2016年春季新版湘教版九年级数学下学期1.5、二次函数的应用教案3
- 格式:docx
- 大小:105.97 KB
- 文档页数:4
九年级数学下册二次函数的应用教案三湘教版教学目标1.经历利用二次函数解决实际问题的进程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,进展解决问题的能力.3.体会数学与人类社会的紧密联系,了解数学的价值.增进对数学的明白得和学好数学的信心.4.熟悉到数学是解决实际问题和进行交流的重要工具,了解数学对增进社会进步和进展人类理性精神的作用重点与难点能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,进展解决问题的能力.一、切躯体会数学的美欣赏生活中抛物线的图片,回忆二次函数的有关知识。
图1 图2 图3 图4二、切身经历生活中的数学1.求二次函数y=-100x2+100x+200的最值?(学生板演,同桌检查,相互帮忙)生活化,能够相互讨论一下!2.如图,两条钢缆具有相同的抛物线形状.依照图4中的直角坐标系,左面的一条抛物线能够用y=²++10表示,而且左右两条抛物线关于y轴对称⑴钢缆的最低点到桥面的距离是-----,⑵两条钢缆最低点之间的距离是---(3)右边的抛物线解析式是-----3.如上图2是某公园一圆形喷水池,水流在各方向沿形状相同的抛物线落下,若是喷头所在处A (0,),水流线路最高处B (1,),则该抛物线的解析式为____________若是不考虑其他因素,那么水池的半径至少要____米,才能使喷出的水流不致落到池外。
请问:解决一个一般的二次函数的最值问题与实际问题中的最值问题最大的区别在哪里?4、得出解这种题的一样步骤:(1)列出二次函数的解析式,并依照自变量的实际意义,确信自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。
五、 数学问题生活化:用8 m 长的铝合金型材做一个形状如图7所示的矩形窗框.应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?六、数学问题生活化例1.如图窗户边框的上部份是由4个全等扇形组成的半圆,下部份是矩形。
湘教版数学九年级下册1.5《二次函数的应用》教学设计1一. 教材分析湘教版数学九年级下册 1.5《二次函数的应用》是本册的一个重点和难点内容。
这部分内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的,主要让学生学会如何运用二次函数解决实际问题。
教材通过引入二次函数的应用,使学生能够更好地理解和掌握二次函数的知识,提高解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了二次函数的图像和性质,能够熟练地求解二次方程。
但学生在解决实际问题时,往往不知道如何运用二次函数的知识。
因此,在教学过程中,教师需要引导学生将二次函数的知识运用到实际问题中,提高学生的解决问题的能力。
三. 教学目标1.让学生掌握二次函数的应用,能够将二次函数的知识运用到实际问题中。
2.提高学生解决实际问题的能力。
3.培养学生的创新意识和实践能力。
四. 教学重难点1.重点:让学生掌握二次函数的应用。
2.难点:如何引导学生将二次函数的知识运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.案例教学法:通过分析具体案例,让学生了解二次函数在实际问题中的应用。
3.小组合作学习:让学生在小组内进行讨论和交流,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的实际问题,用于导入和巩固环节。
2.准备二次函数的应用案例,用于讲解和分析。
3.准备教学PPT,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
例如,教师可以提出一个问题:“一个长方形的面积是24平方厘米,长是6厘米,求宽是多少厘米?”让学生思考和解答。
2.呈现(10分钟)教师呈现相关的实际问题,让学生了解二次函数在实际问题中的应用。
例如,教师可以呈现一个问题:“一个抛物线的顶点是(2, -3),求这个抛物线与x轴的交点坐标。
”3.操练(10分钟)教师引导学生进行实际的操作,解决实际问题。
湘教版数学九年级下册《1.5 二次函数的应用》教学设计一. 教材分析湘教版数学九年级下册《1.5 二次函数的应用》这一节主要介绍了二次函数在实际生活中的应用,通过具体的实例让学生了解二次函数在实际生活中的重要性。
教材从实际问题出发,引导学生用二次函数的知识去解决实际问题,培养学生的数学应用能力。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。
但是,将二次函数应用于实际问题中,可能会对学生造成一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.了解二次函数在实际生活中的应用。
2.能够将实际问题转化为二次函数问题,并利用二次函数的知识解决问题。
3.培养学生的数学应用能力和解决问题的能力。
四. 教学重难点1.重点:二次函数在实际生活中的应用。
2.难点:将实际问题转化为二次函数问题,并利用二次函数的知识解决问题。
五. 教学方法1.情境教学法:通过具体的实例,引导学生了解二次函数在实际生活中的应用。
2.问题驱动法:教师提出实际问题,引导学生思考并解决问题,提高学生的应用能力。
3.小组合作学习:学生分组讨论,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.准备相关的实例,用于引导学生了解二次函数在实际生活中的应用。
2.设计问题,用于激发学生的思考和讨论。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如抛物线形的物体运动、最大利润问题等,引导学生思考这些问题是否可以用二次函数来解决。
2.呈现(10分钟)教师呈现具体的实例,如抛物线形的物体运动问题,引导学生用二次函数的知识去解决。
教师讲解二次函数在实际问题中的应用,让学生理解二次函数的实际意义。
3.操练(10分钟)教师提出一些实际问题,让学生分组讨论,尝试用二次函数的知识去解决。
教师巡回指导,帮助学生解决问题。
4.巩固(10分钟)教师选取一些学生解决的实际问题,进行讲解和分析,巩固学生对二次函数在实际问题中的应用的理解。
湘教版数学九年级下册《1.5 二次函数的应用》教学设计3一. 教材分析湘教版数学九年级下册第1.5节《二次函数的应用》是本册的重要内容之一。
本节课主要介绍了二次函数在实际生活中的应用,如抛物线的性质,如何求解最值问题等。
通过本节课的学习,使学生能理解和掌握二次函数的基本性质,提高解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了二次函数的图像和性质,以及一元二次方程的解法。
但学生在应用二次函数解决实际问题时,还存在着一定的困难。
因此,在教学过程中,需要教师引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解二次函数在实际生活中的应用,提高解决实际问题的能力。
2.掌握二次函数的基本性质,如开口方向、对称轴等。
3.学会利用二次函数解决最值问题,提高解决问题的方法。
四. 教学重难点1.二次函数在实际生活中的应用。
2.如何利用二次函数解决最值问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究二次函数的应用。
2.利用实例分析,使学生了解二次函数在实际生活中的重要性。
3.采用小组合作学习,培养学生的团队协作能力。
4.利用多媒体辅助教学,提高学生的学习兴趣。
六. 教学准备1.准备相关的实例,用于讲解二次函数在实际中的应用。
2.准备PPT,用于展示二次函数的图像和性质。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾二次函数的基本性质,如开口方向、对称轴等。
然后引入本节课的主题——二次函数在实际生活中的应用。
2.呈现(15分钟)教师通过PPT展示二次函数的图像,讲解二次函数的性质,如开口方向、对称轴等。
然后通过实例分析,让学生了解二次函数在实际生活中的重要性。
3.操练(15分钟)教师提出问题,让学生利用二次函数解决实际问题。
如求解最大值或最小值问题。
学生分组讨论,合作解决问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成。
湘教版数学九年级下册《1.5 二次函数的应用》教学设计2一. 教材分析湘教版数学九年级下册第1.5节《二次函数的应用》是本节课的主要内容。
这部分内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的,主要让学生学会如何运用二次函数解决实际问题。
教材中给出了几个实际问题,如抛物线的应用、最小值的求解等,这些问题都是九年级学生能够理解的,通过解决这些问题,让学生进一步了解二次函数的应用,提高他们的数学应用能力。
二. 学情分析九年级的学生已经掌握了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但是,对于如何将二次函数应用到实际问题中,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的数学应用能力。
三. 教学目标1.让学生掌握二次函数的应用方法,能够将二次函数解决实际问题。
2.提高学生的数学思维能力,培养他们的数学应用意识。
3.通过对实际问题的解决,让学生感受数学的趣味性和实用性,提高他们对数学的兴趣。
四. 教学重难点1.重点:二次函数的应用方法。
2.难点:如何将实际问题转化为二次函数问题,如何求解最值问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过解决实际问题来学习二次函数的应用。
2.使用多媒体教学,通过图像和动画的形式,让学生更直观地理解二次函数的应用。
3.采用小组合作学习的方式,让学生在讨论和合作中解决问题,提高他们的团队协作能力。
六. 教学准备1.准备相关的多媒体教学课件。
2.准备一些实际问题,用于引导学生进行练习。
3.准备黑板和粉笔,用于板书。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节课的主题,如:“一个抛物线形状的跳板,长度为5米,请问跳板与地面形成的角度最大为多少度?”让学生思考如何解决这个问题,从而引出二次函数的应用。
2.呈现(10分钟)通过多媒体课件,呈现教材中的几个实际问题,如抛物线的应用、最小值的求解等。
湘教版九年级数学下册1.5二次函数的应用第1课时抛物线形二次函数教学设计一. 教材分析湘教版九年级数学下册1.5二次函数的应用主要介绍了抛物线形二次函数的相关知识。
这部分内容是在学生已经掌握了二次函数的图像和性质的基础上进行学习的,旨在让学生能够运用二次函数解决实际问题。
教材通过引入抛物线形二次函数,使学生能够更好地理解二次函数在现实生活中的应用,提高学生的数学素养。
二. 学情分析九年级的学生已经具备了一定的数学基础,对二次函数的概念、图像和性质有一定的了解。
但是,对于抛物线形二次函数的应用,部分学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的个体差异,针对不同学生的学习情况,进行有针对性的教学。
三. 教学目标1.理解抛物线形二次函数的概念,掌握其图像特征。
2.能够运用抛物线形二次函数解决实际问题,提高学生的数学应用能力。
3.培养学生的团队协作能力和数学思维能力。
四. 教学重难点1.抛物线形二次函数的概念及其图像特征。
2.抛物线形二次函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.案例教学法:通过分析具体案例,使学生掌握抛物线形二次函数的应用方法。
3.小组讨论法:引导学生分组讨论,培养学生的团队协作能力和口头表达能力。
4.实践操作法:让学生通过动手操作,加深对抛物线形二次函数的理解。
六. 教学准备1.教学课件:制作精美的课件,辅助教学。
2.教学案例:准备一些实际问题,用于引导学生应用抛物线形二次函数解决问题。
3.练习题:准备一些针对性的练习题,用于巩固所学知识。
4.板书设计:设计清晰易懂的板书,便于学生记录和复习。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的抛物线现象,如篮球投篮、抛物线飞行等,引导学生关注抛物线形二次函数在现实生活中的应用。
2.呈现(10分钟)介绍抛物线形二次函数的概念,并通过课件展示其图像特征。
九年级数学下册2.3二次函数的应用教案一湘教版教学目标设计1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。
能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。
2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。
情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。
教学方法设计由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。
为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。
从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
1.5二次函数的应用(1)教学目标:1、经历数学建模的基本过程。
2、能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能用二次函数的知识解决实际问题。
3、体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。
教学重点和难点:重点:用二次函数的知识解决拱桥类问题。
难点:将实际问题转化为二次函数模型来解决。
教学设计:一、创设情境、提出问题动脑筋一座拱桥的纵截面是抛物线的一段,拱桥的跨度是4.9米,水面宽4米时,拱顶离水面2米,想了解水面宽度变化时,拱顶离水面的高度怎样变化?设问:①这是什么样的函数?②怎样建立直角坐标系比较简便?③如何设函数的解析式?如何确定系数?④自变量的取值范围是什么?⑤当水面宽3米时,拱顶离水面高多少米?⑥你是否体会到:从实际问题建立起函数模型,对于解决问题是有效的?例1.某涵洞是抛物线形,它的截面如图26.2.9所示,现测得水面宽1.6m ,涵洞顶点O 到水面的距离为2.4m ,在图中直角坐标系内,涵洞所在的抛物线的函数关系式是什么? 分析 如图,以AB 的垂直平分线为y 轴,以过点O 的y 轴的垂线为x 轴,建立了直角坐标系.这时,涵洞所在的抛物线的顶点在原点,对称轴是y 轴,开口向下,所以可设它的函数关系式是)0(2<=a ax y .此时只需抛物线上的一个点就能求出抛物线的函数关系式.解 由题意,得点B 的坐标为(0.8,-2.4),又因为点B 在抛物线上,将它的坐标代入)0(2<=a ax y ,得 28.04.2⨯=-a所以 415-=a . 因此,函数关系式是2415x y -=. 例2.一座拱桥的轮廓是抛物线(如图①所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y =ax 2+c 的形式,请根据所给的数据求出a 、c 的值;(2)求支柱MN 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m ,高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.课堂练习1.拱桥呈抛物线形,其函数关系式为y =-14x 2,当拱桥下水位线在AB 位置时,水面宽为12m ,这时水面离桥拱顶端的高度h 是( )A .3mB .2 6 mC .4 3 mD .9m2.有一抛物线拱桥,已知水位线在AB 位置时,水面的宽为4 6 米,水位上升4米,就达到警戒线CD ,这时水面宽为4 3 米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M 处?3.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m时,水面CD 的宽是10m .(1)建立如图所示的直角坐标系,求此抛物线的解析式.(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?小结这节课学习了用什么知识解决哪类问题?解决问题的一般步骤是什么?应注意哪些问题?学到了哪些思考问题的方法?作业布置教材P31第1、2题2.某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m ,顶部C 离地面高度为4.4m .现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8m ,装货宽度为2.4m .请判断这辆汽车能否顺利通过大门.图①教学后记。
1.5 二次函数的应用
第1课时二次函数的应用(1)
【知识与技能】
能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.
【过程与方法】
经历运用二次函数解决实际问题的探究过程,进一步体验运用数学方法描述变量之间的依赖关系,体会二次函数是解决实际问题的重要模型,提高运用数学知识解决实际问题的能力.
【情感态度】
1.体验函数是有效的描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具.
2.敢于面对在解决实际问题时碰到的困难,积累运用知识解决问题的成功经验.
【教学重点】
用抛物线的知识解决拱桥类问题.
【教学难点】
将实际问题转化为抛物线的知识来解决.
一、情境导入,初步认识
通过预习P29页的内容,完成下面各题.
动脑筋中“拱顶离水面的高度变化情况”,你准备采取什
1.要求出教材P
29
么办法?
2.根据教材P 29图1-18,你猜测是什么样的函数呢?
3.怎样建立直角坐标系比较简便呢?试着画一画它的草图看看!
4.根据图象你能求出函数的解析式吗?试一试!
二、思考探究,获取新知
探究直观图象的建模应用
例1 某工厂的大门是一抛物线形水泥建筑物,
大门的地面宽度为8m ,两侧距地面
3m 高处各
有一盏壁灯,两壁灯之间的水平距离是
6m,如
图所示,则厂门的高(水泥建筑物厚度不计,
精确到0.1m)约为()
A.6.9m
B.7.0m
C.7.1m
D.6.8m
【分析】因为大门是抛物线形,所以建立二次函数模型来解决问题. 先建立平面直角坐标系,如图,设大门地面宽度
为AB,两壁灯之间的水平距离为CD,则B,D 坐标
分别为(4,0),(3,3),设抛物线解析式为y=ax2+h.
把(3,3),(4,0)代入解析式求得h ≈6.9.故选A.
【教学说明】根据直观图象建立恰当的直角坐标系和解析式.
例2 小红家门前有一座抛物线形拱桥,如图,
当水面在l 时,拱顶离水面2m,水面宽4m,水面
下降1m 时,水面宽度增加多少?
【分析】拱桥类问题一般是转化为二次函数的知识来解决.
解:由题意建立如图的直角坐标系,设抛物线的解析式y=ax 2,
∵抛物线经过点A (2,-2),∴-2=4a,
∴a=-12,即抛物线的解析式为y=-12x 2, 当水面下降1m 时,点B 的纵坐标为-3.
将y=-3代入二次函数解析式,得y=-12
x 2,
得-3=-12
x 2→x 2=6→x=
,∴此时水面宽度为
即水面下降1m 时,水面宽度增加了
-4)m.
【教学说明】用二次函数知识解决拱桥类的实际问题一定要建立适当的直角坐标系;抛物线的解析式假设恰当会给解决问题带来方便.
三、运用新知,深化理解
1.某溶洞是抛物线形,它的截面如图所示.现测得水面
宽AB=1.6m,溶洞顶点O 到水面的距离为2.4m,在图中直角
坐标系内,溶洞所在抛物线的函数关系式是() A.y=154x 2B.y=154x 2+125
C.y=-154x 2
D.y=-154x 2+125
2.某公园草坪的防护栏是由100段形状相同的抛物线形组成的,为了牢固起见,每段护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5m (如图),则这条防护栏需要不锈钢支柱的总长度至少为()
A.50m
B.100m
C.160m
D.200m
第2题图第3题图
3.如图,济南建邦大桥有一段抛物线形的拱梁,抛物线的表达式为y=ax 2+bx,小强骑自行车从拱梁一端O 沿直线匀速穿过拱梁部分的桥面OC ,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC 共需秒.
4.(浙江金华中考)如图,足球场上守门员在O 处
踢出一高球,球从离地面1米处飞出(A 在y 轴上),运
动员乙在距O 点6米的B 处发现球在自己的正上方达到最
高点M,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
(1)求足球开始飞出到第一次落地时,该抛物线的表达式;
(2)足球第一次落地点C距守门员是多少米?(取5)
(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?
【教学说明】学生自觉完成上述习题,加深对新知的理解,并适当加以分析,提示如第4题,由图象的类型及已知条件,设其解析式为y=a(x-6)2+4,过点A(0,1),可求出a;(2)令y=0可求出x的值,x<0舍去;(3)令y=0,求出C点
坐标(设抛物线CND为y=-1
(x-k)2+2,代入C点坐标可求出k值(k
12
>再令y=0可求出C、D的坐标,进而求出BD.
【答案】1.C 2.C 3.36 4.解:(1)y=-1
(x-6)2+4(2)令y=0,可求C点到
12
守门员约13米. (3)向前约跑17米.
四、师生互动,课堂小结
1.这节课你学到了什么?还有哪些疑惑?
2.在学生回答的基础上,教师点评.
3.建立二次实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系.(2)把已知条件转化为点的坐标.(3)合理设出函数解析式.(4)利用待定系数法求出函数解析式.(5)根据求得的解析式进一步分析,判断并进行有关的计算.
1.教材P
第1、2题.
31
2.完成同步练习册中本课时的练习.
本节课主要是利用二次函数解决生活中的实际问题,其主要思路是建立适当的直角坐标系,使求出的二次函数模型更简捷,解决问题更方便,让学生学会运用所学知识解决实际问题,体验应用知识的成就感,激发他们学习的兴趣.。