2014-2015年浙江省金华市新世纪学校八年级(上)数学期中试卷及参考答案
- 格式:pdf
- 大小:504.85 KB
- 文档页数:16
2015学年第一学期八年级数学期中考试答案及评分标准一、填空:(每题2分,共30分) 1、23x ≥-; 2、27; 31; 45、3-a ;6、9020m m <≠且; 7、±2; 8、120,2x x ==-; 9、(3)(3)x y x y -+--;10、9+; 11、如果两个三角形是全等三角形,那么它们的对应角相等; 12、10%; 13、15; 14、- 15、40;二、选择题:(每题3分,共12分)16、D 17、D 18、C 19、B 三 、简答题:(每题5分,共20分)38(0)82'61'2'21.mm m m mm>===4'1'20==、222121223.36101201'32(1)2'3112'331133xx x x x x x xx -+=-+=-==+=+∴=+=-+原方程的解是:2121222.2(3)3(3)129803'992'449944x x x x x x x x x ---=-+===∴==原方程的解是:(..)3'1'1'124.'ABC ABD ABC ABD s s s CBA DA AC BD B EA EB M AB EM A AD C B BA BB A ≅∴∠==∠⊥∴==∴=∴⎧⎪⎨⎪⎩在和中是的中点21212684203056844830 12 1(684)2402'176001252'2 AB x x x x x x AB x x x x x x =-=<=-=>-=-+====25.解:设的长为米1'当时,,当时,,不符合题意舍去。
1'所以,是原方程的解。
答:的长是米。
1'(2)CD=15或CD=5……每个2分22222(5)215(3)(3)2311'2'2(53)(31)1'1'2106311'1'2-+++-=+=-=+=解:26.1'1',1'1801'1'1801'1'AD G DG AD CG AD DG ADB GDC BD DC ABD GCDAB CG ABD GCD AB CGBAC ACG ABE ACF BAC EAF ACG EAF EAF F G E AC ==⎧⎪∠=∠⎨⎪=⎩≅∴=∠=∠∴∴∠+∠=︒∴∠∠︒∴∠+∠=︒∴∠=∠∴≅∴=27.证:延长至点,使,联结和是等腰直角三角形EAB =FAC =90,AF =AC 21'AG EF AD∴=11'60,601201'1'60,601'1'1'AE DB EF BCEAF ABC AFE ACB AEF DBE EFC ED ECD ECB DEB D ECF ECB DEB ECF DBE EFC DB EF AE EFAE DB =∴∠=∠=︒∠=∠=︒∴∴∠=∠=︒=∴∠=∠∠=︒-∠∠=︒-∠∴∠=∠∴≅∴==∴=28、()填空:证:是等边三角形。
2014-2015学年八年级上学期期中联考数学试题(含答案)(时间:100分钟,满分:100分)一、选择题(每题3分,共30分)1、下面各组线段中,能组成三角形的是( )A .5,11,6B .8,8,16C .10,5,4D .6,9,14 2、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个 3、一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 4、等腰三角形的一个角是50,则它的底角是( ) A. 50 B. 50或65 C 、80 D 、65 5、和点P (2,5-)关于x 轴对称的点是( )A (-2,5-)B (2,5-)C (2,5)D (-2,5) 6、已知直角三角形中30°角所对的直角边为2 cm ,则斜边的长为( ). A .2 cm B .4 cm C .6 cm D .8 cm7、如图,已知12=∠∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D =∠∠;④B E =∠∠.其中能使ABC AED △≌△的条件有( ) A.4个 B.3个C.2个 D.个8、如图,先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中 ( ) A .AD DH AH ≠= B .AD DH AH == C .DH AD AH ≠= D .AD DH AH ≠≠9、如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2B .2∠A=∠1+∠2C .3∠A=2∠1+∠2D .3∠A=2(∠1+∠2)10、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ) A .对应点连线与对称轴垂直 B .对应点连线被对称轴平分 C .对应点连线被对称轴垂直平分 D .对应点连线互相平行 二、填空题(每题3分,共24分)11、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_________ ______。
2014—2015 第一学期初二数学期中学业水平测试、选一选,牛刀初试露锋芒!(每小题3分,共42分)1.下列图形中,轴对称图形的个数是()A. 4个2 .下列说法正确的是()A .三角形的角平分线是射线。
B.三角形三条高都在三角形内。
C. 三角形的三条角平分线有可能在三角形内,也可能在三角形外。
D. 三角形三条中线相交于一点。
3 .两根木棒长分别为5cm和7cm,要选择第三根,将它们钉成一个三角形,?如果第三根木棒长为偶数, 则组成方法有b5E2RGbCAPA. 3种B. 4种C. 5种D. 6种4. 下列各组条件中,不能判定△AB4A A/B/C/的一组是()/ / / / / //—”//A、/ A=Z A,/B=Z B ,AB= A BB、/ A=Z A , AB= A B , AC=A C/ / / J / / / / / / /C、/ A=/ A , AB= A B , BC= B CD、AB= A B , AC=A C ,BC= B C5. 如图,已知△ ABC的六个元素,则下面甲、乙、丙三个三角形中和△ ABC全等的图形是(D.只有丙6.如图1,将长方形ABCD纸片沿对角线BD折叠,使点C落在C •处,BC交AD于丘,若• DBC =22.5 °,贝恠不添加任何辅助线的情况下, 则图中45的角(虚线也视为角的边)的个数是()A. 5个E 22.12.如图5,△ ABC 的三边 AB 、BC CA 长分别是 20、30、40,其三条 角平分线将△ ABC 分为三个三角形,则 S A ABO : S A BCO:CAO 等于( )A . 1 : 1 : 1B . 1 : 2 : 3C . 2 : 3 : 4D . 3 : 4 : 513.如图6, 一圆柱高8cm,底面半径2cm,—只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程 (二 取 3)是() DXDiTa9E3dA.20cm;B.10cm;C.14cm;D. 无法确定.7•如图2,有一张直角三角形纸片,两直角边 △ ABC 折叠,使点B 与点A 重合,折痕为DE 为( )A. 10 cm B . 12cmC8、若等腰三角形的腰长为10,底边长为12,A 、6B 、7C 、8AC=5cm BC=10cm则厶ACD 的周长盒命 图2 E.15cmD . 20cm则底边上的高为()D 、99.如图3,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事 的办法是()p1EanqFDPwA.带①去B.带②去C.带③去D.带①和②去10、下列条件中,不能确定三角形是直角三角形的是(A.三角形中有两个角是互为余角; B.三角形三个内角之比为3 : 2 : 1; C.三角形的三边之比为3 : 2 : 1 ; D.三角形中有两个内角的差等于第三个内角 11.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图 4所示的图形,两条直角边在同一直线上.则图中等腰三角形有( )个. A. 1个B . 2个C.3 个D.4 个F C D图4图5A图614.如图7所示,已知△ ABC和厶BDE都是等边三角形。
2014-2015学年浙江省金华市永康三中八年级(上)期中数学试卷一、精心选一选:(每小题3分,共30分)1.(3分)如图,笑脸盖住的点的坐标可能为()A.(4,3) B.(﹣2,1)C.(﹣4,﹣4)D.(3,﹣2)2.(3分)已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.3.(3分)在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.4.(3分)已知a<b,下列式子不成立的是()A.a+1<b+1 B.3a<3b C.﹣2a<﹣2b D.a<b+15.(3分)已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2) D.(3,﹣2)6.(3分)甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃7.(3分)点A(x1,y1),B (x2,y2)是一次函数y=﹣x+7图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2 时,y1>y2 D.当x1<x2时,y1<y28.(3分)一元一次不等式组的解集为x>a,且a≠﹣1,则a取值范围是()A.a>﹣1 B.a<﹣1 C.a>0 D.a<09.(3分)如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则下列结论正确的()A.x<﹣2时,y1<y2B.x<﹣2时,y1>y2C.a<0 D.b<010.(3分)“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到了终点了.于是急忙追赶,但为时已晚,乌龟先到达了终点,用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事相吻合的是()A.B.C.D.二、专心填一填:(每小题4分,共24分)11.(4分)请用不等式表示“x的2倍与3的和不大于1”:.12.(4分)已知一次函数y=x+4的图象经过点(m,6),则m=.13.(4分)在函数y=kx+b中,k<0,b>0,那么这个函数图象不经过第象限.14.(4分)不等式3x﹣10≤0的正整数解是,,.15.(4分)一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是.16.(4分)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是;当点B的横坐标为20时,m=.三、细心做一做:(17、18、19小题各6分,20、21小题各8分,22、23小题各10分,24小题12分共66分)17.(6分)求不等式x﹣≥2的解.18.(6分)求不等式组的解,并把它的解在数轴上表示出来.19.(6分)已知y是x的一次函数,当x=1时,y=﹣1;当x=﹣1时,y=﹣5.(1)求y关于x的一次函数解析式.(2)当y=0时,求x的值.20.(8分)如图,已知△ABC的三个顶点恰好是网格的格点,按照图中的位置建立平面直角坐标系:(1)点B的坐标是.(2)若将△ABC向右平移4个单位再向下平移3个单位得到△A1B1C1,则B点的对应点B1的坐标是;(3)若△ABC不动,将坐标系向左平移4个单位再向上平移3个单位,在新坐标系中B的坐标是.21.(8分)用炸药进行工程爆破作业,如果导火索燃烧的速度是每秒0.4厘米,人跑开的速度是每秒5米,为了使点燃导火索的人在爆炸前跑到120米以外(包括120米)的安全地带,导火索至少要多少厘米?22.(10分)如图,已知A(﹣2,﹣1),B(1,3)两点在一次函数y=x+的图象上,并且直线交x轴于点C,交y轴于点D,(1)求出C、D两点的坐标;(2)求△AOB的面积;(3)求∠AOB的度数.(直接给出答案)23.(10分)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.设分配给甲店A型产品x件.两商店销售这两种产品每件的利润(元)如下表:(1)分配给乙店B型产品件(用含x的代数式表示).(2)设这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并直接写出x的取值范围.(3)若公司要求总利润不低于17560元,有几种不同分配方案?哪种方案总利润最大?请求出最大利润.24.(12分)在平面直角坐标系xOy中,如图,已知点A(0,2),B(2,0),C (1,0)(1)若点P(x,y)是线段AB上的动点,求△OPB的面积S,用含x的代数式表示.(2)若D(1,m),当△ACD为等腰三角形时,求点D的坐标.(3)若D(1,m),当△ACD为直角三角形时,求点D的坐标.2014-2015学年浙江省金华市永康三中八年级(上)期中数学试卷参考答案与试题解析一、精心选一选:(每小题3分,共30分)1.(3分)如图,笑脸盖住的点的坐标可能为()A.(4,3) B.(﹣2,1)C.(﹣4,﹣4)D.(3,﹣2)【解答】解:笑脸盖住的点的坐标可能为(﹣2,1),故选:B.2.(3分)已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.【解答】解:∵正比例函数y=kx经过点(1,﹣2),∴﹣2=1•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x.故选:B.3.(3分)在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.【解答】解;在数轴上表示不等式x≥﹣2的解集,解集是从﹣2点向右,故选:C.4.(3分)已知a<b,下列式子不成立的是()A.a+1<b+1 B.3a<3b C.﹣2a<﹣2b D.a<b+1【解答】解:A、在不等式a<b的两边同时加上1,不等式仍成立,即a+1<b+1,故本选项不符合题意;B、在不等式a<b的两边同时乘以3,不等式仍成立,即3a<3b,故本选项不符合题意;C、在不等式a<b的两边同时乘以﹣2,不等号的方向发生改变,即﹣2a>﹣2b,故本选项符合题意;D、因为a<b<b+1,所以a<b+1,故本选项不符合题意;故选:C.5.(3分)已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2) D.(3,﹣2)【解答】解:根据轴对称的性质,得点P(3,﹣2)关于x轴对称的点的坐标为(3,2).故选:C.6.(3分)甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃【解答】解:设温度为x℃,根据题意可知解得3≤x≤5.故选:B.7.(3分)点A(x1,y1),B (x2,y2)是一次函数y=﹣x+7图象上的两点,则下列判断正确的是()A.y1>y2B.y1<y2C.当x1<x2 时,y1>y2 D.当x1<x2时,y1<y2【解答】解:∵一次函数y=﹣x+7可知,k=﹣1<0,y随x的增大而减小,∴当x1<x2 时,y1>y2.故选:C.8.(3分)一元一次不等式组的解集为x>a,且a≠﹣1,则a取值范围是()A.a>﹣1 B.a<﹣1 C.a>0 D.a<0【解答】解:因为一元一次不等式组的解集为x>a,且a≠﹣1,x≥﹣1,所以a>﹣1,故选A.9.(3分)如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则下列结论正确的()A.x<﹣2时,y1<y2B.x<﹣2时,y1>y2C.a<0 D.b<0【解答】解:A、由图象可知x<﹣2时,y1<y2,故正确;B、由图象可知x<﹣2时,y1<y2,故错误;C、由y2=ax﹣3经过一、三象限是a<0,经过四象限是a>0,故错误;D、由函数y1=3x+b一、二、三象限,可知b>0,错误.故选:A.10.(3分)“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到了终点了.于是急忙追赶,但为时已晚,乌龟先到达了终点,用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事相吻合的是()A.B.C.D.【解答】解:根据题意:s1一直增加;s2有三个阶段,1、增加;2、睡了一觉,不变;3、当它醒来时,发现乌龟快到终点了,于是急忙追赶,增加;但乌龟还是先到达终点,即s1在s2的上方.故选:B.二、专心填一填:(每小题4分,共24分)11.(4分)请用不等式表示“x的2倍与3的和不大于1”:2x+3≤1.【解答】解:x的2倍表示为2x,与3的和表示为2x+3,由题意得:2x+3≤1,故答案为:2x+3≤1.12.(4分)已知一次函数y=x+4的图象经过点(m,6),则m=2.【解答】解:∵一次函数y=x+4的图象经过点(m,6),∴把点(m,6)代入一次函数y=x+4得m+4=6解得:m=2.故答案为:2.13.(4分)在函数y=kx+b中,k<0,b>0,那么这个函数图象不经过第三象限.【解答】解:∵k<0,∴直线y=kx+b经过第二、四象限,∵b>0,∴直线y=kx+b与y轴的交点在x轴上方,∴直线经过第一、二、四象限,不经过第三象限.故答案为三.14.(4分)不等式3x﹣10≤0的正整数解是1,2,3.【解答】解:∵不等式3x﹣10≤0的解集是x≤,∴不等式3x﹣10≤0的正整数解是1,2,3.故答案为:1;2;3.15.(4分)一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是x <2.【解答】解:由图象可知一次函数y=kx+b的图象经过点(2,0)、(0,3).∴可列出方程组,解得,∴该一次函数的解析式为y=,∵<0,∴当y>0时,x的取值范围是:x<2.故答案为:x<2.16.(4分)在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是3或4;当点B的横坐标为20时,m=27.【解答】解:如图,m=3时,点B的横坐标可能是3或4;点B的横坐标为20时,直线AB的解析式为y=﹣x+4,当x=1时,y=3,有3个整点,x=2时,y=3,有3个整点,x=3时,y=3,有3个整点,x=4时,y=3,有3个整点,x=5时,y=3,有2个整点,x=6时,y=2,有2个整点,x=7时,y=2,有2个整点,x=8时,y=2,有2个整点,x=9时,y=2,有2个整点,x=10时,y=2,有1个整点,x=11时,y=1,有1个整点,x=12时,y=1,有1个整点,x=13时,y=1,有1个整点,x=14时,y=1,有1个整点,x=15时,y=1,没有整点,…,整点个数是3×4+(2+1)×5=12+15=27.故答案为:3或4;27.三、细心做一做:(17、18、19小题各6分,20、21小题各8分,22、23小题各10分,24小题12分共66分)17.(6分)求不等式x﹣≥2的解.【解答】解:去分母得:2x﹣3x+7≥4,移项得:2x﹣3x≥4﹣7,合并同类项得:﹣x≥﹣3,系数化为1得:x≤3.18.(6分)求不等式组的解,并把它的解在数轴上表示出来.【解答】解:由①得:x≥﹣1,由②得:x<1,所以解集为:﹣1≤x<1.在数轴上表示为:19.(6分)已知y是x的一次函数,当x=1时,y=﹣1;当x=﹣1时,y=﹣5.(1)求y关于x的一次函数解析式.(2)当y=0时,求x的值.【解答】解:(1)设函数解析式为y=kx+b,将(x=1,y=﹣1;x=﹣1,y=﹣5代入得:,解得:,∴函数关系式为:y=4x﹣3.(2)当y=0时,则4x﹣3=0,解得x=,所以当y=0时,求x的值为.20.(8分)如图,已知△ABC的三个顶点恰好是网格的格点,按照图中的位置建立平面直角坐标系:(1)点B的坐标是(﹣3,1).(2)若将△ABC向右平移4个单位再向下平移3个单位得到△A1B1C1,则B点的对应点B1的坐标是(1,﹣2);(3)若△ABC不动,将坐标系向左平移4个单位再向上平移3个单位,在新坐标系中B的坐标是(1,﹣2).【解答】解:(1)点B的坐标为(﹣3,1);(2)所作图形如图所示:点B1的坐标为(1,﹣2);(3)新坐标系中B的坐标为(1,﹣2).故答案为:(﹣3,1);(1,﹣2);(1,﹣2).21.(8分)用炸药进行工程爆破作业,如果导火索燃烧的速度是每秒0.4厘米,人跑开的速度是每秒5米,为了使点燃导火索的人在爆炸前跑到120米以外(包括120米)的安全地带,导火索至少要多少厘米?【解答】解:设导火索的长度至少应取xcm,由题意得×5≥120,解得:x≥9.6.答:导火索的长度至少应取9.6cm.22.(10分)如图,已知A(﹣2,﹣1),B(1,3)两点在一次函数y=x+的图象上,并且直线交x轴于点C,交y轴于点D,(1)求出C、D两点的坐标;(2)求△AOB的面积;(3)求∠AOB的度数.(直接给出答案)【解答】解:(1)令y=0,得出x=﹣,所以C点坐标为(﹣,0)x=0,则y=,所以D 点坐标为(0,); (2)△AOB 的面积=S △AOD +S △BOD=××2+××1=.(3)∠AOB=135°.23.(10分)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.设分配给甲店A 型产品x 件.两商店销售这两种产品每件的利润(元)如下表:(1)分配给乙店B 型产品 x ﹣10 件(用含x 的代数式表示).(2)设这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并直接写出x 的取值范围.(3)若公司要求总利润不低于17560元,有几种不同分配方案?哪种方案总利润最大?请求出最大利润.【解答】解:(1)设分配给甲店A 型产品x 件,则有分配给乙店B 型产品(x ﹣10)件; (2)由题意,得W=200x +170(70﹣x )+160(40﹣x )+150(x ﹣10) =20x +16800.则,解得:10≤x ≤40.(3)由题意可得:20x +16800≥17560, 解得x ≥38,又∵x≤40,∴38≤x≤40,∴x取38,39,40,有三种方案.分别为:∵W是x的一次函数,且W随x的增大而增大∴当x=40时,W最大=20×40+16800=17600(元),即第三种分配方案该公司可获得最大总利润,最大总利润是17600元.24.(12分)在平面直角坐标系xOy中,如图,已知点A(0,2),B(2,0),C (1,0)(1)若点P(x,y)是线段AB上的动点,求△OPB的面积S,用含x的代数式表示.(2)若D(1,m),当△ACD为等腰三角形时,求点D的坐标.(3)若D(1,m),当△ACD为直角三角形时,求点D的坐标.【解答】解:(1)设直线AB的解析式为y=kx+b,把A(0,2)),B(2,0)分别代入得,解得,所以直线AB的解析式为y=﹣x+2,所以S=×2×y=y=﹣x+2(0≤x<2);(2)AC==,当CA=CD时,|m|=,解得m=或﹣,此时D点坐标为(1,)或(1,﹣),当AD=AC时,=,解得m=0(舍去)或m=4,此时D点坐标为(1,4);当DA=DC时,12+(m﹣2)2=m2,解得m=,此时D点坐标为(1,),综上所述,D点坐标为(1,)或(1,﹣)或(1,4)或(1,),(3)当∠ADC=90°时,AD∥x轴,则点D的坐标为(1,2);当∠CAD=90°时,则AD2+AC2=CD2,即12+(m﹣2)2+5=m2,解得m=,此时D 点坐标为(1,),综上所述,D点坐标为(1,2)或(1,).赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC ⊥BD ,垂足为E ,AB =2,DC =4,求⊙O 的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
2015年八年级数学上册期中检测试题(浙教版含答案和解释)期中检测题(时间:120分钟,满分:120分)一、选择题(每小题2分,共24分) 1.如果一个三角形的两边长分别为2和4,则第三边长可能是() A.2 B.4 C.6 D.8 2.如图,在△ 中,点是延长线上一点,=40°,=120°,则等于()A.60° B.70° C.80° D.90° 3.如图,已知,下列条件能使△ ≌△ 的是() A. B. C. D.A,B,C三个答案都是 4.如图,在△ 中,=36° 是边上的高,则的度数是()A.18° B.24° C.30° D.36° 5.(2015•浙江丽水中考)如图,数轴上所表示的关于的不等式组的解集是()A. ≥2 B. >2 C. >-1 D.-1< ≤2 第5题图 6.已知等腰三角形一腰上的中线把周长分为15和27两部分,则这个等腰三角形的底边长是() A.6 B.22 C.6或22 D.10或18 7.有一个木工师傅测量了等腰三角形的腰、底边和高的长,但他把这三个数据与其他数据弄混了,请你帮他找出来�v �w A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4 8.如图,在△ 中,,点在上,连接,如果只添加一个条件使,则添加的条件不能为()第8题图第9题图 9.(2015•浙江丽水中考)如图,在方格纸中,线段,,,的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()A. 3种 B. 6种 C. 8种 D. 12种10.(2015•浙江宁波中考)如图,□ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CD F,则添加的条件不能为() A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2 11.当时,多项式的值小于0,那么k的值为() A.B. C. D. 12.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排() A.4辆 B.5辆 C.6辆 D.7辆二、填空题(每小题3分,共18分) 13.若 + =0,则以为边长的等腰三角形的周长为 . 14.在△ 中,,,⊥ 于点,则 _______. 15.若一个三角形三条高线的交点恰好是此三角形的一个顶点,则此三角形是______三角形. 16.若等腰三角形一腰上的高与底边的夹角为n°,则这个等腰三角形的顶角等于________. 17.如图所示,已知△ABC和△BDE均为等边三角形,连接AD,CE,若∠BAD=39°,则∠BCE= . 18.一次测验共出5道题,做对一题得1分,已知26人的平均分不少于4.8分,最低的得3分,至少有3人得4分,则得5分的有_______人.三、解答题(共78分) 19.(8分)如图,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数.20.(8分)如图所示,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB 于点E,BD,CE相交于F.求证:AF平分∠BAC. 21.(10分)如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC交AC 于点E,CF∥AB交DE的延长线于点F. (1)求证:DE=EF; (2)连接CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.22.(10分)如图所示,△ABC≌△A DE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.23.(10分)(2015•浙江温州中考)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D. (1)求证:AB=CD;(2)若AB=CF,∠B=30°,求∠D的度数. 24.(10分)已知:在△ 中,,点是的中点,点是边上一点.(1)垂直于点,交于点(如图①),求证: . (2)垂直,垂足为,交的延长线于点(如图②),找出图中与相等的线段,并证明. 25.(10分)(2015•四川资阳中考节选)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10 500元.请问有几种购买方案? 26.(12分)某食品厂生产的一种巧克力糖每千克成本为24元,其销售方案有如下两种:方案1:若直接给本厂设在武汉的门市部销售,则每千克售价为32元,但门市部每月需上缴有关费用2 400元;方案2:若直接批发给本地超市销售,则出厂价为每千克28元.若每月只能按一种方案销售,且每种方案都能按月销售完当月产品,设该厂每月的销售量为x kg.(1)若你是厂长,应如何选择销售方案,可使工厂当月所获利润更大?(2)厂长看到会计送来的第一季度销售量与利润关系的报表后(下表),发现该表填写的销售量与实际有不符之处,请找出不符之处,并计算第一季度的实际销售量.一月二月三月销售量(kg) 550 600 1 400 利润(元) 2 000 2 400 5 600期中检测题参考答案一、选择题 1.B 解析:本题考查了三角形的三边关系,设第三边长为,∵ ,即,∴ 只有选项B正确. 2.C 解析:根据三角形的一个外角等于与它不相邻的两个内角的和,知,从而求出的度数,即∵ ,∴ 120° 40°=80°.故选C. 3.D 解析:添加A选项中条件可用判定两个三角形全等;添加B选项中条件可用SAS判定两个三角形全等;添加C选项中条件可用判定两个三角形全等,故选D. 4.A 解析:在△ 中,因为,所以 . 因为,所以 . 又因为,所以,所以 . 5.A 解析:由数轴可知两个不等式的解集分别是x>-1,x≥2,其解集的公共部分是x≥2. 6.A 解析:如图,设AD= ,当时,,即AB=AC=10. ∵ 周长是15+27=42,∴ BC=22(不符合三角形三边关系,舍去);当时,,即AB=AC=18. ∵ 周长是15+27=42,∴ BC=6. 综上可知,底边BC的长为6. 7.C 解析:A. ,错误; B. ,错误; C. ,正确; D. ,错误.故选C. 8.C 解析:当时,可以分别利用SAS,AAS,SAS来证明△ ≌△ ,从而得到,只有选项C不能. 9. A 解析:假设小方格的边长为1,则,,,,,,,,,,线段不能和其他的任意两条线段构成三角形,只有线段a,b,d能构成三角形. 能组成三角形的不同平移方法有①平移a和b;②平移b和d;③平移a和d,共三种.10. C 解析:对于选项A,当BE=DF时,∵ 四边形ABCD是平行四边形,∴ AB=CD,∠ABE=∠CDF.在△ABE和△CDF中,∴△ABE≌△CDF(SAS). 对于选项B,当BF=DE时,BF-EF=DE-EF,即BE=DF. ∵ 四边形ABCD是平行四边形,∴ AB=CD,∠ABE=∠CDF.在△ABE和△CDF中,∴ △ABE≌△CDF(SAS). 对于选项C,当AE=CF时,∵ 四边形ABCD是平行四边形,∴ AB=CD,∠ABE=∠CDF.添加条件AE=CF后,不能判定△ABE≌△CDF.对于选项D,当∠1=∠2时,∵ 四边形ABCD是平行四边形,∴ AB=CD,∠ABE=∠CDF.在△ABE和△CDF中,∴ △ABE≌△CDF(ASA).综上可知,添加选项A,B,D均能使△ABE≌△CDF,添加选项C不能使△ABE≌△CDF. 11.C 解析:把x的值代入并根据题意列出不等式,然后根据一元一次不等式的解法求解. 12.C 解析:设甲种运输车至少安排辆,根据题意得5x+4(10-x)≥46,解得x≥6,故甲种运输车至少应安排6辆.故选C.二、填空题 13. 5 解析:根据题意,得,解得①若是腰长,则底边长为2,三角形的三边长分别为1,1,2,∵ 1+1=2,∴ 不能组成三角形; ②若是腰长,则底边长为1,三角形的三边长分别为2,2,1,能组成三角形,周长=2+2+1=5.故填5. 14.15 解析:如图,∵ 等腰三角形底边上的高、中线以及顶角的平分线“三线合一”,∴ . ∵ ,∴ . ∵ ,∴ . 15.直角16.2n° 解析:∵ 等腰三角形一腰上的高与底边的夹角为n°,∴ 此等腰三角形的底角为90°-n°,则它的顶角的度数为.17.39° 解析:∵ △ 和△ 均为等边三角形,∴ ∵ ∴ ∴ △ ≌△ ,∴ 18.22 解析:设得5分的有人.若得3分的有1人,由得4分的至少有3人,得.由题意可得5x+3+(25-x)×4≥26×4.8,解得.应取整数解,得 =22.三、解答题 19. 分析:本题考查了等腰三角形、三角形外角的性质.利用等腰三角形的两底角相等和三角形外角的性质设未知数列方程求解. 解:∵ AB=BC=CD=DE,∴ . 而设则可得84°, ∴ 21°,即21°. 20. 证明:因为BD⊥AC ,CE⊥AB,所以∠AEC=∠ADB=90°. 所以△ACE≌△ABD(AAS),所以AE=AD. 在Rt△AEF与Rt△ADF中,因为所以Rt△AEF≌Rt△ADF(HL),所以∠EAF=∠DAF,所以AF平分∠BAC. 21.分析:本题考查了三角形的中位线、全等三角形、直角三角形的性质以及三角形的外角和定理. (1)要证明DE=EF,先证△ADE≌△CFE. (2)CD是Rt△ABC斜边上的中线,∴ CD AD,∴ ∠1=∠A. 而∠1+∠3=90°,∠A+∠B=90°,可得∠B=∠3.由CF∥AB可得∠2=∠A,要证∠B=∠A+∠DGC,只需证明∠3=∠2+∠DGC. 证明:(1)如图,∵ 点D为边AB的中点,DE∥BC,∴ AE=EC. ∵ CF∥AB,∴ ∠A=∠2. 在△ADE和△CFE中,∵ ∴△ADE≌△CFE(ASA),∴ DE=EF. (2)在Rt△ACB中,∵ ∠ACB=90°,点D为边AB的中点, ∴ CD=AD,∴ ∠1=∠A. ∵ DG⊥DC,∴∠1+∠3=90°. 又∵ ∠A+∠B=90°,∴ ∠B=∠3. ∵ CF∥AB,∴∠2=∠A. ∵ ∠3=∠2+∠DGC,∴ ∠B=∠A+∠DGC. 点拨:证明两个角相等的常用方法:①等腰三角形的底角相等;②全等(相似)三角形的对应角相等;③两直线平行,同位角(内错角)相等;④角的平分线的性质;⑤同角(或等角)的余角(或补角)相等;⑥对顶角相等;⑦借助第三个角进行等量代换. 22.分析:由△ABC≌△ADE,可得∠DAE=∠BAC= (∠EAB-∠CAD),根据三角形外角的性质可得∠DFB=∠FAB+∠B.由∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角的性质可得∠DGB=∠DFB -∠D,即可得∠DGB的度数.解:因为△ABC≌△ADE,所以∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,∠DGB=∠DFB-∠D=90°-25°=65°. 23.(1)证明:∵ AB∥CD,∴ ∠B=∠C. 又∵ AE=DF,∠A=∠D,∴ △ABE≌△DCF(AAS),∴ AB=CD. (2)解:∵ AB=CF,AB=CD,∴ CD=CF,∴ ∠D=∠CFD. ∵ ∠B=∠C=30°,∴ ∠D===75°. 24.(1)证明:因为BF垂直CE于点F,所以,所以 . 又因为,所以 . 因为 , ,所以 . 又因为点是的中点,所以 . 所以∠DCB =∠A. 因为,所以△≌△ ,所以 . (2)解: .证明如下:在△ 中,因为 , ,所以 . 因为,即 , 所以 ,所以 . 因为为等腰直角三角形斜边上的中线, 所以 . 在△ 和△ 中, , , 所以△ ≌△ ,所以 . 25. 解:(1)设一个篮球元,则一个足球元,根据题意,得,解得 . 所以一个篮球120元,一个足球90元.(2)设购买篮球个,则购买足球个,根据题意,得解得 . 因为为正整数,所以共有11种购买方案. 26.解:(1)设方案1、方案2的利润分别为y1元、y2元.方案1:y1=(32-24)x-2 400=8x-2 400. 方案2:y2=(28-24)x=4x.当8x-2 400>4x时,;当8x-2 400=4x时,;当8x-2 400<4x 时,.即当时,选择方案1;当时,任选一个方案均可;当时,选择方案2.(2)由(1)可知当时,利润为2 400元.一月份利润2 000<2 400,则,由4x=2 000,得 x=500,故一月份不符.三月份利润5 600>2 400,则,由8x-2 400=5 600,得x=1 000,故三月份不符.二月份符合实际.故第一季度的实际销售量=500+600+1 000=2 100(kg).。
2014-2015学年度第一学期期中考试八年级数学模拟试题第Ⅰ卷(本卷满分100分)一、选择题(共8小题,每小题3分,共24分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填写在答卷指定位置。
1.下面汽车标志图案中,不是轴对称图形的是( )2.要使六边形木架不变形,至少要再钉上( )根木条A .2B .3C .4D .5 3.下列长度的三条线段首尾相连不能组成三角形的是( )A .(2,4,3)B .(1,2,1)C .(2,3,2)D .(21,31,41) 4.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( )A B C D5.如图,直线m 是多边形ABCDE 的对称轴,其中∠A =120°,∠ABC =110°,那么∠BCD 的度数为( )A .50°B .60°C .70°D .80°6.已知△ABC ,在三角形内部找一点P ,使P 到A 、B 、C 三点距离相等,则P 为( )A .三条高线的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点7.如图,C 为线段AB 上一点,在AB 的同侧作等边△ACM 和等边△BCN ,连接AN 、BM ,若∠MBN =40°,则∠ANB 的大小是( )A .60°B .65°C .70°D .80°8.在已给图形的基础上画一个小正方形,使之成为轴对称图形,有( )种画法A .1B .2C .3D .4二、填空题(共8小题,每小题3分,共24分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置。
9.在平面直角坐标系中,点A (2,0),B (0,4),作△BOC ,使△BOC 与△ABO 全等,则点C 坐标为_____________10.如图,△ABD ≌△BAC ,若AD =BC ,则∠BAC 的对应角为__________11.已知AD 是△ABC 的角平分线,DE ⊥AB 于E ,且DE =3 cm ,则点D 到AC 的距离为____12.如果将长度为a -2、a +5和a +2的三根线段首尾顺次相接可以得到一个三角形,那么a 的取值范围是____________13.若点P (3,4)与Q (m ,n )关于x 轴对称,则=+n m14.一个多边形的一个内角的外角与其余内角的和是780°,则这个多边形的边数为_______15.已知等腰三角形一腰上的高与另一腰的夹角等于50°,设这条高与等腰三角形底边上的高所在的直线的夹角中,有一个锐角为α,则α的度数为16.如图,在△ABC 中,∠C =90°,AC =3,BC =4,AB =5,角平分线AF 和BG 交于D ,DE ⊥AB 于E ,则DE 长为________三、解答题(共5题,共52分)17.(本题满分10分)如图,已知△ABC 的三个顶点的坐标分别为A (-2,3)、B (-6,0)、C (-1,0)(1) 将△ABC 向右平移六个单位,再向下平移三个单位,则平移后点A 、B 、C 的对应点的坐标是_______、_______、_______(2) 将△ABC 沿y 轴翻折,则翻折后点A 的对应点的坐标是__________(3) 若△DBC 与△ABC 全等,请画出符号条件△DBC (点D与点A 重合除外),并直接写出点D 的坐标18.(本题满分10分)如图,已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B ,求证:AD =BC19.(本题满分10分)如图,在△ABC 中,D 为BC 上一点,∠BAD=∠ABC ,∠ADC=∠ACD ,若∠BAC=60°,试求∠ADC 的度数。
温州市五校2014-2015学年第一学期期中联考八年级数学试卷考试时间:100分钟,总分100分一、选择题:(每小题3分,共30分) 1、在下列各组图形中,是全等的图形是( )A 、B 、C 、D 、 2.下列图形中,对称轴最多的是( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、等腰直角三角形 3.以下列各数为边长,不能组成直角三角形的是( )A 、3,4,5B 、5,12,13C 、6,8,10D 、4,5,6 4、下列图形中,不具有稳定性的是( ).5、小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4), 你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃? 应该带( )去A 、第1块B 、第2块C 、第3块D 、第4块 6、下列命题的逆命题...是真命题的是( ) A 、直角都相等; B 、等边三角形是锐角三角形; C 、相等的角是对顶角; D 、全等三角形的对应角相等。
7.如图,在Rt △ABC 中,∠ACB=900,∠A=30°,CD 是斜边AB 上的中线,则图中与CD 的长度相等的线段有( ) A 、AD 与BD B 、BD 与BC C 、AD 与BC D 、AD 、BD 与BC8、如图,中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E 五等分圆,则A B C D E ∠+∠+∠+∠+∠的度数是( )A 、1800B 、1500C 、1350D 、1200 9、 下列条件中,不能判定....两个直角三角形全等的是( ) A 、两个锐角对应相等 B 、 一条边和一个锐角对应相等 C 、两条直角边对应相等 D 、 一条直角边和一条斜边对应相等A 、B 、C 、D 、12 3 4第5题图BCAD第7题图ECBDA第8题图 图610.在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4等于( ) A 、 4 B 、 5 C 、 6 D 、 14二、填空题(每小题4分,共32分)11.等腰三角形一边长为1cm ,另一边长为2cm ,它的周长是_____cm . 12.在Rt △ABC 中,∠C=Rt ∠,∠A=70°,则∠B=_______.13、一个等腰三角形底边上的高、 和顶角的________互相重合。
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2014-2015学年浙江省金华市新世纪学校八年级(上)期中数学试卷一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求)1.(3分)下列各组长度的线段能构成三角形的是()A.1cm,2cm,3cm B.2cm,3cm,4cmC.1cm,2cm,3.5cm D.2cm,2cm,4cm2.(3分)图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是()A.B.C.D.3.(3分)在△ABC中,∠A=35°,∠B=45°,则∠C的度数是()A.35°B.45°C.80°D.100°4.(3分)小明不慎将一块三角形形状的玻璃摔成如图所示标有1,2,3,4的四块,他要将其中的一块碎片带去玻璃店配原来同样大小的三角形形状的玻璃.请你告诉他应带上()A.第1块B.第2块C.C、第3块D.第4块5.(3分)如图所示,∠A,∠1,∠2的大小关系是()A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1 6.(3分)如图,AD平分∠BAC,AB=AC,连接BD,CD,并延长相交AC,AB于点F,E,则此图形中有几对全等三角形()A.3对 B.4对 C.5对 D.6对7.(3分)等腰三角形的两边分别为5和8,那么它的周长是()A.13 B.18 C.21 D.18或218.(3分)已知△ABC,求作一点P,使P到三角形三边的距离相等,则点P是()A.三边中垂线的交点B.三边的高线的交点C.三边中线的交点 D.三个内角的角平分线的交点9.(3分)直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3 B.4 C.5 D.610.(3分)如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ACD的周长为()A.16 B.14 C.20 D.18二、填空题(每小题3分,共30分)11.(3分)命题“直角三角形中,两个锐角互余”的逆命题是:,这个逆命题是命题(填真或假).12.(3分)等边三角形的每个内角都等于度.13.(3分)△ABC中∠A:∠B:∠C=1:1:2,则三角形ABC是三角形.14.(3分)等腰三角形一个角等于100°,则它的一个底角是°.15.(3分)若直角三角形的一个锐角为50°,则另一个锐角的度数是度.16.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AB=.17.(3分)如图,点B,E,C,F在同一条直线上,∠B=∠DEF,AB=DE,请补充条件:(写出一个即可),使△ABC≌△DEF.18.(3分)已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.19.(3分)已知AD是△ABC的高,∠DAB=45°,∠DAC=30°,则∠BAC=°.20.(3分)如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=.三、解答题(共计40分,其中第21题6分;第22、23、24题各8分;第25题10分)21.(6分)已知△ABC(如图)①作BC边上的中线AD;②作△ABC的角平分线CE;③作BC边上的高线AF.22.(8分)已知:如图,AD=BC,AC=BD.(1)求证:△ACD≌△BDC;(2)求证:OD=OC.23.(8分)如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且∠ABC=90°,连接AC.(1)求AC的长度;(2)试判断三角形ACD的形状.24.(8分)已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.25.(10分)如图,已知在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P开始从点A开始沿△ABC的边做逆时针运动,且速度为每秒1cm,点Q从点B开始沿△ABC的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间我t 秒.(1)出发2秒后,求PQ的长;(2)在运动过程中,△PQB能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ第一次把直角三角形周长分成相等的两部分?2014-2015学年浙江省金华市新世纪学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求)1.(3分)下列各组长度的线段能构成三角形的是()A.1cm,2cm,3cm B.2cm,3cm,4cmC.1cm,2cm,3.5cm D.2cm,2cm,4cm【解答】解:根据三角形的三边关系,得A、1+2=3,不能组成三角形,故此选项错误;B、2+3>4,能组成三角形,故此选项正确;C、1+2<3.5,不能够组成三角形,故此选项错误;D、2+2=4,不能组成三角形,故此选项错误.故选:B.2.(3分)图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是()A.B.C.D.【解答】解:A、B、D都是轴对称图形,而C不是轴对称图形.故选:C.3.(3分)在△ABC中,∠A=35°,∠B=45°,则∠C的度数是()A.35°B.45°C.80°D.100°【解答】解:∠C=180°﹣∠A﹣∠B=100°,故选:D.4.(3分)小明不慎将一块三角形形状的玻璃摔成如图所示标有1,2,3,4的四块,他要将其中的一块碎片带去玻璃店配原来同样大小的三角形形状的玻璃.请你告诉他应带上()A.第1块B.第2块C.C、第3块D.第4块【解答】解:4只保留了一个角及部分边,不能配成和原来一样的三角形玻璃;1,3则只保留了部分边,不能配成和原来一样的三角形玻璃;而2不但保留了一个完整的边还保留了两个角,所以应该带“2”去,根据全等三角形判定“ASA”可以配出一块和原来一样的三角形玻璃.故选:B.5.(3分)如图所示,∠A,∠1,∠2的大小关系是()A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1【解答】解:∵∠1是△ACD的外角,∴∠1>∠A;∵∠2是△CDE的外角,∴∠2>∠1,∴∠2>∠1>∠A.故选:B.6.(3分)如图,AD平分∠BAC,AB=AC,连接BD,CD,并延长相交AC,AB于点F,E,则此图形中有几对全等三角形()A.3对 B.4对 C.5对 D.6对【解答】解:∵AB=AC,AD=AD,∠1=∠2;∴△ABD≌△ACD;∴∠B=∠C;又∵∠BAF=∠CAE,AB=AC,∴△ACE≌△ABF;②∴BE=CF;又∵∠BDE=∠CDF∴△BDE≌△CDF;③∵∠1=∠2,AD=AD,AE=AF,∴△ADE≌△ADF.④因此共有4对全等三角形.故选:B.7.(3分)等腰三角形的两边分别为5和8,那么它的周长是()A.13 B.18 C.21 D.18或21【解答】解:当腰长为5时,三角形的三边分别为5、5、8,满足三角形的三边关系,此时其周长为5+5+8=18;当腰长为8时,三角形的三边分别为8、8、5,满足三角形的三边关系,此时其周长为8+8+5=21;综上可知该三角形的周长为18或21,故选:D.8.(3分)已知△ABC,求作一点P,使P到三角形三边的距离相等,则点P是()A.三边中垂线的交点B.三边的高线的交点C.三边中线的交点 D.三个内角的角平分线的交点【解答】解:∵P到AB、AC两边的距离相等,∴点P在∠BAC的平分线上,同理可得点P在∠ABC、∠ACB的平分线上,∴点P为三个内角的角平分线的交点,故选:D.9.(3分)直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3 B.4 C.5 D.6【解答】解:∵直角三角形两条直角边长分别是6和8,∴斜边==10,∴斜边上的中线长=×10=5.故选:C.10.(3分)如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ACD的周长为()A.16 B.14 C.20 D.18【解答】解:∵△ABC中,∠C=90°,AB=10,AC=6,∴BC===8,∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD,即AD+CD=BC,∴△ACD的周长=AC+CD+AD=AC+BC=6+8=14.故选:B.二、填空题(每小题3分,共30分)11.(3分)命题“直角三角形中,两个锐角互余”的逆命题是:如果三角形有两个角互余,则三角形为直角三角形,这个逆命题是真命题(填真或假).【解答】解:逆命题为:如果三角形有两个角互余,则三角形为直角三角形.因为符合三角形内角和定理,故是真命题.12.(3分)等边三角形的每个内角都等于60度.【解答】解:等边三角形各边长相等,∴∠A=∠B=∠C,∵三角形内角和为180°,∴∠A=∠B=∠C=60°.故答案为:60.13.(3分)△ABC中∠A:∠B:∠C=1:1:2,则三角形ABC是直角三角形.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:1:2,∴设∠A=x°,则∠B=x°,∠C=2x°.∵∠A+∠B+∠C=180°,∴x+x+2x=180,∴x=45,∴∠A=45°.则∠B=45°,∠C=90°,∴△ABC是直角三角形.故答案是:直角.14.(3分)等腰三角形一个角等于100°,则它的一个底角是40°.【解答】解:∵该角为100°,∴这个角只能是等腰三角形的顶角,∴该等腰三角形的顶角为100°,∴底角为=40°,故答案为:40.15.(3分)若直角三角形的一个锐角为50°,则另一个锐角的度数是40度.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°.故答案为:40°.16.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AB=2.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,∴AB=2BC=2.故答案为:2.17.(3分)如图,点B,E,C,F在同一条直线上,∠B=∠DEF,AB=DE,请补充条件:∠A=∠D(或∠ACB=∠DFE或BC=EF或BE=CF)(写出一个即可),使△ABC≌△DEF.【解答】解:∵∠B=∠DEF,AB=DE,∴可再补充∠A=∠D,利用ASA可以判定△ABC≌△DEF,也可以补充∠ACB=∠DFE,利用AAS;也可补充BC=EF,利用SAS;也可补充BE=CF,从而可得到BC=EF,利用SAS,故答案为:∠A=∠D(或∠ACB=∠DFE或BC=EF或BE=CF).18.(3分)已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.【解答】解:∵AC=4,BC=3,∴AB=5,=×3×4=×5×CD,∵S△ABC∴CD=.故答案为:.19.(3分)已知AD是△ABC的高,∠DAB=45°,∠DAC=30°,则∠BAC=75或15°.【解答】解:①当高在△ABC内部,如右图∵∠DAB=45°,∠DAC=30°,∴∠BAC=45°+30°=75°;②当高在△ABC外部,如右图∵∠DAB=45°,∠DAC=30°,∴∠BAC=45°﹣30°=15°.故∠BAC=75°或15°.故答案为:75或15.20.(3分)如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n= 2n﹣2.【解答】解:根据直角三角形的面积公式,得S1==2﹣1;根据勾股定理,得:AB=,则S2=1=20;A1B=2,则S3=21,依此类推,发现:S n=2n﹣2.三、解答题(共计40分,其中第21题6分;第22、23、24题各8分;第25题10分)21.(6分)已知△ABC(如图)①作BC边上的中线AD;②作△ABC的角平分线CE;③作BC边上的高线AF.【解答】解:(1)如图所示:AD即为所求;(2)如图所示:CE即为所求;(3)如图所示:AF即为所求.22.(8分)已知:如图,AD=BC,AC=BD.(1)求证:△ACD≌△BDC;(2)求证:OD=OC.【解答】证明:(1)∵在△ABD与△ACE中,∴△ACD≌△BDC(SSS);(2)∵△ACD≌△BDC,∴∠ACD=∠BDC,∴OD=OC.23.(8分)如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且∠ABC=90°,连接AC.(1)求AC的长度;(2)试判断三角形ACD的形状.【解答】解:(1)∵∠B=90°,AB=1,BC=2,∴AC2=AB2+BC2=1+4=5,∴AC===;(2)∵△ACD中,AC=,CD=2,AD=2,∴AC2+CD2=5+4=9,AD2=9,∴AC2+CD2=AD2,∴△ACD是直角三角形.24.(8分)已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.【解答】证明:∵D是BC的中点,∴BD=CD,∵DE⊥AC,DF⊥AB,∴△BDF与△CDE为直角三角形,在Rt△BDF和Rt△CDE中,,∴Rt△BFD≌Rt△CED(HL),∴∠B=∠C,∴AB=AC,∴△ABC是等腰三角形.25.(10分)如图,已知在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P开始从点A开始沿△ABC的边做逆时针运动,且速度为每秒1cm,点Q从点B开始沿△ABC的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间我t 秒.(1)出发2秒后,求PQ的长;(2)在运动过程中,△PQB能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ第一次把直角三角形周长分成相等的两部分?【解答】解:(1)∵出发2秒后AP=2cm,∴BP=8﹣2=6(cm),BQ=2×2=4(cm),在RT△PQB中,由勾股定理得:PQ=(cm)即出发2秒后,求PQ的长为2cm.(2)在运动过程中,△PQB能形成等腰三角形,AP=t,BP=AB﹣AP=8﹣t;BQ=2t由PB=BQ得:8﹣t=2t解得t=(秒),即出发秒后第一次形成等腰三角形.(3)Rt△ABC中由勾股定理得:AC==10(cm);∵AP=t,BP=AB﹣AP=8﹣t,BQ=2t,QC=6﹣2t,又∵线段PQ第一次把直角三角形周长分成相等的两部分,∴由周长相等得:AC+AP+QC=PB+BQ10+t+(6﹣2t)=8﹣t+2t解得t=4(s)即从出发4秒后,线段PQ第一次把直角三角形周长分成相等的两部分.。
《二元一次方程组》提高测试姓名 班级 学号(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______. 4.2x -3y =4x -y =5的解为_______________.5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. 8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.(二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A )8 (B )9 (C )10 (D )1110.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( ) (A )4 (B )-10 (C )4或-10 (D )-4或10 11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3(C )y =2x +1 (D )y =-2x +112.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1) 13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+1cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=014.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )015.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,216.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1(三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x 18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x 20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x《二元一次方程组》提高测试姓名班级学号(四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+25434zyxzyx,xyz≠0,求222223yxzxyx+++的值.22.甲、乙两人解方程组⎩⎨⎧=+-=-514byaxbyx,甲因看错a,解得⎩⎨⎧==32yx,乙将其中一个方程的b写成了它的相反数,解得⎩⎨⎧-=-=21yx,求a、b的值.23.已知满足方程2 x-3 y=m-4与3 x+4 y=m+5的x,y也满足方程2x+3y=3m-8,求m的值.24.当x=1,3,-2时,代数式ax2+bx+c的值分别为2,0,20,求:(1)a、b、c的值;(2)当x=-2时,ax2+bx+c的值.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数.⎩⎨⎧=++=-+.y x xy y x 391045100 26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间.《二元一次方程组》提高测试 答案(一)填空题(每空2分,共28分):1.已知(a -2)x -by |a |-1=5是关于x 、y 的二元一次方程,则a =______,b =_____. 【提示】要满足“二元”“一次”两个条件,必须a -2≠0,且b ≠0,及| a |-1=1. 【答案】a =-2,b ≠0.2.若|2a +3b -7|与(2a +5b -1)2互为相反数,则a =______,b =______. 【提示】由“互为相反数”,得|2a +3 b -7|+(2a +5b -1)2=0,再解方程组⎩⎨⎧=-+=-+01520732b a b a 【答案】a =8,b =-3.3.二元一次方程3x +2y =15的正整数解为_______________. 【提示】将方程化为y =2315x-,由y >0、x >0易知x 比0大但比5小,且x 、y 均为整数.【答案】⎩⎨⎧==61y x ,⎩⎨⎧==.33y x4.2x -3y =4x -y =5的解为_______________.【提示】解方程组⎩⎨⎧=-=-54532y x y x .【答案】⎩⎨⎧-==.11y x 5.已知⎩⎨⎧==12y x -是方程组⎩⎨⎧=++=-274123ny x y mx 的解,则m 2-n 2的值为_________.【提示】把⎩⎨⎧==12y x -代入方程组,求m ,n 的值.【答案】-438.6.若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.【提示】作y =x 的代换,先求出x 、y 的值.【答案】k =65. 7.已知2a =3b =4c ,且a +b -c =121,则a =_______,b =_______,c =_______. 【提示】即作方程组⎪⎪⎩⎪⎪⎨⎧=-+==121432c b a cb a ,故可设a =2 k ,b =3 k ,c = 4 k ,代入另一个方程求k 的值. 【答案】a =61,b =41,c =31.【点评】设“比例系数”是解有关数量比的问题的常用方法.8.解方程组⎪⎩⎪⎨⎧=+=+=+634323x z z y y x ,得x =______,y =______,z =______.【提示】根据方程组的特征,可将三个方程左、右两边分别相加,得2 x +3 y +z =6,再与3 y +z =4相减,可得x .【答案】x =1,y =31,z =3. (二)选择题(每小题2分,共16分):9.若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为…………………( )(A )8 (B )9 (C )10 (D )11【提示】将y =-x 代入方程2 x -y =3,得x =1,y =-1,再代入含字母k 的方程求解.【答案】D .10.若⎩⎨⎧-==20y x ,⎪⎩⎪⎨⎧==311y x 都是关于x 、y 的方程|a |x +by =6的解,则a +b 的值为( ) (A )4 (B )-10 (C )4或-10 (D )-4或10 【提示】将x 、y 对应值代入,得关于| a |,b 的方程组⎪⎩⎪⎨⎧=+=-.631||62b a b 【答案】C .【点评】解有关绝对值的方程,要分类讨论.11.关于x ,y 的二元一次方程ax +b =y 的两个解是⎩⎨⎧-==11y x ,⎩⎨⎧==12y x ,则这个二元一次方程是……………………( )(A )y =2x +3 (B )y =2x -3 (C )y =2x +1 (D )y =-2x +1【提示】将x 、y 的两对数值代入ax +b =y ,求得关于a 、b 的方程组,求得a 、b 再代入已知方程. 【答案】B .【点评】通过列方程组求待定字母系数是常用的解题方法.12.由方程组⎩⎨⎧=+-=+-0432032z y x z y x 可得,x ∶y ∶z 是………………………………( )(A )1∶2∶1 (B )1∶(-2)∶(-1)(C )1∶(-2)∶1 (D )1∶2∶(-1)【提示】解方程组时,可用一个未知数的代数式表示另外两个未知数,再根据比例的性质求解. 【答案】A .【点评】当方程组未知数的个数多于方程的个数时,把其中一个未知数看作已知常数来解方程组,是可行的方法.13.如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( ) (A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=0 【提示】将⎩⎨⎧=-=21y x 代入方程组,消去b ,可得关于a 、c 的等式.【答案】C .14.关于x 、y 的二元一次方程组⎩⎨⎧=+=-2312y mx y x 没有解时,m 的值是…………( )(A )-6 (B )-6 (C )1 (D )0【提示】只要满足m ∶2=3∶(-1)的条件,求m 的值. 【答案】B . 【点评】对于方程组⎩⎨⎧=+=+222111c y b x a c y b x a ,仅当21a a =21b b ≠21c c时方程组无解.15.若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,2【提示】由题意,有“相同的解”,可得方程组⎩⎨⎧=-=+52243y x y x ,解之并代入方程组⎪⎪⎩⎪⎪⎨⎧=-=-4352by x a y b ax ,求a 、b . 【答案】B . 【点评】对方程组“解”的含义的正确理解是建立可解方程组的关键. 16.若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是……………………( )(A )0 (B )1 (C )2 (D )-1【提示】把c 看作已知数,解方程组⎩⎨⎧=-+=++0730452c b a c b a 用关于c 的代数式表示a 、b ,再代入a +b -c .【答案】A .【点评】本题还可采用整体代换(即把a +b -c 看作一个整体)的求解方法. (三)解方程组(每小题4分,共16分):17.⎪⎪⎩⎪⎪⎨⎧=+=-+.022325232y x y y x【提示】将方程组化为一般形式,再求解.【答案】⎪⎩⎪⎨⎧-==.232y x18.⎪⎩⎪⎨⎧⨯=++=-8001005.8%60%10)503(5)150(2y x y x 【提示】将方程组化为整系数方程的一般形式,再用加减法消元. 【答案】⎩⎨⎧==.30500y x19.⎪⎩⎪⎨⎧=++-=+--.6)(2)(3152y x y x yx y x 【提示】用换元法,设x -y =A ,x +y =B ,解关于A 、B 的方程组⎪⎩⎪⎨⎧=+=-623152B A BA , 进而求得x ,y .【答案】⎩⎨⎧-==.11y x20.⎪⎩⎪⎨⎧=---=+-=+-.441454y x z x z y z y x 【提示】 将三个方程左,右两边分别相加,得4x -4y +4z =8,故 x -y +z =2 ④,把④分别与第一、二个方程联立,然后用加、减消元法即可求得x 、z的值.【答案】⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==.15451z y x(四)解答题(每小题5分,共20分):21.已知⎩⎨⎧=+-=-+0254034z y x z y x ,xyz ≠0,求222223y x zxy x +++的值. 【提示】把z 看作已知数,用z 的代数式表示x 、y ,可求得x ∶y ∶z =1∶2∶3.设x =k ,y =2 k ,z =3 k ,代入代数式.【答案】516. 【点评】本题考查了方程组解法的灵活运用及比例的性质.若采用分别消去三个元可得方程21 y -14 z =0,21 x -7 z =0,14 x -7 y =0,仍不能由此求得x 、y 、z 的确定解,因为这三个方程不是互相独立的.22.甲、乙两人解方程组⎩⎨⎧=+-=-514by ax by x ,甲因看错a ,解得⎩⎨⎧==32y x ,乙将其中一个方程的b 写成了它的相反数,解得⎩⎨⎧-=-=21y x ,求a 、b 的值.【提示】可从题意的反面入手,即没看错什么入手.如甲看错a ,即没看错b ,所求得的解应满足4 x -by =-1;而乙写错了一个方程中的b ,则要分析才能确定,经判断是将第二方程中的b 写错. 【答案】a =1,b =3.23.已知满足方程2 x -3 y =m -4与3 x +4 y =m +5的x ,y 也满足方程2x +3y =3m -8,求m 的值.【提示】由题意可先解方程组⎩⎨⎧-=+-=-8332432m y x m y x 用m 的代数式表示x ,y再代入3 x +4 y =m +5. 【答案】m =5.24.当x =1,3,-2时,代数式ax 2+bx +c 的值分别为2,0,20,求:(1)a 、b 、c 的值;(2)当x =-2时,ax 2+bx +c 的值.【提示】由题得关于a 、b 、c 的三元一次方程组,求出a 、b 、c 再代入这个代数式. 【答案】a =1,b =-5,c =6;20.【点评】本例若不设第一问,原则上也应在求出a 、b 、c 后先写出这个代数式,再利用它求值.用待定系数法求a 、b 、c ,是解这类问题常用的方法.(五)列方程组解应用题(第1题6分,其余各7分,共20分):25.有一个三位整数,将左边的数字移到右边,则比原来的数小45;又知百位上的数的9倍比由十位上的数与个位上的数组成的两位数小3.求原来的数. 【提示】设百位上的数为x ,由十位上的数与个位上的数组成的两位数为y ,根据题意,得⎩⎨⎧=++=-+.y x xy y x 391045100 【答案】x =4,y =39,三位数是439.【点评】本例分别设十位上的数和个位上的数为不同的未知数,无论从列方程组还是解方程组都更加简捷易行.26.某人买了4 000元融资券,一种是一年期,年利率为9%,另一种是两年期,年利率是12%,分别在一年和两年到期时取出,共得利息780元.两种融资券各买了多少?【提示】若设一年期、二年期的融资券各买x 元,y 元,由题意,得⎪⎩⎪⎨⎧=⋅+=+78010012210090004y x y x【答案】x =1 200,y =2 800.【点评】本题列方程组时,易将二年期的融资券的利息误认为是10012y 元,应弄清题设给出的是年利率,故几年到期的利息应该乘几.27.汽车从A 地开往B 地,如果在原计划时间的前一半时间每小时驶40千米,而后一半时间由每小时行驶50千米,可按时到达.但汽车以每小时40千米的速度行至离AB 中点还差40千米时发生故障,停车半小时后,又以每小时55千米的速度前进,结果仍按时到达B 地.求AB 两地的距离及原计划行驶的时间. 【提示】设原计划用x 小时,AB 两地距离的一半为y 千米, 根据题意,得⎪⎪⎩⎪⎪⎨⎧-=++-=⋅+⋅21554040402250240x y y y x x 【答案】x =8,2y =360.【点评】 与本例中设AB 两地距离的一半为y 千米一样,也可设原计划的一半时间为x 小时.恰当地设未知数,可以使列方程组和解方程组都更加简便.。
ACB D E 人教版2014-2015学年度第一学期八年级数学期中考试试卷(含参考答案)一、选择题:(本题满分24分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填在题后的括号内。
......... 1.下列各组线段能组成一个三角形的是( ).(A)5cm ,8cm ,12cm (B)2cm ,3cm ,6cm (C)3cm ,3cm ,6cm (D)4cm ,7cm ,11cm 2.下列图案是轴对称图形的有( )。
A.(1)(2)B.(1)(3)C.(1)(4)D.(2)(3)(1) (2) (3) (4)3.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形一定重合。
其中正确的是( )。
A. ①② B. ②③ C. ③④ D. ①④ 4.已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为( )。
A. 2 ㎝B. 4 ㎝C. 6 ㎝D. 8㎝ 5.点M (1,2)关于y 轴对称的点的坐标为 ( )。
A.(—1,2)B.(-1,-2)C. (1,-2)D. (2,-1) 6.如图,∠B=∠D=90°,CB=CD ,∠1=40°,则∠2=( )。
A .40° B. 45° C. 60° D. 50°7. 如图所示,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且S △ABC=4cm 2,则阴影部分的面积等于( )A.2cm 2B.1cm 2C.12cm 2D.1 4 cm 28.已知等腰三角形一个内角是70°,则另外两个内角的度数是( )A.55°, 55°B.70°, 40°C.55°, 55°或70°, 40°D.以上都不对 二 、填空题:(本题满分24分,每小题3分)9.一扇窗户打开后,用窗钩可将其固定,这里运用的几何原理为 。
2014-2015学年浙江省金华市新世纪学校八年级(上)期中数学试卷一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求)1.(3分)下列各组长度的线段能构成三角形的是()A.1cm,2cm,3cm B.2cm,3cm,4cmC.1cm,2cm,3.5cm D.2cm,2cm,4cm2.(3分)图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是()A.B.C.D.3.(3分)在△ABC中,∠A=35°,∠B=45°,则∠C的度数是()A.35°B.45°C.80°D.100°4.(3分)小明不慎将一块三角形形状的玻璃摔成如图所示标有1,2,3,4的四块,他要将其中的一块碎片带去玻璃店配原来同样大小的三角形形状的玻璃.请你告诉他应带上()A.第1块B.第2块C.C、第3块D.第4块5.(3分)如图所示,∠A,∠1,∠2的大小关系是()A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1 6.(3分)如图,AD平分∠BAC,AB=AC,连接BD,CD,并延长相交AC,AB于点F,E,则此图形中有几对全等三角形()A.3对 B.4对 C.5对 D.6对7.(3分)等腰三角形的两边分别为5和8,那么它的周长是()A.13 B.18 C.21 D.18或218.(3分)已知△ABC,求作一点P,使P到三角形三边的距离相等,则点P是()A.三边中垂线的交点B.三边的高线的交点C.三边中线的交点 D.三个内角的角平分线的交点9.(3分)直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3 B.4 C.5 D.610.(3分)如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ACD的周长为()A.16 B.14 C.20 D.18二、填空题(每小题3分,共30分)11.(3分)命题“直角三角形中,两个锐角互余”的逆命题是:,这个逆命题是命题(填真或假).12.(3分)等边三角形的每个内角都等于度.13.(3分)△ABC中∠A:∠B:∠C=1:1:2,则三角形ABC是三角形.14.(3分)等腰三角形一个角等于100°,则它的一个底角是°.15.(3分)若直角三角形的一个锐角为50°,则另一个锐角的度数是度.16.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AB=.17.(3分)如图,点B,E,C,F在同一条直线上,∠B=∠DEF,AB=DE,请补充条件:(写出一个即可),使△ABC≌△DEF.18.(3分)已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.19.(3分)已知AD是△ABC的高,∠DAB=45°,∠DAC=30°,则∠BAC=°.20.(3分)如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=.三、解答题(共计40分,其中第21题6分;第22、23、24题各8分;第25题10分)21.(6分)已知△ABC(如图)①作BC边上的中线AD;②作△ABC的角平分线CE;③作BC边上的高线AF.22.(8分)已知:如图,AD=BC,AC=BD.(1)求证:△ACD≌△BDC;(2)求证:OD=OC.23.(8分)如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且∠ABC=90°,连接AC.(1)求AC的长度;(2)试判断三角形ACD的形状.24.(8分)已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.25.(10分)如图,已知在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P开始从点A开始沿△ABC的边做逆时针运动,且速度为每秒1cm,点Q从点B开始沿△ABC的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间我t 秒.(1)出发2秒后,求PQ的长;(2)在运动过程中,△PQB能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ第一次把直角三角形周长分成相等的两部分?2014-2015学年浙江省金华市新世纪学校八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求)1.(3分)下列各组长度的线段能构成三角形的是()A.1cm,2cm,3cm B.2cm,3cm,4cmC.1cm,2cm,3.5cm D.2cm,2cm,4cm【解答】解:根据三角形的三边关系,得A、1+2=3,不能组成三角形,故此选项错误;B、2+3>4,能组成三角形,故此选项正确;C、1+2<3.5,不能够组成三角形,故此选项错误;D、2+2=4,不能组成三角形,故此选项错误.故选:B.2.(3分)图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是()A.B.C.D.【解答】解:A、B、D都是轴对称图形,而C不是轴对称图形.故选:C.3.(3分)在△ABC中,∠A=35°,∠B=45°,则∠C的度数是()A.35°B.45°C.80°D.100°【解答】解:∠C=180°﹣∠A﹣∠B=100°,故选:D.4.(3分)小明不慎将一块三角形形状的玻璃摔成如图所示标有1,2,3,4的四块,他要将其中的一块碎片带去玻璃店配原来同样大小的三角形形状的玻璃.请你告诉他应带上()A.第1块B.第2块C.C、第3块D.第4块【解答】解:4只保留了一个角及部分边,不能配成和原来一样的三角形玻璃;1,3则只保留了部分边,不能配成和原来一样的三角形玻璃;而2不但保留了一个完整的边还保留了两个角,所以应该带“2”去,根据全等三角形判定“ASA”可以配出一块和原来一样的三角形玻璃.故选:B.5.(3分)如图所示,∠A,∠1,∠2的大小关系是()A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1【解答】解:∵∠1是△ACD的外角,∴∠1>∠A;∵∠2是△CDE的外角,∴∠2>∠1,∴∠2>∠1>∠A.故选:B.6.(3分)如图,AD平分∠BAC,AB=AC,连接BD,CD,并延长相交AC,AB于点F,E,则此图形中有几对全等三角形()A.3对 B.4对 C.5对 D.6对【解答】解:∵AB=AC,AD=AD,∠1=∠2;∴△ABD≌△ACD;∴∠B=∠C;又∵∠BAF=∠CAE,AB=AC,∴△ACE≌△ABF;②∴BE=CF;又∵∠BDE=∠CDF∴△BDE≌△CDF;③∵∠1=∠2,AD=AD,AE=AF,∴△ADE≌△ADF.④因此共有4对全等三角形.故选:B.7.(3分)等腰三角形的两边分别为5和8,那么它的周长是()A.13 B.18 C.21 D.18或21【解答】解:当腰长为5时,三角形的三边分别为5、5、8,满足三角形的三边关系,此时其周长为5+5+8=18;当腰长为8时,三角形的三边分别为8、8、5,满足三角形的三边关系,此时其周长为8+8+5=21;综上可知该三角形的周长为18或21,故选:D.8.(3分)已知△ABC,求作一点P,使P到三角形三边的距离相等,则点P是()A.三边中垂线的交点B.三边的高线的交点C.三边中线的交点 D.三个内角的角平分线的交点【解答】解:∵P到AB、AC两边的距离相等,∴点P在∠BAC的平分线上,同理可得点P在∠ABC、∠ACB的平分线上,∴点P为三个内角的角平分线的交点,故选:D.9.(3分)直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3 B.4 C.5 D.6【解答】解:∵直角三角形两条直角边长分别是6和8,∴斜边==10,∴斜边上的中线长=×10=5.故选:C.10.(3分)如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ACD的周长为()A.16 B.14 C.20 D.18【解答】解:∵△ABC中,∠C=90°,AB=10,AC=6,∴BC===8,∵DE是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD,即AD+CD=BC,∴△ACD的周长=AC+CD+AD=AC+BC=6+8=14.故选:B.二、填空题(每小题3分,共30分)11.(3分)命题“直角三角形中,两个锐角互余”的逆命题是:如果三角形有两个角互余,则三角形为直角三角形,这个逆命题是真命题(填真或假).【解答】解:逆命题为:如果三角形有两个角互余,则三角形为直角三角形.因为符合三角形内角和定理,故是真命题.12.(3分)等边三角形的每个内角都等于60度.【解答】解:等边三角形各边长相等,∴∠A=∠B=∠C,∵三角形内角和为180°,∴∠A=∠B=∠C=60°.故答案为:60.13.(3分)△ABC中∠A:∠B:∠C=1:1:2,则三角形ABC是直角三角形.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:1:2,∴设∠A=x°,则∠B=x°,∠C=2x°.∵∠A+∠B+∠C=180°,∴x+x+2x=180,∴x=45,∴∠A=45°.则∠B=45°,∠C=90°,∴△ABC是直角三角形.故答案是:直角.14.(3分)等腰三角形一个角等于100°,则它的一个底角是40°.【解答】解:∵该角为100°,∴这个角只能是等腰三角形的顶角,∴该等腰三角形的顶角为100°,∴底角为=40°,故答案为:40.15.(3分)若直角三角形的一个锐角为50°,则另一个锐角的度数是40度.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°.故答案为:40°.16.(3分)在Rt△ABC中,∠C=90°,∠A=30°,BC=1,则AB=2.【解答】解:∵在Rt△ABC中,∠C=90°,∠A=30°,BC=1,∴AB=2BC=2.故答案为:2.17.(3分)如图,点B,E,C,F在同一条直线上,∠B=∠DEF,AB=DE,请补充条件:∠A=∠D(或∠ACB=∠DFE或BC=EF或BE=CF)(写出一个即可),使△ABC≌△DEF.【解答】解:∵∠B=∠DEF,AB=DE,∴可再补充∠A=∠D,利用ASA可以判定△ABC≌△DEF,也可以补充∠ACB=∠DFE,利用AAS;也可补充BC=EF,利用SAS;也可补充BE=CF,从而可得到BC=EF,利用SAS,故答案为:∠A=∠D(或∠ACB=∠DFE或BC=EF或BE=CF).18.(3分)已知,如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=4,BC=3,则CD=.【解答】解:∵AC=4,BC=3,∴AB=5,=×3×4=×5×CD,∵S△ABC∴CD=.故答案为:.19.(3分)已知AD是△ABC的高,∠DAB=45°,∠DAC=30°,则∠BAC=75或15°.【解答】解:①当高在△ABC内部,如右图∵∠DAB=45°,∠DAC=30°,∴∠BAC=45°+30°=75°;②当高在△ABC外部,如右图∵∠DAB=45°,∠DAC=30°,∴∠BAC=45°﹣30°=15°.故∠BAC=75°或15°.故答案为:75或15.20.(3分)如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,…,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n= 2n﹣2.【解答】解:根据直角三角形的面积公式,得S1==2﹣1;根据勾股定理,得:AB=,则S2=1=20;A1B=2,则S3=21,依此类推,发现:S n=2n﹣2.三、解答题(共计40分,其中第21题6分;第22、23、24题各8分;第25题10分)21.(6分)已知△ABC(如图)①作BC边上的中线AD;②作△ABC的角平分线CE;③作BC边上的高线AF.【解答】解:(1)如图所示:AD即为所求;(2)如图所示:CE即为所求;(3)如图所示:AF即为所求.22.(8分)已知:如图,AD=BC,AC=BD.(1)求证:△ACD≌△BDC;(2)求证:OD=OC.【解答】证明:(1)∵在△ABD与△ACE中,∴△ACD≌△BDC(SSS);(2)∵△ACD≌△BDC,∴∠ACD=∠BDC,∴OD=OC.23.(8分)如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且∠ABC=90°,连接AC.(1)求AC的长度;(2)试判断三角形ACD的形状.【解答】解:(1)∵∠B=90°,AB=1,BC=2,∴AC2=AB2+BC2=1+4=5,∴AC===;(2)∵△ACD中,AC=,CD=2,AD=2,∴AC2+CD2=5+4=9,AD2=9,∴AC2+CD2=AD2,∴△ACD是直角三角形.24.(8分)已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF=CE.求证:△ABC是等腰三角形.【解答】证明:∵D是BC的中点,∴BD=CD,∵DE⊥AC,DF⊥AB,∴△BDF与△CDE为直角三角形,在Rt△BDF和Rt△CDE中,,∴Rt△BFD≌Rt△CED(HL),∴∠B=∠C,∴AB=AC,∴△ABC是等腰三角形.25.(10分)如图,已知在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P开始从点A开始沿△ABC的边做逆时针运动,且速度为每秒1cm,点Q从点B开始沿△ABC的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间我t 秒.(1)出发2秒后,求PQ的长;(2)在运动过程中,△PQB能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ第一次把直角三角形周长分成相等的两部分?【解答】解:(1)∵出发2秒后AP=2cm,∴BP=8﹣2=6(cm),BQ=2×2=4(cm),在RT△PQB中,由勾股定理得:PQ=(cm)即出发2秒后,求PQ的长为2cm.(2)在运动过程中,△PQB能形成等腰三角形,AP=t,BP=AB﹣AP=8﹣t;BQ=2t由PB=BQ得:8﹣t=2t解得t=(秒),即出发秒后第一次形成等腰三角形.(3)Rt△ABC中由勾股定理得:AC==10(cm);∵AP=t,BP=AB﹣AP=8﹣t,BQ=2t,QC=6﹣2t,又∵线段PQ第一次把直角三角形周长分成相等的两部分,∴由周长相等得:AC+AP+QC=PB+BQ10+t+(6﹣2t)=8﹣t+2t解得t=4(s)即从出发4秒后,线段PQ第一次把直角三角形周长分成相等的两部分.。