢状位重建,打开定位线选项卡,点击垂直定位线,变换数字顺序,使其从右向左,选择层厚3mm,层间距3mm,方向平行于棘突-椎体轴线,两边范围包全椎体及横突根部(一般为19层),点击确定,保存;c.矢状位作为定位相,打开曲面重建选项卡,沿各椎体中心弧度画定位相曲线,范围包全,双击结束,选择层厚3mm,层间距3mm,变换数字顺序,使其从前向后,范围前至椎体前缘,后至棘突根部(一般为19层),点击确定,保存。
B、椎间盘重建:a.选择软组织窗薄层图像(西门子1mm30s;),载入3D重建,调整定位线,使椎体冠状位、矢状位定位线与解剖位置一致,并将横断位定位线与两者垂直,将三幅图像模式改为MPR;b.矢状位作为定位相,做椎间盘重建,打开定位线选项卡,点击水平定位线,变换数字顺序,使其从上向下,选择层厚3mm,层间距3mm,层数5层,方向沿椎间隙走行方向,做L1/2-L5/S1椎间盘,注意右下角图像放大,逐个保存。
注意:脊柱侧弯患者,椎间盘重建过程中需不断调整冠状位定位相上矢状定位线(红色),使其保持与相应椎间隙垂直。
C、椎体横断位重建:椎体骨质病变者,如压缩性骨折、骨转移、PVP术后等病人,加做椎体横断位重建,矢状位图像做定位相,沿病变椎体轴向,做横断位重建,注意重建图像放大,保存。
打片:矢状位及冠状位二维一张:8×5;椎间盘一张:6×5;若为椎体骨质病变者,椎间盘图像不打,打椎体横断位重建图像,共两张胶片。
颈椎A、椎体矢状位及冠状位:a.选择骨窗薄层图像(西门子1mm70s;),载入3D重建,调整定位线,使椎体冠状位、矢状位定位线与解剖位置一致,并将横断位定位线与两者垂直,将三幅图像模式改为MPR;b.横断位作为定位相,做矢状位重建,打开定位线选项卡,点击垂直定位线,变换数字顺序,使其从右向左,选择层厚3mm,层间距3mm,方向平行于棘突-椎体轴线,两边范围包全椎体及横突根部(一般为17-19层),点击确定,保存;c.矢状位作为定位相,打开曲面重建选项卡,沿各椎体中心弧度画定位相曲线,范围包全,注意从斜坡开始,双击结束,选择层厚3mm,层间距3mm,变换数字顺序,使其从前向后,范围前至椎体前缘,后至棘突根部(一般为15-17层),点击确定,保存。
CT三维成像技术与临床应用授课老师:王田力单位:北京大学第三医院北京大学第三医院放射科王田力写在课前的话CT图像3D重组是对轴位图像的重要补充及扩展,不同方位及空间立体显示病变及病变与周围脏器的关系,对CT诊断病变发挥着重要作用。
CT图像重组包括MPR、CPR、SSD、MIP、VRT及VE等。
获得优质重组图像影响因素很多,许多因素是可以把控的。
根据重组图像显示目的,得到最佳基础轴位图像是后续图像重组的关键。
一、CT成像技术概述(一)CT重组技术主要有以下几种常用的技术:多平面重组(multiplanar reconstractions, MPR)曲面重组(Curved planar reconstractions,CPR)表面遮盖技术(Surface shaded display,SSD)最大密度投影 (Maximun intensity projection,MIP)最小密度投影 (Minimun intensity projection,MinIP)仿真内镜技术(CTVE)容积漫游成像(VR)要获得优质图像需要四要素,包括空间分辨率、密度分辨率、降低噪声和消除伪影(二)CT 重组图象的一些基本条件1、一定要容积扫描,也就是我们所说的螺旋CT 扫描方式采集图像;2、血管成像对比剂浓度、总量、流量、准确扫描时相;3、所有图像具有相同的重建中心和视野;4、控制运动伪影:呼吸控制、心电/呼吸门控、药物使用;5、薄层图像重建,重建增量≤1,30%-50%最佳,如果重叠50%,图象重建出来的效果是最好的。
重组图像算法:高对比算法/低对比算法;6、造影剂使用:高密度(VE显示血管)、水、气体;7、X线辐射剂量与图像质量/病变显示关系。
减少心脏运动伪影经常采用心电门控,在心电门控下采集图象,在某一个时相上成像,可以得到清晰的对比度和密度分辨率。
良好的基础图象采集以后,做后续三维重建,现在的机器上都有这些快捷键,我们不需不同的后续重建的检查目的不同,所选择成像的这些图象的表现也不同。