正方形专题复习之旋转
- 格式:pptx
- 大小:716.42 KB
- 文档页数:23
旋转旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角.旋转特征:图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
(一)正三角形类型在正ΔABC中,P为ΔABC内一点,将ΔABP绕A点按逆时针方向旋转600,使得AB与AC重合。
经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个ΔP'CP中,此时ΔP'AP也为正三角形。
例1. 如图:(1-1):设P是等边ΔABC内的一点,PA=3,PB=4,PC=5,∠APB的度数是________.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ΔABP绕B点按顺时针方向旋转900,使得BA与BC重合。
经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的ΔCPP'中,此时ΔBPP'为等腰直角三角形。
例2. 如图(2-1):P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。
求此正方形ABCD面积。
(三)等腰直角三角形类型在等腰直角三角形ΔABC中,∠C=90°, P为ΔABC内一点,将ΔAPC绕C点按逆时针方向旋转900,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个ΔP'CP为等腰直角三角形。
例3.如图,在ΔABC中,∠ACB =900,BC=AC,P为ΔABC内一点,且PA=3,PB=1,PC=2。
求∠BPC的度数。
旋转实际上是一种全等变换,由于具有可操作性,因而是考查同学们动手能力、观察能力的好素材,也就成了近几年中考试题中频繁出现的内容。
题型多以填空题、计算题呈现。
在解答此类问题时,我们通常将其转换成全等求解。
根据变换的特征,找到对应的全等形,通过线段、角的转换达到求解的目的。
正方形旋转模型解题技巧1. 引言你有没有玩过那种拼图游戏,拼图的每块都像魔方一样转来转去?没错,就是那种让你既想哭又想笑的游戏。
今天,我们来聊聊正方形旋转模型的解题技巧。
是不是觉得这话题有点儿高深?别急,咱们一块儿拆解,一步步来,肯定能让你明白得清清楚楚。
旋转问题其实没那么吓人,只要掌握了几招,基本上可以轻松搞定。
2. 基础知识2.1 正方形的旋转正方形旋转模型,顾名思义,就是把一个正方形转来转去。
大家都知道,正方形的每个角都是90度。
所以,每转一次,正方形就像是穿了四个“90度”舞步一样,舞姿优雅又精准。
比如说,如果你把正方形旋转90度,它的四个角会按顺序变换位置。
简单来说,第一步的角会跑到第二步的位置,第二步的角跑到第三步的位置,依此类推。
明白了吗?旋转90度,就是让每个角都“走”到下一个角的位置,当然,如果是180度、270度旋转,那就需要走两步或三步啦。
2.2 旋转的实际应用那么,正方形的旋转怎么用到实际问题中呢?假如你在解一个包含旋转的几何题,通常问题会告诉你,旋转的角度和方向,比如顺时针或逆时针。
记住,不管是顺时针还是逆时针,最终结果都是一样的,因为正方形是对称的。
也就是说,旋转90度和旋转270度,其实都是四分之一圈的旋转,只不过方向不同。
是不是觉得这些角度的转换像是在跳舞呢?旋转的基本规律很简单,但是当它跟其他形状组合起来,就会变得复杂一些了。
3. 解题技巧3.1 画图帮助理解画图是解决任何几何题的好帮手。
试着把正方形画出来,并且标记出旋转前后的位置。
这样你能更直观地看到每个角的位置变化。
这不仅能帮助你更清晰地理解旋转的过程,还能避免一些常见的错误。
想象一下,当你把正方形摆成一个“飞行员”的姿势,旋转时角落就像是“飞行员”在空中翱翔,位置变化也变得更容易把握。
3.2 多做练习题没错,多做练习题是提升旋转技能的关键。
你可以找一些经典的几何题目来练习,比如从不同角度旋转正方形的题目。
中考数学压轴题专题复习——初中数学旋转的综合含详细答案一、旋转1.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=1MC,∴EG=CG.2(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.2.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.(1)如图1,当a=42时,求b的值;(2)当a=4时,在图2中画出相应的图形并求出b的值;(3)如图3,请直接写出∠EAF绕点A旋转的过程中a、b满足的关系式.【答案】(1)42;(2)b=8;(3)ab=32.【解析】试题分析:(1)由正方形ABCD的边长为4,可得AC=42,∠ACB=45°.再CE=a=42,可得∠CAE=∠AEC,从而可得∠CAF的度数,既而可得 b=AC;(2)通过证明△ACF∽△ECA,即可得;(3)通过证明△ACF∽△ECA,即可得.试题解析:(1)∵正方形ABCD的边长为4,∴AC=42,∠ACB=45°.∵CE=a=42,∴∠CAE=∠AEC=452︒=22.5°,∴∠CAF=∠EAF-∠CAE=22.5°,∴∠AFC=∠ACD-∠CAF=22.5°,∴∠CAF=∠AFC,∴b=AC=CF=42;(2)∵∠FAE=45°,∠ACB=45°,∴∠FAC+∠CAE=45°,∠CAE+∠AEC=45°,∴∠FAC =∠AEC.又∵∠ACF=∠ECA=135°,∴△ACF∽△ECA,∴AC CFEC CA=,∴4242=,∴CF=8,即b=8.(3)ab=32.提示:由(2)知可证△ACF∽△ECA,∴∴AC CFEC CA=,∴4242a=,∴ab=32.3.如图1,在□ABCD中,AB=6,∠B= (60°<≤90°). 点E在BC上,连接AE,把△ABE沿AE折叠,使点B与AD上的点F重合,连接EF.(1)求证:四边形ABEF是菱形;(2)如图2,点M是BC上的动点,连接AM,把线段AM绕点M顺时针旋转得到线段MN,连接FN,求FN的最小值(用含的代数式表示).【答案】(1)详见解析;(2)FE·sin(-90°)【解析】【分析】(1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论;(2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠BEA,由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,∴∠BAE=∠FEA,∴AB∥FE,∴四边形ABEF是平行四边形,又BE=EF,∴四边形ABEF是菱形;(2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B∴∠1=∠2又AM=NM,AB=MG∴△ABM≌△MGN∴∠B=∠3,NG=BM∵MG=AB=BE∴EG=AB=NG∴∠4=∠ENG= (180°-)=90°-又在菱形ABEF中,AB∥EF∴∠FEC=∠B=∴∠FEN=∠FEC-∠4=- (90°-)=-90°②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN.同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90°综上所述,∠FEN=-90°∴当点M在BC上运动时,点N在射线EH上运动(如图3)当FN⊥EH时,FN最小,其最小值为FE·sin(-90°)【点睛】本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值.4.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.他的证明思路如下:第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.第二步:证明△APM≌△ANM,得MP=MM.第一步:证明∠POM=90°,得OM2+OP2=MP2.最后得到OM2+BN2=MN2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP=90°,∴PM2=OM2+OP2,∴OM2+BN2=MN2;(3)如图3中,若点B是MN的中点,求MN的长.设MN=2x,则BM=BN=x,∵OA=AB=4,∠OAB=90°,∴OB=42,∴OM=42﹣x,∵OM2+BN2=MN2.∴(42﹣x)2+x2=(2x)2,解得x=﹣22+26或﹣22﹣26(舍弃)∴MN=﹣42+46.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.5.如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D 从O点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C 逆时针方向旋转60°得到△BCE,连结DE.(1)求证:△CDE是等边三角形;(2)如图2,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由;(3)如图3,当点D在射线OM上运动时,是否存在以D、E、B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)见解析(2)见解析(3)存在【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D于点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2,于是得到t=2÷1=2s;③当6<t<10s 时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD cm,∴△BDE的最小周长=CD;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14s.综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:在不带坐标的几何动点问题中求最值,通常是将其表达式写出来,再通过几何或代数的方法求出最值;像第三小问这种探究性的题目,一定要多种情况考虑全面,控制变量,从某一个方面出发去分类.6.如图,点P是正方形ABCD内的一点,连接PA,PB,PC.将△PAB绕点B顺时针旋转90°到△P'CB的位置.(1)设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P'CB的过程中边PA所扫过区域(图中阴影部分)的面积;(2)若PA=2,PB=4,∠APB=135°,求PC的长.【答案】(1) S阴影=(a2-b2);(2)PC=6.【解析】试题分析:(1)依题意,将△P′CB逆时针旋转90°可与△PAB重合,此时阴影部分面积=扇形BAC的面积-扇形BPP'的面积,根据旋转的性质可知,两个扇形的中心角都是90°,可据此求出阴影部分的面积.(2)连接PP',根据旋转的性质可知:BP=BP',旋转角∠PBP'=90°,则△PBP'是等腰直角三角形,∠BP'C=∠BPA=135°,∠PP'C=∠BP'C-∠BP'P=135°-45°=90°,可推出△PP'C是直角三角形,进而可根据勾股定理求出PC的长.试题解析:(1)∵将△PAB绕点B顺时针旋转90°到△P′CB的位置,∴△PAB≌△P'CB,∴S△PAB=S△P'CB,S阴影=S扇形BAC-S扇形BPP′=(a2-b2);(2)连接PP′,根据旋转的性质可知:△APB≌△CP′B,∴BP=BP′=4,P′C=PA=2,∠PBP′=90°,∴△PBP'是等腰直角三角形,P'P2=PB2+P'B2=32;又∵∠BP′C=∠BPA=135°,∴∠PP′C=∠BP′C-∠BP′P=135°-45°=90°,即△PP′C是直角三角形.PC==6.考点:1.扇形面积的计算;2.正方形的性质;3.旋转的性质.7.在平面直角坐标系中,O为原点,点A(0,4),点B(﹣2,0),把△ABO绕点A逆时针旋转,得△AB′O′,点B、O旋转后的对应点为B′、O′.(1)如图①,若旋转角为60°时,求BB′的长;(2)如图②,若AB′∥x轴,求点O′的坐标;(3)如图③,若旋转角为240°时,边OB上的一点P旋转后的对应点为P′,当O′P+AP′取得最小值时,求点P′的坐标(直接写出结果即可)【答案】(1)252)点O′8545);(3)点P′的坐标为(﹣83 5,365.【解析】分析:(1)由点A、B的坐标可得出AB的长度,连接BB′,由旋转可知:AB=AB′,∠BAB′=60°,进而可得出△ABB′为等边三角形,根据等边三角形的性质可求出BB′的长;(2)过点O′作O′D⊥x轴,垂足为D,交AB′于点E,则△AO′E∽△ABO,根据旋转的性质结合相似三角形的性质可求出AE、O′E的长,进而可得出点O′的坐标;(3)作点A关于x轴对称的点A′,连接A′O′交x轴于点P,此时O′P+AP′取最小值,过点O′作O′F⊥y轴,垂足为点F,过点P′作PM⊥O′F,垂足为点M,根据旋转的性质结合解直角三角形可求出点O′的坐标,由A、A′关于x轴对称可得出点A′的坐标,利用待定系数法即可求出直线A′O′的解析式,由一次函数图象上点的坐标特征可得出点P的坐标,进而可得出OP的长度,再在Rt△O′P′M中,通过解直角三角形可求出O′M、P′M的长,进而可得出此时点P′的坐标.详解:(1)∵点A(0,4),点B(﹣2,0),∴OA=4,OB=2,∴AB22OA OB5.在图①中,连接BB′.由旋转可知:AB =AB ′,∠BAB ′=60°,∴△ABB ′为等边三角形,∴BB ′=AB =25. (2)在图②中,过点O ′作O ′D ⊥x 轴,垂足为D ,交AB ′于点E . ∵AB ′∥x 轴,O ′E ⊥x 轴,∴∠O ′EA =90°=∠AOB .由旋转可知:∠B ′AO ′=∠BAO ,AO ′=AO =4,∴△AO ′E ∽△ABO ,AE AO ='O E BO ='AO AB,即4AE ='2O E =25,∴AE =85,O ′E =45,∴O ′D =45+4,∴点O ′的坐标为(8545,+4). (3)作点A 关于x 轴对称的点A ′,连接A ′O ′交x 轴于点P ,此时O ′P +AP ′取最小值,过点O ′作O ′F ⊥y 轴,垂足为点F ,过点P ′作PM ⊥O ′F ,垂足为点M ,如图3所示. 由旋转可知:AO ′=AO =4,∠O ′AF =240°﹣180°=60°,∴AF =12AO ′=2,O ′F =32AO ′=23,∴点O ′(﹣23,6).∵点A (0,4),∴点A ′(0,﹣4).设直线A ′O ′的解析式为y =kx +b ,将A ′(0,﹣4)、O ′(﹣23,6)代入y =kx +b ,得: 4236b k b =-⎧⎪⎨-+=⎪⎩,解得:534k b ⎧=-⎪⎨⎪=-⎩,∴直线A ′O ′的解析式为y =﹣53x ﹣4. 当y =0时,有﹣53x ﹣4=0,解得:x =﹣43,∴点P (﹣43,0),∴OP =O ′P ′=43. 在Rt △O ′P ′M 中,∠MO ′P ′=60°,∠O ′MP ′=90°,∴O ′M =12O ′P ′=23,P ′M =32O ′P ′=65,∴点P ′的坐标为(﹣23+235,6+65),即(﹣833655,).点睛:本题考查了函数图象及旋转变换、待定系数法求一次函数解析式、等边三角形的判定与性质、一次函数图象上点的坐标特征以及解直角三角形,解题的关键是:(1)利用等边三角形的性质找出BB′的长;(2)通过解直角三角形求出AE、O′E的长;(3)利用两点之间线段最短找出当O′P+AP′取得最小值时点P的位置.8.如图1,△ACB、△AED都为等腰直角三角形,∠AED=∠ACB=90°,点D在AB上,连CE,M、N分别为BD、CE的中点.(1)求证:MN⊥CE;(2)如图2将△AED绕A点逆时针旋转30°,求证:CE=2MN.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)延长DN交AC于F,连BF,推出DE∥AC,推出△EDN∽△CFN,推出DE EN DN==,求出DN=FN,FC=ED,得出MN是中位线,推出MN∥BF,证CF CN NF△CAE≌△BCF,推出∠ACE=∠CBF,求出∠CBF+∠BCE=90°,即可得出答案;(2)延长DN到G,使DN=GN,连接CG,延长DE、CA交于点K,求出BG=2MN,证△CAE≌△BCG,推出BG=CE,即可得出答案.试题解析:(1)证明:延长DN交AC于F,连BF,∵N为CE中点,∴EN=CN,∵△ACB和△AED是等腰直角三角形,∠AED=∠ACB=90°,DE=AE,AC=BC,∴∠EAD=∠EDA=∠BAC=45°,∴DE ∥AC ,∴△EDN ∽△CFN , ∴DE EN DN CF CN NF== , ∵EN=NC ,∴DN=FN ,FC=ED , ∴MN 是△BDF 的中位线,∴MN ∥BF ,∵AE=DE ,DE=CF ,∴AE=CF ,∵∠EAD=∠BAC=45°,∴∠EAC=∠ACB=90°,在△CAE 和△BCF 中,CA BC CAE BCF AE CF ⎧⎪∠∠⎨⎪⎩=== , ∴△CAE ≌△BCF (SAS ),∴∠ACE=∠CBF ,∵∠ACE+∠BCE=90°,∴∠CBF+∠BCE=90°,即BF ⊥CE ,∵MN ∥BF ,∴MN ⊥CE .(2)证明:延长DN 到G ,使DN=GN ,连接CG ,延长DE 、CA 交于点K ,∵M 为BD 中点,∴MN 是△BDG 的中位线,∴BG=2MN ,在△EDN 和⊈CGN 中,DN NG DNE GNC EN NC ⎧⎪∠∠⎨⎪⎩===,∴△EDN ≌△CGN (SAS ),∴DE=CG=AE ,∠GCN=∠DEN ,∴DE ∥CG ,∴∠KCG=∠CKE ,∵∠CAE=45°+30°+45°=120°,∴∠EAK=60°,∴∠CKE=∠KCG=30°,∴∠BCG=120°,在△CAE 和△BCG 中,AC BC CAE BCG AE CG ⎧⎪∠∠⎨⎪⎩=== , ∴△CAE ≌△BCG (SAS ),∴BG=CE ,∵BG=2MN ,∴CE=2MN .【点睛】考查了等腰直角三角形性质,全等三角形的性质和判定,三角形的中位线,平行线性质和判定的应用,主要考查学生的推理能力.9.已知:如图1,将两块全等的含30º角的直角三角板按图所示的方式放置,∠BAC=∠B 1A 1C =30°,点B ,C ,B 1在同一条直线上.(1)求证:AB =2BC(2)如图2,将△ABC 绕点C顺时针旋转α°(0<α<180),在旋转过程中,设AB 与A 1C 、A 1B 1分别交于点D 、E ,AC 与A 1B 1交于点F .当α等于多少度时,AB 与A 1B 1垂直?请说明理由.(3)如图3,当△ABC 绕点C 顺时针方向旋转至如图所示的位置,使AB ∥CB 1,AB 与A 1C 交于点D ,试说明A 1D=CD .【答案】(1)证明见解析(2)当旋转角等于30°时,AB 与A 1B 1垂直.(3)理由见解析【解析】试题分析:(1)由等边三角形的性质得AB =BB 1,又因为BB 1=2BC ,得出AB =2BC ;(2) 利用AB 与A 1B 1垂直得∠A 1ED=90°,则∠A 1DE=90°-∠A 1=60°,根据对顶角相等得∠BDC=60°,由于∠B=60°,利用三角形内角和定理得∠A 1CB=180°-∠BDC-∠B=60°,所以∠ACA 1=90°-∠A 1CB=30°,然后根据旋转的定义得到旋转角等于30°时,AB 与A 1B 1垂直;(3)由于AB ∥CB 1,∠ACB 1=90°,根据平行线的性质得∠ADC=90°,在Rt △ADC 中,根据含30度的直角三角形三边的关系得到CD=12AC ,再根据旋转的性质得AC=A 1C ,所以CD=12A 1C ,则A 1D=CD . 试题解析: (1)∵△ABB 1是等边三角形;∴ AB =BB 1∵ BB 1=2BC∴AB =2BC(2)解:当AB 与A 1B 1垂直时,∠A 1ED=90°,∴∠A 1DE=90°-∠A 1=90°-30°=60°,∵∠B=60°,∴∠BCD=60°,∴∠ACA 1=90°-60°=30°,即当旋转角等于30°时,AB 与A 1B 1垂直.(3)∵AB ∥CB 1,∠ACB 1=90°,∴∠CDB=90°,即CD 是△ABC 的高,设BC=a ,AC=b ,则由(1)得AB=2a ,A 1C=b , ∵1122ABC S BC AC AB CD ∆=⨯=⨯, 即11222ab a CD =⨯⨯ ∴12CD b =,即CD=12A 1C , ∴A 1D=CD. 【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30度的直角三角形三边的关系.10.如图,△ABC 是等边三角形,AB=6cm ,D 为边AB 中点.动点P 、Q 在边AB 上同时从点D 出发,点P 沿D→A 以1cm/s 的速度向终点A 运动.点Q 沿D→B→D 以2cm/s 的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题11.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;62【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3,6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3m,6m.∴EG=m+3m=(1+3)m ,∵S △BEG =12•EG•BN=12•BG•EH , ∴EH=3?(13) m m +=3+3m , 在Rt △EBH 中,sin ∠EBH=3+36226m EH EB m+==. 【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,12.在平面直角坐标系中,四边形AOBC 是矩形,点(0,0)O ,点(5,0)A ,点(0,3)B .以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(Ⅰ)如图①,当点D 落在BC 边上时,求点D 的坐标;(Ⅱ)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H .①求证ADB AOB △△≌;②求点H 的坐标.(Ⅲ)记K 为矩形AOBC 对角线的交点,S 为KDE △的面积,求S 的取值范围(直接写出结果即可).【答案】(Ⅰ)点D 的坐标为(1,3).(Ⅱ)①证明见解析;②点H 的坐标为17(,3)5.(Ⅲ)303343033444S -+≤≤. 【解析】分析:(Ⅰ)根据旋转的性质得AD=AO=5,设CD=x ,在直角三角形ACD 中运用勾股定理可CD 的值,从而可确定D 点坐标;(Ⅱ)①根据直角三角形全等的判定方法进行判定即可;②由①知BAD BAO ∠=∠,再根据矩形的性质得CBA OAB ∠=∠.从而BAD CBA ∠=∠,故BH=AH ,在Rt △ACH 中,运用勾股定理可求得AH 的值,进而求得答案;(Ⅲ)3033430334S -+≤≤.详解:(Ⅰ)∵点()5,0A ,点()0,3B ,∴5OA =,3OB =.∵四边形AOBC 是矩形,∴3AC OB ==,5BC OA ==,90OBC C ∠=∠=︒.∵矩形ADEF 是由矩形AOBC 旋转得到的,∴5AD AO ==.在Rt ADC V 中,有222AD AC DC =+,∴22DC AD AC =- 22534=-=.∴1BD BC DC =-=.∴点D 的坐标为()1,3.(Ⅱ)①由四边形ADEF 是矩形,得90ADE ∠=︒.又点D 在线段BE 上,得90ADB ∠=︒.由(Ⅰ)知,AD AO =,又AB AB =,90AOB ∠=︒,∴Rt ADB Rt AOB V V ≌.②由ADB AOB V V ≌,得BAD BAO ∠=∠.又在矩形AOBC 中,//OA BC ,∴CBA OAB ∠=∠.∴BAD CBA ∠=∠.∴BH AH =.设BH t =,则AH t =,5HC BC BH t =-=-.在Rt AHC V 中,有222AH AC HC =+,∴()22235t t=+-.解得175t=.∴175BH=.∴点H的坐标为17,3 5⎛⎫ ⎪⎝⎭.(Ⅲ)3033430334S-+≤≤.点睛:本大题主要考查了等腰三角形的判定和性质,勾股定理以及旋转变换的性质等知识,灵活运用勾股定理求解是解决本题的关键.13.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接.(1)求证:是等边三角形;(2)当时,的周长是否存在最小值?若存在,求出的最小周长;若不存在,请说明理由.(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,2+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;③当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;④当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC >0°,∴∠BDE >60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm ,∴t=14÷1=14s ,综上所述:当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.考点:旋转与三角形的综合题.14.如图,已知Rt △ABC 中,∠ACB =90°,AC =BC ,D 是线段AB 上的一点(不与A 、B 重合).过点B 作BE ⊥CD ,垂足为E .将线段CE 绕点C 顺时针旋转90︒,得到线段CF ,连结EF .设∠BCE 度数为α.(1)①补全图形;②试用含α的代数式表示∠CDA .(2)若3EF AB = ,求α的大小. (3)直接写出线段AB 、BE 、CF 之间的数量关系.【答案】(1)①答案见解析;②45α︒+;(2)30α=︒;(3)22222AB CF BE =+.【解析】试题分析:(1)①按要求作图即可;②由∠ACB=90°,AC=BC ,得∠ABC=45°,故可得出结论;(2)易证FCE ∆∽ ACB ∆,得3CF AC =FA ,得△AFC 是直角三角形,求出∠ACF=30°,从而得出结论;(3)222A 22B CF BE =+.试题解析:(1)①补全图形.②∵∠ACB=90°,AC=BC ,∴∠ABC=45°∵∠BCE=α ∴∠CDA=45α︒+(2)在FCE ∆和ACB ∆中,45CFE CAB ∠=∠=︒ ,90FCE ACB ∠=∠=︒ ∴ FCE ∆∽ ACB ∆ ∴ CF EF AC AB = Q 3EF AB = ∴ 32CF AC = 连结FA .Q 90,90FCA ACE ECB ACE ∠=︒-∠∠=︒-∠∴ FCA ECB ∠=∠=α在Rt CFA ∆中,90CFA ∠=︒,3cos FCA ∠= ∴ 30FCA ∠=︒即30α=︒.(3)22222AB CF BE =+15.已知△ABC 是边长为4的等边三角形,边AB 在射线OM 上,且OA =6,点D 是射线OM 上的动点,当点D 不与点A 重合时,将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,连接DE .(1)如图1,求证:△CDE 是等边三角形.(2)设OD =t ,①当6<t <10时,△BDE 的周长是否存在最小值?若存在,求出△BDE 周长的最小值;若不存在,请说明理由.②求t为何值时,△DEB是直角三角形(直接写出结果即可).【答案】(1)见解析;(2) ①见解析; ②t=2或14.【解析】【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.【详解】(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)①存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=3,∴△BDE的最小周长=CD+4=3;②存在,∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2;当6<t<10时,由∠DBE=120°>90°,∴此时不存在;当t>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴t=14,综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.。
正方形旋转模型解题技巧1. 嘿,你知道吗?正方形旋转模型解题可有技巧啦!就像搭积木一样,找到关键的那块就能搞定。
比如说,当你看到一个正方形绕着一个点旋转时,那你得赶紧找到那些不变的边和角呀!这不是很简单嘛!2. 哇塞,正方形旋转模型,这里面的窍门可多了去了!好比你在走迷宫,找到了正确的路就一路通畅。
像有个题目里,正方形旋转后一些线段的关系,你只要抓住那些隐藏的线索,不就迎刃而解啦!3. 嘿呀,对于正方形旋转模型解题技巧,那可太重要啦!就如同开锁一样,找到了合适的钥匙就能打开难题的大门。
比如说在某个问题中,通过观察旋转前后的图形特征,不就能找到答案了嘛!4. 哎呀,正方形旋转模型的解题,你可别小瞧!这就像一场刺激的探险,要勇敢去发现。
比如遇到正方形旋转后求面积的问题,只要巧妙运用那些不变量,问题不就解决了!5. 哇哦,正方形旋转模型解题技巧,这可是宝贝呀!就好像拥有了魔法棒,能轻松应对难题。
像那种旋转后求角度的题目,找到关键角度的变化,不就小菜一碟啦!6. 嘿,正方形旋转模型的技巧,那可是相当厉害的哟!如同找到了宝藏图的关键线索。
比如有个例子中,根据正方形旋转后的位置关系,很容易就能推出某些结论呢!7. 哟呵,正方形旋转模型解题,这里头有大学问呢!好比在迷雾中找到灯塔。
像遇到旋转后证明线段相等的问题,通过巧妙分析,不就水落石出啦!8. 哇,正方形旋转模型的解题技巧,绝对让你惊叹!就像拥有了超能力一样。
比如在一个复杂的图形中,看到正方形旋转,马上就能找到解题的突破口呀!9. 嘿,别小看正方形旋转模型的解题哦!这就像玩游戏打怪兽,掌握技巧就能轻松过关。
像有的题目中,利用旋转的特性,轻松就能得出答案呢!10. 哎呀呀,正方形旋转模型解题技巧,那可是至关重要呀!如同战场上的兵法。
比如说面对一个棘手的正方形旋转问题,运用这些技巧,不就能顺利攻克啦!我的观点结论:掌握正方形旋转模型的解题技巧真的很重要,能让我们在解题时更加得心应手,快速找到答案。
旋转正方形常见题型例析一、常规旋转,梳理研究方法问题1如图1,已知正方形ABCD与正方形DEFG如图位置摆放,线段AE与CG有何关系?并说明理由・问题2如图2,正方形ABCD不动,将正方形DEFG绕点D按逆时针方向旋转任意角度,线段4E与CG有何关系?并说明理由.解析这两个问题屮,AE与CG的关系都是:AE = CG且AE丄CG.问题1中,要证AE = CG ,只需要证明MDE三ACDG.H为四边形ABCD和DEFG 是正方形,所以AD = DC, DE = DG, ZADE = ZCDG =90° ,所以\ADE = \CDG.延长GC交AE 于点H ,要证AE丄CG ,只要证明ZCHE =90°即可.由\ADE三\CDG得到,ZAED = ZDGC ・在4DCG 和A/7CE 中,易证ZCHE = ZCDG = 90°(基本图形“8” 字模型).问题2的方法与问题[完全类似,可仿照完成.规律点拨正方形旋转的过程中,正方形的位置虽然不断发生变化,但正方形的边相等和角为90°的条件始终不变,因此构造成的三角形始终全等,从而对应的线段和对应角始终相等.在探究线段位置关系的过程屮,利用基本图形求角的度数也是常用的方法,解题屮要学会从复杂的图形中找出基本图形,并灵活利用基本图形解决问题.二、变式旋转,玩出新的高度1•抓住定量,玩转线段关系玩法1如图3,已知正方形ABCD,点E是线段AC上一动点,以DE为边在DE的右侧作正方形DEFG ,线段CE, AC与CG有什么关系?请证明.玩法2如图4,已知正方形ABCD,点E是线段AC延长线上一动点,UDE为边在DE的右侧作正方形DEFG ,线段CE, AC与CG有什么关系?请证明.玩法3如图5,已知正方形ABCD,点E是线段CA延长线上一动点,以DE为边在DE的右侧作正方形DEFG ,线段CE.AC与CG有什么关系?请证明.玩法4上述图•图5中,AE与CG有何位置关系?为什么?解析玩法1中3条线段的关系是:AC = CE + CG;玩法2中3条线段的关系是: CG二AC + CE ;玩法3中3条线段的关系是CE = CG + AC .分析发现,只要证\ADE = \CDG即可.因为四边形ABCD和DEFG是正方形,所以AD = DC, DE = DG,易证ZADE = ZCDG ,所以\ADE = \CDG ,所以AE = CG .玩法1中因为AC = AE + CE ,所以AC = CG + CE;玩法2 中,因为AE = AC + CE ,所以CG = AC + CE;玩法3 屮,因为CE 二AE+AC,所以CE二CG + AC.玩法4,可以用求角度法•图3、图4都易证ZACD = 45°.由全等得到ZDCG = ZDAE = 45。
二年级旋转知识点归纳总结在二年级学习的数学课程中,旋转是一个重要的知识点。
通过旋转,我们可以改变一个图形的方向和位置。
在这篇文章中,我们将对二年级旋转知识点进行归纳总结。
一、什么是旋转?旋转是指将一个图形绕着一个中心点转动一定的角度,从而改变它的位置和方向。
旋转可以顺时针或逆时针进行。
二、旋转的基本概念1. 中心点:旋转时,图形围绕的点称为中心点。
2. 顺时针旋转:图形按照顺时针方向进行旋转。
3. 逆时针旋转:图形按照逆时针方向进行旋转。
三、旋转的基本图形1. 旋转正方形:在旋转正方形时,我们以正方形的中心点为坐标原点,选择旋转角度,然后按照顺时针或逆时针方向旋转正方形。
例如,以一个正方形的中心点为原点,选择90度顺时针旋转,那么原来正方形的右侧变成了上方,上方变成了左侧,左侧变成了下方,下方变成了右侧。
2. 旋转长方形:旋转长方形的方法与旋转正方形类似。
我们同样以长方形的中心点为原点,并选择旋转角度,然后按照顺时针或逆时针方向旋转长方形。
3. 旋转三角形:旋转三角形时,我们以三角形的某个角顶点为中心点,选择旋转角度,按照顺时针或逆时针方向旋转三角形。
四、旋转的特性1. 旋转不改变图形的形状。
2. 顺时针旋转和逆时针旋转得到的图形是互为镜像关系。
3. 旋转两次得到的图形与旋转一次得到的图形相同。
五、旋转的应用旋转不仅仅是一个数学概念,在生活中也有广泛的应用。
1. 花车游行中的旋转表演让观众看到不同的角度和形态。
2. 机械工程师在设计机器人的动作时,可以利用旋转来完成复杂的动作。
3. 车轮的旋转带动汽车前进。
六、小结旋转是二年级数学中的重要知识点,通过旋转,我们可以改变图形的方向和位置。
掌握了旋转的基本概念和方法,我们可以更好地理解和应用这一知识点。
在生活中,旋转也有各种实际应用,如花车游行、机器人设计等。
通过对旋转的学习,我们可以培养学生的观察力和创造力,为他们打下更好的数学基础。
以上是对二年级旋转知识点的归纳总结。
正方形旋转典型题正方形旋转典型题是一道经典的几何题目,旋转是指将一个图形按照某个点为中心旋转一定的角度。
对于一个正方形,我们可以将它按照其中心为中心进行旋转。
那么,这道题的关键在于如何确定旋转角度的大小,以及旋转后的正方形的新坐标点。
首先,我们来考虑如何确定旋转角度的大小。
假设正方形的边长为a,其中心点为O,顺时针方向旋转一个角度θ,则根据三角函数的定义,我们可以得到旋转前后的点的坐标公式如下:旋转前:(x,y)旋转后:(xcosθ+ysinθ, −xsinθ+ycosθ)其中,cosθ和sinθ分别是旋转角度θ对应的余弦和正弦值。
我们可以将旋转后的坐标点代入原正方形的方程,得到旋转后正方形的新方程。
进一步地,我们可以利用此新方程确定旋转角度θ的值。
其次,我们来考虑旋转后正方形的新坐标点。
我们可以将每个顶点代入旋转公式中,得到正方形旋转后各项的新坐标点。
以顺时针旋转90度为例,各项的新坐标点分别为(-y, x), (-x, -y), (y, -x), (x, y)。
由此可得,旋转90度后正方形的新坐标点顺序就变为了以(0,0)为起点的(0,a), (a,0), (0,-a), (-a,0)。
最后,我们还需要注意一些特殊情况。
当旋转角度为180度时,正方形旋转后的坐标点和旋转前完全相同;当旋转角度为270度时,旋转前后的坐标点将其成为顺时针旋转90度时的坐标点,即旋转前正方形的第四象限变成了旋转后正方形的第一象限,第一象限变成了第二象限,第二象限变成了第三象限,第三象限变成了第四象限。
综上所述,正方形旋转典型题需要我们熟悉三角函数知识、掌握旋转公式,以及注意特殊情况的处理。
通过对这些知识的理解和掌握,我们就能够轻松应对这类问题,并且在实际生活中也可将其应用到目标跟踪、图像处理等领域。
正方形旋转典型题正方形旋转典型题引言在数学和几何学中,正方形旋转问题是一个经典的题目。
通过理解正方形的特性和旋转的原理,我们可以解决许多与平面几何相关的问题。
本文将介绍正方形旋转的基本概念和一些典型的题目,并通过列举实例进行说明。
什么是正方形旋转正方形旋转是指将一个正方形绕着其一个顶点或中心点进行旋转,使其在平面上改变位置和方向的操作。
旋转的角度可以是任意值,但本文主要关注45度和90度旋转。
规则和性质•旋转中心:正方形的某个点被选定作为旋转的中心点。
•旋转角度:旋转角度可以是45度或90度,根据题目的要求决定。
•旋转方向:正方形可以顺时针或逆时针旋转。
•旋转后的位置:旋转后的正方形可以改变位置和方向。
典型题目以下是一些典型的正方形旋转题目,通过解答这些题目,我们可以更好地理解正方形旋转的性质和应用。
1.题目一:将一个正方形顺时针旋转90度后,是否还是正方形?答案:是。
无论如何旋转,正方形的四个角仍然都是直角,四条边的长度也保持不变,所以旋转后仍然是正方形。
2.题目二:一个正方形绕着中心旋转90度,会变成什么图形?答案:正方形绕着中心旋转90度后,变成了一个菱形。
旋转后的正方形的对角线会重合,形成菱形的两条对角线。
3.题目三:一个正方形顺时针旋转45度,会变成什么图形?答案:正方形顺时针旋转45度后,会变成一个倾斜的菱形。
菱形的两条对角线不再垂直,而是呈一定的倾斜角度。
结论通过分析以上典型题目,我们可以得出以下结论: - 正方形旋转后仍然是正方形; - 正方形绕着中心旋转90度后变成菱形; - 正方形顺时针旋转45度后变成倾斜的菱形。
正方形旋转是一个重要的几何学概念,也是解决一些几何问题的基础。
通过理解旋转的规则和性质,我们可以更好地应用于实际问题的求解中。
以上就是关于正方形旋转典型题的介绍,希望本文能对您理解和应用正方形旋转有所帮助。
参考资料: - 《数学与几何学导论》 - 《平面几何学教程》实例分析题目四一个正方形的边长为10,将其绕顶点A顺时针旋转90度,求旋转后正方形的面积。
苏教版数学三年级上册《3.长方形和正方形平移、旋转和轴对称复习》教学设计一. 教材分析苏教版数学三年级上册《3.长方形和正方形平移、旋转和轴对称复习》这一章节主要让学生复习和巩固长方形和正方形的平移、旋转和轴对称的知识。
通过这一章节的学习,学生能够更好地理解和掌握长方形和正方形的基本性质,以及它们在几何变换中的应用。
教材通过丰富的图片和实例,引导学生理解和掌握平移、旋转和轴对称的概念,以及它们在实际问题中的应用。
二. 学情分析学生在二年级已经学习过平移、旋转和轴对称的知识,对本节课的内容有一定的了解。
但在实际应用中,部分学生可能会对如何判断一个图形的平移、旋转和轴对称有所困惑。
因此,在教学过程中,教师需要帮助学生巩固基础知识,并通过实例让学生更好地理解和掌握这些概念在实际问题中的应用。
三. 教学目标1.理解平移、旋转和轴对称的概念,并能正确判断图形的平移、旋转和轴对称。
2.能够运用平移、旋转和轴对称的知识解决实际问题。
3.培养学生的空间想象能力和几何思维。
四. 教学重难点1.重点:理解平移、旋转和轴对称的概念,掌握判断图形平移、旋转和轴对称的方法。
2.难点:如何运用平移、旋转和轴对称的知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考和操作,自主探索和解决问题。
2.使用多媒体辅助教学,通过丰富的图片和实例,帮助学生更好地理解和掌握知识。
3.小组讨论和合作交流,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于讲解和展示平移、旋转和轴对称的概念。
2.准备一些实际问题,用于巩固和拓展学生的知识。
3.准备课堂用的练习题和家庭作业,用于检测学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过展示一些图片和实例,引导学生回顾平移、旋转和轴对称的概念。
例如,展示一些运动的图片,如滑滑梯、荡秋千等,让学生判断这些运动是平移还是旋转。
2.呈现(10分钟)教师通过讲解和展示,让学生更好地理解和掌握平移、旋转和轴对称的概念。