人教A版高中数学必修二第1章 1.3 1.3.2 柱体、锥体、台体的体积
- 格式:ppt
- 大小:592.00 KB
- 文档页数:16
高中数学必修二课程纲要(细化)一、课程目标(一)空间几何体1、认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2、能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.3、会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4、会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).5、了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(二)点、直线、平面之间的位置关系1、理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理 1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理 2:过不在同一条直线上的三点,有且只有一个平面.◆公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理 4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.2、以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定. 理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.3、能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(三)直线与方程1、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。
人教版高中数学必修二知识点汇总第一章 空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ①侧面是梯形 ①侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;①母线与轴平行;①轴与底面圆的半径垂直;①侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;①母线交于圆锥的顶点;①侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;①侧面母线交于原圆锥的顶点;①侧面展开图是一个弓形。
《柱体、锥体、台体的表面积与体积》说课稿各位老师:大家上午好!我说课的题目是《柱体、锥体、台体的表面积与体积》,下面我将从教材的地位和作用,内容分析,教学目标及重难点,教法和学法以及教学过程等几个方面进行阐述。
一.教材的地位和作用《柱体、锥体、台体的表面积与体积》是新人教版高中数学必修2第一章第3节的第一小节。
本节内容是在学生已从结构特征和视图两个方面感性认识空间几何体的基础上,进一步从度量的角度来认识空间几何体,它属于立体几何入门的内容,所以教学的目的在于使学生了解空间几何体的表面积和体积的计算方法,但不要求记忆公式,并能进一步计算简单组合体的表面积和体积。
二.内容分析本节一开始的“思考”从学生熟悉的正方体和长方体的展开图入手,分析展开图与其表面积的关系,其作用有二:一,复习表面积的概念,即表面积是各个面的面积的和;二,介绍求表面积的方法,即把它们展成平面图形,通过求平面图形的面积的方法,求立体图形的表面积,然后通过“探究”和“思考”引导学生探究柱体,锥体,台体的展开图,并在讨论过程中归纳圆柱,圆锥和圆台的表面积公式,在整个表面积研究过程中,教材都传达了将立体问题平面化的思想,因此在表面积教学过程中应注意引导学生体会这一点。
关于体积的教学,课本是由初中学过的正方体,长方体及圆柱的体积公式推广到一般柱体的体积公式,然后由三棱柱和三棱锥的关系,得到并推广到一般锥体的体积公式,最后由台体的概念,得出台体的体积公式。
从整体上看,教材体现了探究问题的一般思路,即由特殊到一般,再由一般到具体的应用,因此在教学过程中,我们要注重培养学生的转化和类比的思想,并让学生体会探究问题的乐趣,另外还应通过对圆柱,圆锥和圆台的表面积公式,柱体,锥体和台体的体积公式的统一过程培养学生归纳总结的能力。
三.教学目标和重难点根据以上分析,结合高一学生的特点,我制订了如下教学目标及重、难点:1.知识与技能目标:通过对柱体、锥体、台体的研究,了解柱体、锥体、台体的表面积和体积的求法。