一元和多元线性回归
- 格式:doc
- 大小:137.00 KB
- 文档页数:5
计量经济学复习资料——概论⼀元和多元线性回归习题概论、⼀元线性回归、多元线性回归习题⼀、单项选择题1. 总体回归线是指( ) A )样本观测值拟合的最好的曲线 B )使残差平⽅和最⼩的曲线C )解释变量X 取给定值时,被解释变量Y 的样本均值的轨迹D )解释变量X 取给定值时,被解释变量Y 的条件均值或期望值的轨迹2. 指出下列哪⼀变量关系是确定函数关系⽽不是相关关系? () A. 商品销售额与销售价格 B. 学习成绩总分与各门课程成绩分数 C. 物价⽔平与商品需求量 D. ⼩麦亩产量与施肥量3. 经济计量分析⼯作的基本⼯作步骤是-() A .设定理论模型→收集样本资料→估计模型参数→检验模型B .设定模型→估计参数→检验模型→应⽤模型C .理论分析→数据收集→计算模拟→修正模型D .确定模型导向→确定变量及⽅程式→应⽤模型4. 若⼀元线性回归模型Y=β1+β2X +u 满⾜经典假定,那么参数β1、β2的普通最⼩⼆乘估计量β^1、β^2是所有线性估计量中( )A )⽆偏且⽅差最⼤的B )⽆偏且⽅差最⼩的C )有偏且⽅差最⼤的D )有偏且⽅差最⼩的5. 在⼀元线性回归模型Y=β1+β2X +u 中,若回归系数β2通过了t 检验,则表⽰( ) A )β^2≠0 B )β2≠0 C )β2=0 D )β^=06. 在多元线性回归模型Y=β1+β2X 2+β3X 3 +β4X 4+u 中,对回归系数βj (j=2,3,4)进⾏显著性检验时,t 统计量为( )A )()jjSe ββ?? B )()j j Se ββ C )()j j Var ββ D )()j j Var ββ??7. 在⼆元线性回归模型中,回归系数的显著性t 检验的⾃由度为( )。
A. n B. n-1 C. n-2 D. n-38. 普通最⼩⼆乘法要求模型误差项u i 满⾜某些基本假定,下列结论中错误的是( )。
A. E(u i )=0 B. E(2i u )=2i σC. E(u i u j )=0D. u i ~N(0.σ2)9. 对模型Yi=β0+β1X1i+β2X2i+µi 进⾏总体显著性F 检验,检验的零假设是( ) A. β1=β2=0 B. β1=0 C. β2=0 D. β0=0或β1=010. 在多元线性回归中,判定系数R 2随着解释变量数⽬的增加⽽() A.减少 B .增加 C .不变 D .变化不定11. 已知三元线性回归模型估计的残差平⽅和为8002=∑te,估计⽤样本容量为24=n ,则随机误差项t u 的⽅差估计量2S 为( )。
第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。
首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。
总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。
本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。
同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。
本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。
统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。
后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。
本章还有三方面的内容不容忽视。
其一,若干基本假设。
样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。
其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。
Goss-markov定理表明OLS估计量是最佳线性无偏估计量。
其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。
生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
一、什么是回归分析回归分析(Regression Analysis)是研究变量之间作用关系的一种统计分析方法,其基本组成是一个(或一组)自变量与一个(或一组)因变量。
回归分析研究的目的是通过收集到的样本数据用一定的统计方法探讨自变量对因变量的影响关系,即原因对结果的影响程度。
回归分析是指对具有高度相关关系的现象,根据其相关的形态,建立一个适当的数学模型(函数式),来近似地反映变量之间关系的统计分析方法。
利用这种方法建立的数学模型称为回归方程,它实际上是相关现象之间不确定、不规则的数量关系的一般化。
二、回归分析的种类1.按涉及自变量的多少,可分为一元回归分析和多元回归分析一元回归分析是对一个因变量和一个自变量建立回归方程。
多元回归分析是对一个因变量和两个或两个以上的自变量建立回归方程。
2.按回归方程的表现形式不同,可分为线性回归分析和非线性回归分析若变量之间是线性相关关系,可通过建立直线方程来反映,这种分析叫线性回归分析。
若变量之间是非线性相关关系,可通过建立非线性回归方程来反映,这种分析叫非线性回归分析。
三、回归分析的主要内容1.建立相关关系的数学表达式。
依据现象之间的相关形态,建立适当的数学模型,通过数学模型来反映现象之间的相关关系,从数量上近似地反映变量之间变动的一般规律。
2.依据回归方程进行回归预测。
由于回归方程反映了变量之间的一般性关系,因此当自变量发生变化时,可依据回归方程估计出因变量可能发生相应变化的数值。
因变量的回归估计值,虽然不是一个必然的对应值(他可能和系统真值存在比较大的差距),但至少可以从一般性角度或平均意义角度反映因变量可能发生的数量变化。
3.计算估计标准误差。
通过估计标准误差这一指标,可以分析回归估计值与实际值之间的差异程度以及估计值的准确性和代表性,还可利用估计标准误差对因变量估计值进行在一定把握程度条件下的区间估计。
四、一元线性回归分析1.一元线性回归分析的特点1)两个变量不是对等关系,必须明确自变量和因变量。
一元线性回归分析和多元线性回归分析一元线性回归分析1.简单介绍当只有一个自变量时,称为一元回归分析(研究因变量y 和自变量x 之间的相关关系);当自变量有两个或多个时,则称为多元回归分析(研究因变量y 和自变量1x ,2x ,…,n x 之间的相关关系)。
如果回归分析所得到的回归方程关于未知参数是线性的,则称为线性回归分析;否则,称为非线性回归分析。
在实际预测中,某些非线性关系也可以通过一定形式的变换转化为线性关系,所以,线性回归分析法成为最基本的、应用最广的方法。
这里讨论线性回归分析法。
2.回归分析法的基本步骤回归分析法的基本步骤如下: (1) 搜集数据。
根据研究课题的要求,系统搜集研究对象有关特征量的大量历史数据。
由于回归分析是建立在大量的数据基础之上的定量分析方法,历史数据的数量及其准确性都直接影响到回归分析的结果。
(2) 设定回归方程。
以大量的历史数据为基础,分析其间的关系,根据自变量与因变量之间所表现出来的规律,选择适当的数学模型,设定回归方程。
设定回归方程是回归分析法的关键,选择最优模型进行回归方程的设定是运用回归分析法进行预测的基础。
(3) 确定回归系数。
将已知数据代入设定的回归方程,并用最小二乘法原则计算出回归系数,确定回归方程。
这一步的工作量较大。
(4) 进行相关性检验。
相关性检验是指对已确定的回归方程能够代表自变量与因变量之间相关关系的可靠性进行检验。
一般有R 检验、t 检验和F 检验三种方法。
(5) 进行预测,并确定置信区间。
通过相关性检验后,我们就可以利用已确定的回归方程进行预测。
因为回归方程本质上是对实际数据的一种近似描述,所以在进行单点预测的同时,我们也需要给出该单点预测值的置信区间,使预测结果更加完善。
3. 一元线性回归分析的数学模型用一元线性回归方程来描述i x 和i y 之间的关系,即i i i x a a y ∆++=10 (i =1,2,…,n )(2-1)式中,i x 和i y 分别是自变量x 和因变量y 的第i 观测值,0a 和1a 是回归系数,n 是观测点的个数,i ∆为对应于y 的第i 观测值i y 的随机误差。
合肥学院数理系实验报告
实验名称: 一元和多元线性回归模型
面向专业:数学与应用数学专业
实验班级:数学(2)班
课程名称:计量经济学
指导教师:赵娟
实验成绩:
2013—2014学年第二学期
计量经济学实验报告
一元和多元线性回归模型
一、实验目的
1掌握一元、多元线性回归模型的估计方法。
2 熟练EVIEWS软件的基本操作.
二、实验要求
1 会应用EVIEWS进行一元、多元线性回归并能识别模型的参数是否通过检验.
三、实验原理
普通最小二乘法,检验,F检验,2R值.
四、实验步骤
1 实验内容
经研究发现,家庭书刊消费受家庭收入及户主受教育年数的影响,表1为对某地区部分家庭抽样调查的到的样本数据.
表1 家庭书刊消费、家庭收入及户主受教育年数数据
2 建立家庭书刊消费的计量经济模型:
i i i i u T X Y +++=321βββ —----————---—--——-—---(1)
其中:Y 为家庭书刊年消费支出、X 为家庭月平均收入、T 为户主受教育年数。
2。
1 建立工作文件并录入数据
图1 运行结果
2.2 结果分析
根据图1中的数据,得到模型(1)的估计结果为:
i
i i T X Y 3703.5208645.00162.50ˆ++-= (49。
46026)(0。
02936) (5.20217)
t= (-1。
011244) (2.944186) (10.06702) R 2=0.951235 944732.02
=R F=146.2974
由估计检验结果, 户主受教育年数参数对应的t 统计量为10。
06702, 明显大于t 的临界值131.2)318(025.0=-t ,同时户主受教育年数参数所对应的P 值为0。
0000,明显小于05.0=α,均可判断户主受教育年数对家庭书刊消费支出确实有显著影响。
另外家庭月平均收入参数对应的t 统计量为2。
944186,明显大于t 的临界值131.2)318(025.0=-t ,同时家庭月平均收入参数所对应的P 值为0.0101,小于05.0=α,均可判断家庭月平均收入对家庭书刊消费支出确实有显著影响。
因此,本模型说明家庭月平均收入和户主受教育年数对家庭书刊消费支出有显著影响,家庭月平均收入增加1元,平均说来家庭书刊年消费支出将增加0.086元,户主受教育年数增加1年,平均说来家庭书刊年消费支出将增加52.37元.。