相似比为K,AD、A′D′分别为 △ABC和△ A′B′C′的高,
求证:S△ABC :S△ A′B′C′的值
A
A′
B
D
B′ D′ C′ C
相似三角形性质:
相似三角形对应高的比、对 应中线的比、对应角平分线的 比、周长的比等于相似比。
相似三角形面积的比等于 相似比的平方。
一,相似三角形的基本性质:
相似三角形的性质
学习目标
1.在理解相似三角形基本性质的 基础上,掌握相似三角形对应中线、 对应高线、对应角平分线的比等 于相似比,周长的比等于相似比, 面积的比等于相似比的平方。
2.通过实践体会相似三角形的性 质,会用性质解决相关的问题。
1,相似三角形有何特征?
(对应边成比例,对应角相等)
2,识别三角形相似的主要方法有 那些?
如图,△ABC中,BC=24㎝,高AD=12 ㎝,矩形EFGH的两个顶点E、F在 BC上,另两个顶点G、H在AC、AB 上,且EF:EH=4:3,求EF、EH的长 A
H KG
∟
B
C
E DF
如图,D、E是△ABC的边AB、AC 上的点,且∠ADE= ∠C。
求证:AD·AB=AE·AC。
A DE
B
C
对应边成比例,对应角相等
二,相似三角形的性质: 相似三角形对应高的比、对应中线的 比、对应角平分线的比、周长的比等 于相似比。
相似三角形面积的比等于相似比的平 方。
例1:如图,△ABC~△A'B'C',它 们的周长分别是60厘米和72厘米, 且AB=15厘米,B'C'=24厘米。求: BC、AC、A'B'、A'C'。A'