大学物理模拟题及复习资料
- 格式:doc
- 大小:150.00 KB
- 文档页数:5
普通物理试题1-10试题1一、填空题11. 7.在与匀强磁场B垂直的平面,有一长为L 的铜杆OP ,以角速度 绕端点O 作逆时针匀角速转动,如图13—11,则OP 间的电势差为 P O U U (221L B )。
3. 3.光程差 与相位差 的关系是(2 )25. 1.单色光在水中传播时,与在真空中传播比较:频率(不变 );波长( 变小 );传播速度( 变小 )。
(选填:变大、变小、不变。
)68.17-5. 波长为 的平行单色光斜入射向一平行放置的双缝,如图所示,已知入射角为θ缝宽为a ,双缝距离为b ,产生夫琅和费衍射,第二级衍射条纹出现的角位置是(sin 2sin 1b。
33. 9. 单色平行光垂直照射在薄膜上.经上下两表面反射的两束光发生干涉、如图所示, 若薄膜的厚度为e .且321n n n ,1 为入射光在1n 中的波长,则两束反射光的光程差为 ( 22112 n e n)。
二、选择题6. 2. 如图示,在一无限长的长直载流导线旁,有一形单匝线圈,导线与线圈一侧平行并在同一平面,问:下列几种情况中,它们的互感产生变化的有( B ,C ,D )(该题可有多个选择)(A) 直导线中电流不变,线圈平行直导线移动; (B) 直导线中电流不变,线圈垂直于直导线移动;(C) 直导线中电流不变,线圈绕AB 轴转动; (D) 直导线中电流变化,线圈不动12.16-1.折射率为n 1的媒质中,有两个相干光源.发出的光分别经r 1和r 2到达P 点.在r 2路径上有一块厚度为d ,折射率为n 2的透明媒质,如图所示,则这两条光线到达P 点所经过的光程是( C )。
(A )12r r(B ) d n n r r 2112(C ) d n n n r r 12112 (D ) d n n r r 1211283. 7.用白光垂直照射一平面衍射光栅、发现除中心亮纹(0 k )之外,其它各级均展开成一光谱.在同一级衍射光谱中.偏离中心亮纹较远的是( A )。
《大学物理I 、II 》(下)重修模拟试题(1)一、选择题(每小题3分,共36分)1.把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π (B) π/2 (C) 0 (D) θ [ d]2.两相干波源S 1和S 2相距λ /4,(λ 为波长),S 1的相位比S 2的相位超前π21,在S 1,S 2的连线上,S 1外侧各点(例如P 点)两波引起的两谐振动的相位差是(A) 0 (B)2π (C) π (D) π23. [ b ]3. 如果在长为L 、两端固定的弦线上形成驻波,则此驻波的基频波(波长最长的波)的波长为(A) L /2. (B) L . (C) 3L /2. (D) 2L . [ d ]4.一束平行单色光垂直入射在光栅上,当光栅常数)(b a +为下列哪种情况时(a 代表每条缝的宽度),k=4、8、12等级次的主极大均不出现(A) a b a 3=+ (B) a b a 4=+(C) a b a 6=+(D) a b a 8=+ [ b ]S 1S 2Pλ/45.如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是 (A) 2n 2 e -λ / 2 (B) 2n 2 e(C) 2n 2 e + λ / 2 (D) 2n 2 e -λ / (2n 2) [ a]6.如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为(A) I 0 / 8 (B) I 0 / 4(C) 3 I 0 / 8 (D) 3 I 0 / 4. [ a ] 7.在标准状态下,若氧气(可视为刚性双原子分子的理想气体)和氦气的体积比为2121=V V ,则其内能之比21:E E 为(A) 1∶2 (B) 5∶3 (C) 5∶6 (D) 3∶10 [ c ] 8.如图,bca 为理想气体绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体对外作功与吸收热量的情况是 (A) b 1a 过程吸热,作正功;b 2a 过程吸热,作负功 (B) b 1a 过程放热,作正功;b 2a 过程吸热,作正功 (C) b 1a 过程放热,作负功;b 2a 过程放热,作负功 (D) b 1a 过程吸热,作负功;b 2a 过程放热,作负功 [ d ] 9.1mol 理想气体的状态变化如图所示,其中1—3为等温线,则气体经历1—2—3过程的熵变ΔS 为(R 为摩尔气体常量)(A) 0 (B) R ln4(C) 2R ln4 (D) 4R [ a ]n 3pOV b12 ac10.一匀质矩形薄板,在它静止时测得其长为a 、宽为b ,质量为m 0。
一、填空题1.杨氏双缝的间距为0.3mm ,双缝距离屏幕1500mm ,若第四到第七明纹距离为7.5mm ,则入射光波长为500 nm ;若入射光的波长为600nm ,则相邻两明纹的间距 3 mm 。
2. 单色光在折射率为n=1.4的介质中传播的几何路程长度为30m ,则相当于该光在真空中传播的路程长度为_42 m _____。
4. 已知玻璃的折射率为1.5 ,在其上面镀一层氟化镁(MgF 2)薄膜(n =1.38),放在空气中,白光垂直照射到膜的表面,欲使反射光中波长为550nm 的光相消,此膜的最小厚度为42 m 。
6. 波长为λ的单色光照在双缝上,在屏上产生明暗相间的干涉条纹。
从两缝S 1和S 2到屏上第二级明纹中心点P 的两条光线S 2P 和S 1P 的光程差为42 m ,位相差Δφ=42 m 。
2. 单色平行光垂直入射于单缝上,观察夫琅禾费衍射,若屏上P 点处为第5级暗纹,则单缝处波面相应地可划分为 10 个半波带。
3. 单色平行光垂直入射于单缝上,观察夫琅禾费衍射,若屏上P 点处为第3级明纹,则单缝处波面相应地可划分为 ___7__个半波带。
1. 一束强度为I 0的自然光垂直穿过两个叠合在一起、偏振化方向成45゜角的理想偏振片,则透射光强为__1/4___I 02.光的 干涉 和 衍射 现象反映了光的波动性质.光 偏振 现象说明光波是横波. 1、两个大小完全相同的带电金属小球,电量分别为2q 和-1q ,已知它们相距为r 时作用力为F ,则将它们放在相距3r 位置同时其电量均减半,相互作用力大小为____1/36________F 。
2、电场强度可以叙述为电场中某一点上单位正电荷所受的_____电场力___________;电场中某一点的电势可以叙述为:单位正电荷在该点所具有的__电势能_________。
13、导体在__电场_______作用下产生电荷重新分布的现象叫做__静电感应___________;而电介质在外电场作用下产生极化面电荷的现象叫做__电介质的极化_________。
《大学物理上》模拟复习题一一.选择题1.质量为m 的铁锤竖直落下,打在木桩上并停下,设打击时间为∆t ,打击前铁锤速率为v ,则在打击木桩的时间内,铁锤所受平均合外力的大小为(A) mv/∆t .(B) mv/∆ t -mg . (C) mv/∆ t +mg . (D) 2mv/∆t .2. 一圆锥摆,如图1.2,摆球在水平面内作圆周运动.则(A) 摆球的动量、摆球对悬点的角动量、摆球与地球组成系统的机械能都守恒.(B) 摆球的动量、摆球对悬点的角动量、摆球与地球组成系统的机械能都不守恒.(C) 摆球的动量不守恒,摆球对悬点的角动量、摆球与地球组成系统的机械能守恒.(D) 摆球的动量、摆球对悬点的角动量守恒, 摆球与地球组成系统的机械能不守恒.3. 一物体作简谐振动,振动方程为x =A cos(ωt +π/4 ) 在t=T/4(T 为周期)时刻,物体的加速度为(A) 222ωA -. (B)222ωA .(C) 232ωA -.(D)232ωA .4. 以下说法错误的是(A) 波速与质点振动的速度是一回事,至少它们之间相互有联系;(B) 波速只与介质有关,介质一定,波速一定,不随频率波长而变,介质确定后,波速为常数;(C) 质元的振动速度随时间作周期变化;(D) 虽有关系式v = λν,但不能说频率增大,波速增大. 5. 两根轻弹簧和一质量为m 的物体组成一振动系统,弹簧的倔强系数为k 1和k 2,并联后与物体相接.则此系统的固有频率为ν等于(A) π2//)(21m k k +. (B) π2/)/(2121m k k k k +.(C) π2)/(21k k m +. (D)π2)/()(2121m k k k k +.6. 下面各种情况中可能存在的是(A) 由pV =(M/M mol )RT 知,在等温条件下,逐渐增大压强,当p →∞时,V →0; (B) 由pV =(M/M mol )RT 知,在等温条件下,逐渐让体积膨胀,当V →∞时,p →0;图1.1(C) 由E =(M/M mol )iRT /2知,当T →0时,E →0;(D) 由绝热方程式V γ-1T =恒量知,当V →0时,T →∞、E →∞.7. AB 两容器分别装有两种不同的理想气体,A 的容积是B 的两倍,A 容器内分子质量是B 容器分子质量的1/2.两容器内气体的压强温度相同,(如用n 、ρ、M 分别表示气体的分子数密度、气体质量密度、气体质量)则(A) n A =2n B , ρA =ρB , M A = 2M B . (B) n A = n B /2 , ρA =ρB /4 , M A = M B /2. (C) n A = n B , ρA =2ρB , M A = 4M B . (D) n A = n B , ρA =ρB /2 , M A = M B .8. 如图1.3所示,折射率为n 2 、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知 n 1 <n 2 >n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①②示意)的光程差是(A) 2n 2e .(B) 2n 2e -λ/(2 n 2 ). (C) 2n 2e -λ. (D) 2n 2e -λ/2.9. 如图1.4所示,s 1、s 2是两个相干光源,它们到P 点的距离分别为r 1和 r 2,路径s 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径s 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) (r 2 + n 2 t 2)-(r 1 + n 1 t 1).(B) [r 2 + ( n 2-1) t 2]-[r 1 + (n 1-1)t 1].(C) (r 2 -n 2 t 2)-(r 1 -n 1 t 1).(D) n 2 t 2-n 1 t 1.10. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a = b . (B) a = 2b . (C) a = 3b . (D) b = 2a . 二.填空题1.如图2.1所示,一质点在几个力的作用下,沿半径为R 的圆周运动,其中一个力是恒力F 0,方向始终沿x 轴正向,即F 0= F 0i ,当质点从A 点沿逆时针方向走过3/4圆周到达B 点时,F 0所作的功为W .2. 如图2.2所示,加速度a 至少等于 时, 物体m 对斜面的正压力为零, 此时绳子的张力 T = .图1.3ss图1.4 图2.2图2.13. 铀238的核(质量为238原子质量单位),放射一个α粒子(氦原子核,质量为4个原子量单位)后蜕变为钍234的核,设铀核原是静止的,α粒子射出时速度大小为1.4×107m/s,则钍核的速度大小为 ,方向为 .4. 牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径由1.42cm 变成1.27cm,由此得该液体的折射率n = .5. 如图2.3所示,波长为λ 的平行单色光斜入射到距离为d 的双缝上,入射角为θ ,在图中的屏中央O 处(O s 1=O s 2) ,两束相干光的位相差为 .三.计算题1.质量为M =0.03kg, 长为l =0.2m 的均匀细棒, 在一水平面内绕通过棒中心并与棒垂直的光滑固定轴自由转动. 细棒上套有两个可沿棒滑动的小物体,每个质量都为m =0.02kg. 开始时,两小物体分别被固定在棒中心的两侧且距中心各为r =0.05m,此系统以n 1=15rev/min 的转速转动. 若将小物体松开后,它们在滑动过程中受到的阻力正比于速度, 已知棒对中心的转动惯量为M l 2/12. 求(1) 当两小物体到达棒端时,系统的角速度是多少? (2) 当两小物体飞离棒端时, 棒的角速度是多少?2. 一弦线,左端系于音叉的一臂的A 点上,右端固定在B 点,并用7.20N 的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50次的简谐振动(如图3.1).这样,在弦线上产生了入射波和反射波,并形成了驻波,弦的线密度η=2.0g/m, 弦线上的质点离开其平衡位置的最大位移为4cm,在t = 0时,O 点处的质点经过其平衡位置向下运动.O 、B 之间的距离为2.1m .如以O 为坐标原点,向右为x 轴正方向,试写出: (1) 入射波和反射波的表达式;(2) 驻波的表达式.3. 一气缸内盛有一定量的刚性双原子分子理想气体,气缸活塞的面积S =0.05m 2, 活塞与缸壁之间不漏气,摩擦忽略不计, 活塞左侧通大气,大气压强p 0=1.0×105pa,倔强系数k =5×104N/m 的一根弹簧的两端分别固定于活塞和一固定板上,如图 3.2,开始时气缸内气体处于压强、体积分别为p 1=p 0=1.0×105pa, V 1=0.015m 3的初态,今缓慢的加热气缸,缸内气体缓慢地膨胀到V 2=0.02m 3.求:在此过程中气体从外界吸收的热量.4. 波长为500nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边 l = 1.56cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈尖的劈尖角θ .(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹,图3.1图3.2 图2.3还是暗条纹?《大学物理上》模拟复习题二一.选择题1. 圆盘绕O 轴转动,如图1.1所示.若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将(A) 增大. (B) 不变. (C) 减小.(D) 无法判断.2.一质点在平面上运动,已知质点位置矢量的表达式为 r = a t 2 i + b t 2 j (其中a 、b 为常量), 则该质点作(A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D) 一般曲线运动.3. 如图1.2,质量分别为m 1、m 2的物体A 和B 用弹簧连接后置于光滑水平桌面上,且A 、B 上面上又分别放有质量为m 3和m 4的物体C 和D ;A 与C 之间、B 与D 之间均有摩擦.今用外力压缩A 与B ,在撤掉外力,A 与B 被弹开的过程中,若A 与C 、B 与D 之间发生相对运动,则A 、B 、C 、D 及弹簧组成的系统(A) 动量、机械能都不守恒. (B) 动量守恒,机械能不守恒.(C) 动量不守恒,机械能守恒.(D) 动量、机械能都守恒.4. 以下说法不正确的是(A) 从运动学角度看,振动是单个质点(在平衡位置的往复)运动,波是振动状态的传播,质 点并不随波前进;(B) 从动力学角度看振动是单个质点受到弹性回复力的作用而产生的,波是各质元受到邻近质元的作用而产生的;(C) 从能量角度看,振动是单个质点的总能量不变,只是动能与势能的相互转化;波是能量的传递,各质元的总能量随时间作周期变化,而且动能与势能的变化同步;(D) 从总体上看,振动质点的集合是波动.5. 一辆汽车以25ms -1的速度远离一静止的正在呜笛的机车,机车汽笛的频率为600Hz ,汽车中的乘客听到机车呜笛声音的频率是(已知空气中的声速为330 ms -1)(A) 555Hz . (B) 646 Hz . (C) 558 Hz . (D) 649 Hz .图1.2图1.16. 由热力学第一定律可以判断一微小过程中d Q 、d E 、d A 的正负,下面判断中错误的是(A) 等容升压、等温膨胀 、等压膨胀中d Q >0; (B) 等容升压、等压膨胀中d E >0; (C) 等压膨胀时d Q 、d E 、d A 同为正; (D) 绝热膨胀时d E >0.7. 摩尔数相同的两种理想气体,一种是氦气,一种是氢气,都从相同的初态开始经等压膨胀为原来体积的2倍,则两种气体 (A) 对外做功相同,吸收的热量不同. (B) 对外做功不同,吸收的热量相同.(C) 对外做功和吸收的热量都不同.(D) 对外做功和吸收的热量都相同.8. 如图1.3所示的是两个不同温度的等温过程,则 (A) Ⅰ过程的温度高,Ⅰ过程的吸热多. (B) Ⅰ过程的温度高,Ⅱ过程的吸热多. (C) Ⅱ过程的温度高,Ⅰ过程的吸热多. (D) Ⅱ过程的温度高,Ⅱ过程的吸热多.9. 如图1.4所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1 为入射光在折射率为n 1 的媒质中的波长,则两束反射光在相遇点的位相差为(A) 2 π n 2 e / (n 1 λ1 ).(B) 4 π n 1 e / (n 2 λ1 ) +π.(C) 4 π n 2 e / (n 1 λ1 ) +π.(D) 4π n 2 e / (n 1 λ1 ).10. 在如图1.5所示的单缝夫琅和费衍射实验装置中,s 为单缝,L 为透镜,C 为放在L 的焦面处的屏幕,当把单缝s 沿垂直于透镜光轴的方向稍微向上平移时,屏幕上的衍射图样(A) 向上平移. (B) 向下平移. (C) 不动.(D) 条纹间距变大. 二.填空题1. 如图2.1所示,波源s 1和s 2发出的波在P 点相遇,P 点距波源s 1和s 2的距离分别为3λ和10λ/3,λ为两列波在介质中的波长,若P 点的合振幅总是极大值,则两波源振动方向 (填相同或不同),振动频率 ,(填相同或不同),波源s 2 的位相比s 1 的位相领先 .2. 一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能的 ; 当这物块在平衡位置时,弹簧的长度比原长长∆ l ,这一振动系统的周期为 .图1.3图1.4图1.5 s 1s 2P 图2.13.以一定初速度斜向上抛出一个物体, 如果忽略空气阻力, 当该物体的速度v 与水平面的夹角为θ 时,它的切向加速度a t 的大小为a t = , 法向加速度a n 的大小为a n = . .4.对于处在平衡态下温度为T 的理想气体, (1/2)kT (k 为玻兹曼常量)的物理意义是 .5. 光的干涉和衍射现象反映了光的 性质, 光的偏振现象说明光波是 波. 三.计算题1.一质量为m 的陨石从距地面高h 处由静止开始落向地面,设地球质量为M ,半径为R ,忽略空气阻力,求:(1) 陨石下落过程中,万有引力的功是多少? (2) 陨石落地的速度多大?2. 一定滑轮的半径为R , 转动惯量为I ,其上挂一轻绳,绳的一端系一质量为m 的物体,另一端与一固定的轻弹簧相连,如图3.1所示,设弹簧的倔强系数为k ,绳与滑轮间无滑动,且忽略轴的摩擦力及空气阻力,现将物体m 从平衡位置下拉一微小距离后放手,证明物体作简谐振动,并求出其角频率.3. 一定量的理想气体经历如图3.2所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.己知:T C = 300K, T B = 400K,试求此循环的效率.4. 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察波长为λ=589 nm 的钠黄光的光谱线.(1) 当光线垂直入射到光栅上时,能看到的光谱线的最高级数k m 是多少?(2) 当光线以30︒的入射角(入射线与光栅平面法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级数k m 是多少?图3.1 图3.2《大学物理上》模拟复习题一答案一.选择题1. (A)mv/∆t .2. (A) 摆球的动量、摆球对悬点的角动量、摆球与地球组成系统的机械能都守恒.3.(C) 232ωA -.4.(D) 虽有关系式v = λν,但不能说频率增大,波速增大.5.(C).6. (B) 由pV =(M/M mol )RT 知,在等温条件下,逐渐让体积膨胀,当V →∞时,p →0;7. (D) n A = n B , ρA =ρB /2 , M A = M B .8. (D) 2n 2e -λ/2.9. (B) [r 2 + ( n 2-1) t 2]-[r 1 + (n 1-1)t 1]. 10. (A) a = b . 二.填空题1. -F 0R .2. cot θ, mg/sin θ3. 2.4×105m/s 与α粒子运动方向相反4. 1.255. 2πd sin θ /λ.三.计算题 1.(1)角动量守恒(M l 2/12+2mr 2)ω1=(M l 2/12+2ml 2)ω2ω2= (M l 2/12+2mr 2)ω1/(M l 2/12+2ml 2)=0.628rad/s(2) 小物体飞离棒端时小物体对棒无冲力,故棒的角速度仍为 ω2=0.628rad/s2.(1)波速u =(张力/线密度)1/2=(T/η)1/2=60m/s 波长 λ=u/ν=1.2m 因形成驻波,故行波振幅为A =4⨯10-2÷2=2⨯10-2m由旋矢法(如图)可知O 点振动的初位相为π/2,则入射波在原点O 引起的振动为y 0=2⨯10-2cos(100πt+π/2) (SI)所以入射波为y 1=2⨯10-2cos[100π (t -x /60)+π/2 ]=2⨯10-2cos(100πt-10πx /6+π/2) (SI), 反射波为y 2=2⨯10-2cos[100πt -10π(2l -x )/6+π/2+π]=2⨯10-2cos(100πt+10πx/6+π/2) (SI)驻波方程为y=y1+y2=4⨯10-2cos(10πx/6)cos(100πt+π/2) (SI)3. 从V1变到V2,弹簧压缩x=(V2-V1)/S,则p2=p0+kx/S= p0+k(V2-V1)/S2∆E=νC V(T2-T1)=(i/2)(p2V2-p1V1)=(i/2){[p0+k(V2-V1)/S2]V2-p0V1}=(i/2)[p0(V2-V1)+k V2(V2-V1)/S2]A=p0Sx+(1/2)kx2=p0(V2-V1)+(1/2) k [(V2-V1)/S]2,Q=∆E+A=p0(V2-V1)(i+2)/2+k(V2-V1)[(i+1)V2-V1]/(2S2)=7000J4. 因是空气薄膜,有n1>n2<n3,且n2=1,得δ=2e+λ/2,暗纹应δ=2e+λ/2=(2k+1)λ/2,所以2e=kλe=kλ/2因第一条暗纹对应k=0,故第4条暗纹对应k=3,所以e=3λ/2空气劈尖角θ=e/l=3λ/(2l)=4.8⨯10-5rad(2) 因δ/λ'=(2e+λ'/2)/λ'=3λ/λ'+1/2=3故A处为第三级明纹,棱边依然为暗纹.(3) 从棱边到A处有三条明纹,三条暗纹,共三条完整条纹.《大学物理上》模拟复习题二答案一.选择题1. (B) 不变.2. (B) 变速直线运动.3. (C) 动量不守恒,机械能守恒.4. (A) 从运动学角度看,振动是单个质点(在平衡位置的往复)运动,波是振动状态的传播,质 点并不随波前进;5. (B) 646 Hz .6. (D) 绝热膨胀时d E >0.7. (A) 对外做功相同,吸收的热量不同. 8. (A) Ⅰ过程的温度高,Ⅰ过程的吸热多. 9. (C) 4 π n 2 e / (n 1 λ1 ) +π. 10..(C) 不动. 二.填空题1.相同 相同,2π/3.2. 3/4 ; 2π(∆l /g )1/2.3. g sin θ, g cos θ .4.温度为T 时每个气体分子每个自由度平均分得的能量.5.波动 横 三.计算题 1. (1) A =()r GMm RhR d 2⎰+-=GMm [1/R -1/(R+h )]= GMm h /[R (R+h )](2)由动能定理 A=E k -E k0 有GMm h /[R (R+h )]=mv 2/2 v= {2GM h /[R (R+h )]}1/22. 平衡时 mg=kx 0振动时,设某时刻物体相对平衡位置的位移为x ,对物体和定滑轮分别列方程,有 mg-T=ma TR-k (x+x 0)R=I β a=R β x=R θ 于是得mgR -k (x+x 0)R=(mR 2+I )β -kxR=- kR 2θ= (mR 2+I )β = (mR 2+I )d 2θ /d t 2d 2θ /d t 2+[kR 2/(I+mR 2)]θ=0故物体作揩振动,其角频率为ω=[kR 2/(I+mR 2)]1/23.吸热过程AB为等压过程Q1=νC p(T B-T A)放热过程CD为等压过程Q2=νC p(T C-T D)η=1-Q2/Q1=1- (T C-T D)/(T B-T A)=1- (T C/T B)[(1-T D/T C)/(1-T A/T B) 而p Aγ-1T A-γ= p Dγ-1T D-γp Bγ-1T B-γ= p Cγ-1T C-γp A=p B p C=p D所以T A/T B=T D/T C故η=1-T C/T B=25%4. . (1) (a+b) sinθ=k maxλ<(a+b)k max<(a+b)/λ=3.39所以最高级数k max=3(1)(a+b) (sin30°+sinθ')=k'maxλk'max<(a+b) (sin30°+1)/λ=5.09所以k'max=5。
Am 1m 2BO A r Q 1 Q 2 R 1R 2 OP l Bbav α 重考复习参考题(自动化专业)一、 选择题。
1.如图所示,S 1和S 2是两个半径相同的球面。
P 1和P 2是两球面上的对应点,当点电荷q 1、q 2、q 3从图一的分布状态变为图二的分布状态时,则:[ D ] (A) 1212p p S S E d s=E d s ,E E ⋅⋅=⎰⎰ (B) 1212p p S S E d s=E d s ,E E ⋅⋅≠⎰⎰(C) 1212p p S S E d s E d s ,E =E ⋅≠⋅⎰⎰(D) 1212p p S S E d s E d s ,E E ⋅≠⋅≠⎰⎰2.如图所示,在半径为R1的金属球表面紧贴一个外半径为R2、电容率为ε的介质球壳(不带电),球壳外为真空,P 为介质球壳内一点,距球心O 点的距离为r 。
当金属球带上电量为Q 的电荷、且以无穷远处为电势零点,则P 点的场强大小和电势分别为:[ C ](A) 22Q QEp=,Up=4r 4R πεπε(B)20002Q Q QEp=,Up=4r 4r 4R +πεπεπε (C)2202Q Q 11Q Ep=,Up=4r 4r R 4R ⎛⎫-+⎪πεπεπε⎝⎭ (D)200102Q Q QEp=,Up=4r 4R 4R +πεπεπε3.如图所示,L 1、L 2是两个半径为R 的圆周,电流I 1≠I 2,P 1、P 2为两个圆周上的对应点。
当电流I 1和I 2的位置从图(一)状态变化到图(二)状态时,则:[ B ] (A)1212p p L L B dl B dl ,B B ⋅=⋅≠⎰⎰(B) 1212p p L L B dl B dl ,B B ⋅≠⋅≠⎰⎰(C) 1212p p L L B dl B dl ,B B ⋅=⋅=⎰⎰(D) 1212p p LL B dl B dl ,B B ⋅≠⋅=⎰⎰4.如图所示,AB 是一根无限长载流直导线,通有电流I1,C 、D 是两个材料和尺寸相同的正方形金属线圈,两金属线圈C 、D 与直线AB 共面。
大学力学专业《大学物理(二)》模拟考试试题附解析姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、设描述微观粒子运动的波函数为,则表示_______________________;须满足的条件是_______________________;其归一化条件是_______________________。
2、在热力学中,“作功”和“传递热量”有着本质的区别,“作功”是通过__________来完成的; “传递热量”是通过___________来完成的。
3、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
4、同一种理想气体的定压摩尔热容大于定容摩尔热容,其原因是_______________________________________________。
5、两列简谐波发生干涉的条件是_______________,_______________,_______________。
6、将热量Q传给一定量的理想气体:(1)若气体的体积不变,则热量转化为_____________________________。
(2)若气体的温度不变,则热量转化为_____________________________。
(3)若气体的压强不变,则热量转化为_____________________________。
7、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
8、一个半径为、面密度为的均匀带电圆盘,以角速度绕过圆心且垂直盘面的轴线旋转;今将其放入磁感应强度为的均匀外磁场中,的方向垂直于轴线。
第一章 质点运动学重点:求导法和积分法,圆周运动切向加速度和法向加速度。
主要公式:1.质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度3.4.5.线速度与角速度关系6.切向加速度法向加速度 总加速度第二章 质点动力学重点:动量定理、变力做功、动能定理、三大守恒律。
主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。
2.牛顿第二定律3.4.5.6 动能定理7.机械能守恒定律:当只有保守内力做功时,0=∆E8. 力矩:F r M⨯=大小:θsin Fr M=方向:右手螺旋,沿F r⨯的方向。
9.角动量:P r L⨯=大小:θsin mvr L =方向:右手螺旋,沿P r⨯的方向。
※ 质点间发生碰撞:完全弹性碰撞:动量守恒,机械能守恒。
完全非弹性碰撞:动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:动量守恒,机械能不守恒。
※行星运动:向心力的力矩为0,角动量守恒。
第三章 刚体重点: 刚体的定轴转动定律、刚体的角动量守恒定律。
主要公式: 1. 转动惯量:⎰=rdm r J2,转动惯性大小的量度。
2. 平行轴定理:2md J Jc +=质点:θsin mvr L =刚体:ωJ L =4.转动定律:βJ M=5.角动量守恒定律:当合外力矩2211:,0,0ωωJ J L M ==∆=即时6. 刚体转动的机械能守恒定律: 转动动能:221ωJ E k =势能:c P mgh E = (c h 为质心的高度。
)※ 质点与刚体间发生碰撞:完全弹性碰撞:角动量守恒,机械能守恒。
完全非弹性碰撞:角动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:角动量守恒,机械能不守恒。
说明:期中考试前的三章力学部分内容,请大家复习期中试卷,这里不再举例题。
大学基础教育《大学物理(一)》模拟考试试题含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质量为0.2kg的弹簧振子, 周期为2s,此振动系统的劲度系数k为_______ N/m。
2、质点在平面内运动,其运动方程为,质点在任意时刻的位置矢量为________;质点在任意时刻的速度矢量为________;加速度矢量为________。
3、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
4、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
5、动量定理的内容是__________,其数学表达式可写__________,动量守恒的条件是__________。
6、一质点作半径为R的匀速圆周运动,在此过程中质点的切向加速度的方向______,法向加速度的大小______。
(填“改变”或“不变”)7、两列简谐波发生干涉的条件是_______________,_______________,_______________。
8、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
9、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为和如图所示,则场强等于零的点与直线1的距离a为_____________ 。
10、一质点沿半径R=0.4m作圆周运动,其角位置,在t=2s时,它的法向加速度=______,切向加速度=______。
二、名词解释(共5小题,每题3分,共15分)1、自由度:2、光的吸收:3、基态:4、刚体:5、半波损失:三、选择题(共10小题,每题2分,共20分)1、下面说法正确的是()。
大学物理学专业《大学物理(下册)》模拟考试试卷含答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、设作用在质量为1kg的物体上的力F=6t+3(SI).如果物体在这一力的作用下,由静止开始沿直线运动,在0到 2.0 s的时间间隔内,这个力作用在物体上的冲量大小I=__________________。
2、静电场中有一质子(带电荷) 沿图示路径从a点经c点移动到b点时,电场力作功J.则当质子从b点沿另一路径回到a点过程中,电场力作功A=___________;若设a点电势为零,则b点电势=_________。
3、一束平行单色光垂直入射在一光栅上,若光栅的透明缝宽度与不透明部分宽度相等,则可能看到的衍射光谱的级次为____________。
4、一维保守力的势能曲线如图所示,则总能量为的粒子的运动范围为________;在________时,粒子的动能最大;________时,粒子的动能最小。
5、一平面余弦波沿Ox轴正方向传播,波动表达式为,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
6、某人站在匀速旋转的圆台中央,两手各握一个哑铃,双臂向两侧平伸与平台一起旋转。
当他把哑铃收到胸前时,人、哑铃和平台组成的系统转动的角速度_____。
7、长为、质量为的均质杆可绕通过杆一端的水平光滑固定轴转动,转动惯量为,开始时杆竖直下垂,如图所示。
现有一质量为的子弹以水平速度射入杆上点,并嵌在杆中. ,则子弹射入后瞬间杆的角速度___________。
8、一根长为l,质量为m的均匀细棒在地上竖立着。
如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时细棒的角加速度应为_____。
大学物理(一)复习题及解答一、选择题1.某质点的运动方程为)(6532SI t t x +-=,则该质点作( )。
A 、匀加速直线运动,加速度沿x 轴正方向;B 、匀加速直线运动,加速度沿x 轴负方向;C 、变加速直线运动,加速度沿x 轴正方向;D 、变加速直线运动,加速度沿x 轴负方向。
2.下列表述中正确的是( )。
A 、质点沿x 轴运动,若加速度0<a ,则质点必作减速运动;B 、在曲线运动中,质点的加速度必定不为零;C 、若质点的加速度为恒矢量,则其运动轨道必为直线;D 、当质点作抛体运动时,其法向加速度n a 、切向加速度t a 是不断变化的;因此, 22t n a a a +=也是不断变化的。
3.下列表述中正确的是:A 、质点作圆周运动时,加速度方向总是指向圆心;B 、质点作抛体运动时,由于加速度恒定,所以加速度的切向分量和法向分量也是恒定的;C 、质点作曲线运动时,加速度方向总是指向曲线凹的一侧;D 、质点作曲线运动时,速度的法向分量总是零,加速度的法向分量也应是零。
4.某物体的运动规律为t kv dtdv 2-=,式中的k 为大于零的常数;当t =0时,初速为0v ,则速度v 与时间t 的函数关系是( )。
A 、0221v kt v +=;B 、0221v kt v +-=;C 、02121v kt v +=;D 、02121v kt v -=。
5.质点在xoy 平面内作曲线运动,则质点速率的正确表达式为( )。
A 、dt dr v =;B 、dt r d v =;C 、dtds v =;D 、22)()(dt dy dt dx v += ;E 、dt r d v =。
6.质点作曲线运动,r表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,(1)a dt dv =;(2)v dt dr =;(3)v dtds =;(4)t a dt v d = |; A 、只有(1)、(4)是对的; B 、只有(2)、(4)是对的;C 、只有(2)是对的;D 、只有(3)是对的。
《大学物理(一)》综合复习资料一.选择题1.某人骑自行车以速率V 向西行驶,今有风以相同速率从北偏东300方向吹来,试问人感到风从哪个方向吹来?(A )北偏东300. (B )南偏东300. (C )北偏西300. (D )西偏南300. [ ]2.质点系的内力可以改变(A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总角动量. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. C )变大. ( D )无法判断. [ ]4.一质点作匀速率圆周运动时,则(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断不变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]5.关于刚体对轴的转动惯量,下列说法中正确的是(A) 只取决于刚体的质量,与质量的分布和轴的位置无关.(B )取决于刚体的质量和质量分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ]6.一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻是(A )s 4=t .(B )s 2=t .(C )s 8=t .(D )s 5=t . [ ]7.对功的概念有以下几种说法:(l )保守力作正功时,系统内相应的势能增加.(2)质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中:(A )(l )、(2)是正确的. (B )(2)、(3)是正确的.(C )只有(2)是正确的. (D )只有(3)是正确的. [ ]8.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )角速度从小到大,角加速度从大到小.(B )角速度从小到大,角加速度从小到大.(C )角速度从大到小,角加速度从大到小.(D )角速度从大到小,角加速度从小到大.[ ]9.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量1E 变为(A )4/1E . (B)2/1E . (C)12E . (D)14E . [ ]10.下列说法哪一条正确?(A )加速度恒定不变时,物体运动方向也不变.(B )平均速率等于平均速度的大小.(C )不管加速度如何,平均速率表达式总可以写成:2/)(21v v v +=.(D )运动物体速率不变时,速度可以变化. [ ]11.站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过固定在电梯内顶棚上得的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为(A )大小为1g ,方向向上. (B )大小为1g ,方向向下.(C )大小为g 21,方向向上. (D )大小为g 21,方向向下. [ ] 12.质量为M 光滑的圆弧形槽于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的:(A )由m 和M 组成的系统动量守恒. (B )由m 和M 组成的系统机械能守恒.(C )由m 、M 和地球组成的系统机械能守恒.(D )M 对m 的正压力恒不作功.[ ]13. 一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. (C )变大. (D )无法判断. [ ]14.一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为(A )φωsin A -.(B )φωsin A .(C )φωcos A -.(D )φωcos A . [ ]15.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动. (B )变速直线运动.(C )抛物线运动. (D )一般曲线运动. [ ]16.在高台上分别沿45º仰角方向和水平方向,以同样速率投出两颗小石子,忽略空气阻力,则它们落地时速度(A )大小不同,方向不同.(B )大小相同,方向不同.(C )大小相同,方向相同.(D )大小不同,方向相同. [ ]17.质量为m 的木块沿与水平面成θ角的固定光滑斜面下滑,当木块下降高度为h 时,重力的瞬时功率是(A )2/1)2(gh mg . (B )2/1)2(cos gh mg θ. (C )2/1)21(sin gh mg θ. (D)2/1)2(sin gh mg θ. [ ]18.一轻弹簧竖直固定于水平桌面上.如图所示,小球从距离桌面高为h 处以初速度0v 落下,撞击弹簧后跳回到高为h 处时速度仍为0v ,以小球为系统,则在这一整个过程中小球的(A )动能不守恒,动量不守恒. (B )动能守恒,动量不守恒.(C )机械能不守恒,动量守恒. (D )机械能守恒,动量守恒.[ ]二.填空题1.一质点的运动方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ,在t 由0到4s 的时间间用内质点走过的路程为 .2.一质点作半径为0.1m 圆周运动,其运动方程为:2/4/2t +π=θ,则其切向加速度为t a = .3.一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为 ,方向为 .4.若作用于一力学系统上外力的合力为零,则外力的合力矩.(填一定或不一定) 为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是_ .5.动量矩定理的内容是 .其数学表达式可写成 .动量矩守恒的条件是 .6.一质点沿半径为0.10m 的圆周运动,其角位移θ可用下式表示)(423SI t +=θ.(1)当t=2s 时,切向加速度t a = ;(2)当t a 的大小恰为总加速度a 大小的一半时,=θ .7.质量为M 的物体A 静止于水平面上,它与平面之间的滑动摩擦系数为μ ,另一质量为m 的小球B 以沿水平方向向右的速度v与物体A 发生完全非弹性碰撞.则碰后物体A 在水平方向滑过的距离L = .8.图中所示的装置中,略去一切摩擦力以及滑轮和绳的质量,且绳不可伸长,则质量为1m 的物体的加速度=1a .9.绕定轴转动的飞轮均匀地减速,0=t 时角速度s rad /5=ω,s t 20=时角速度08.0ωω=,则飞轮的角加速度β= ,从0=t 到s t 100=时间内飞轮所转过的角度θ= .10. 如图所示,Ox 轴沿水平方向,Oy 轴竖直向下,在0=t 时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对点O 的力矩M = ;在任意时刻t ,质点对原点O 的角动量L = .11.二质点的质量分别为1m 、2m . 当它们之间的距离由a 缩短到b 时,万有引力所做的功为 .12.动量定理的内容是 ,其数学表达式可写 .动量守恒的条件是 .13.已知质点运动方程为j t t i t t r )314()2125(32++-+=(SI ),当t =2s 时,a = .14.一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ωl =20πrad /s ,再转60转后角速度为ω2=30πrad /s ,则角加速度β= ,转过上述60转所需的时间是t = .15.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为l 31,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 .16.质量为m 的质点以速度v 沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是 .17.若作用于一力学系统上外力的合力为零,则外力的合力矩 (填一定或不一定)为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是 .三.计算题1.顶角为2θ的直圆锥体,底面固定在水平面上,如图所示.质量为m 的小球系在绳的一端,绳的另一端系在圆锥的顶点.绳长为l ,且不能伸长,质量不计,圆锥面是光滑的.今使小球在圆锥面上以角速度ω绕OH 轴匀速转动,求(1)锥面对小球的支持力N 和细绳的张力T ;(2)当ω增大到某一值c ω时小球将离开锥面,这时c ω及T 又各是多少?2.一弹簧振子沿x 轴作简谐振动.已知振动物体最大位移为m x =0.4m 最大恢复力为N 8.0=m F ,最大速度为m/s 8.0π=m v ,又知t =0的初位移为+0.2m ,且初速度与所选x 轴方向相反.(1)求振动能量;(2)求此振动的表达式.3.一物体与斜面间的摩擦系数μ=0.20,斜面固定,倾角45=αº.现给予物体以初速率m /s 100=v ,使它沿斜面向上滑,如图所示.求:(l )物体能够上升的最大高度h ;(2)该物体达到最高点后,沿斜面返回到原出发点时的速率v .4.一质量为A m =0.1kg 的物体A 与一轻弹簧相连放在光滑水平桌面上,弹簧的另一端固定在墙上,弹簧的倔强系数k =90N /m .现在用力推A ,从而弹簧被压缩了0x =0.1m .在弹簧的原长处放有质量B m =0.2kg 的物体B ,如图所示,由静止释放物体A 后,A 将与静止的物体B发生弹性碰撞.求碰撞后A 物体还能把弹簧压缩多大距离.5.质量为M =1.5kg 的物体,用一根长为 l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10g 的子弹以0v =500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小m/s 300 v ,设穿透时间极短.求:(l )子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量.6.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为F =52.8 x 十38.4x 2(SI )求:(1)将弹簧从定长1x =0.5m 拉伸到定长2x =1.00m 外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长2x = 1.00m ,再将物体有静止释放,求当弹簧回到1x =0.5m 时,物体的速率.(3)此弹簧的弹力是保守力吗?7.三个物体A 、B 、C 每个质量都是M . B 、C 靠在一起,放在光滑水平桌面上,两者间连有一段长为0.4m 的细绳,原先放松着.B 的另一侧用一跨过桌边的定滑轮的细绳与A 相连(如图).滑轮和绳子的质量及轮轴上的摩擦不计,绳子不可伸长.问:(l ) A 、 B 起动后,经多长时间C 也开始运动?(2)C 开始运动时速度的大小是多少?(取g =10m/s 2)8.有一轻弹簧,当下端挂一个质量1m =10g 的物体而平衡时,伸长量为4.9cm .用这个弹簧和质量2m =16g 的物体连成一弹簧振子.若取平衡位置为原点,向上为x 轴的正方向.将2m 从平衡位置向下拉 2cm 后,给予向上的初速度0v =5c m/s 并开始计时,试求2m 的振动周期和振动的数值表达式.参考答案一.选择题1.(C ) 2.(C ) 4.(C ) 4.(C ) 5.(C )6.(B ) 7.(C ) 8.(A ) 9.(D )10.(D )11.(B ) 12.(C ) 13.(C )14.(B )15.(B )16.(B )17.(D ) 18.(A )二.填空题l . 8m 10m2. 0.1m/s 23. mv 2 指向正西南或南偏西4504. 不一定 动量5.转动物体所受合外力矩的冲量矩等于在合外力矩作用时间内转动物体动量矩的增量. 112221ω-ω=⎰ J J dt M t t物体所受合外力矩等于零.6. 48m/s 23.15 r a d7. 22)(2)(m M g mv +μ 8. 21242m m g m + 9. -0.05rad/s 250rad10. k mbg k mbgt11. )11(21ba m Gm -- 12. 质点系所受合外力的冲量等于质点系(系统)动量的增量.i i i i t t v m v m dt F 2121 ∑∑⎰-=系统所受合外力等于零.13.)/(4s m j i +-14. 6.54 rad/s 2s 8.4 15. mvl16. mvd17. 不一定; 动量三.计算题1. 解:以r 表示小球所在处圆锥体的水平截面半径.对小球写出牛顿定律方程为r m ma N T 2cos sin ω==θ-θ0cos cos =-θ+θmg N T其中:θ=sin l r联立求解得:(1)θθω-θ=cos sin sin 2l m mg Nθω+θ=22sin cos l m mg T(2)0,=ω=ωN c θ=ωcos /l g cθ=cos /mg T2.解;(l )由题意./,,m m m m x F k x A kA F ===J x F kx E m m m 16.021212=== (2)m m m m x v A v A v //,==ωω=Hz s rad 22/,/2=πω=νπ=ω2.0cos ,00=φ==A x tπ=φ<φω-=31,0sin 0A v 振动方程为)3/2cos(4.0π+π=t y (SI )3.解:(l )根据功能原理,有 mgh mv fs -=2021 mgh mv mghctg mgh Nh fs -=αμ=ααμ=αμ=2021sin cos sin m ctg g v h 25.4)1(220=αμ+=(2)根据功能原理有221mv mgh fs -= αμ-=mghctg mgh mv 221s m ctg gh v /16.8)1(2[2/1=αμ-=4.解:释放物体A 到A 与B 碰撞前,以A 与弹簧为系统,机械能守恒: 2202121v m kx A = A 与B 碰撞过程中以A 、B 为系统,动量守恒,机械能守恒。
大学物理模拟试卷一1.一飞机相对空气的速度为200km/h,风速为56km/h,方向从西向东。
地面雷达测得飞机速度大小为192km/h,方向是:()(A)南偏西16.3º;(B)北偏东16.3º;(C)向正南或向正北;(D)西偏东16.3º;2.竖直的圆筒形转笼,半径为R,绕中心轴OO'转动,物块A紧靠在圆筒的内壁上,物块与圆筒间的摩擦系数为μ,要命名物块A不下落,圆筒转动的角速度ω至少应为:()(A);(B);(C);(D);3.质量为m=0.5kg的质点,在XOY坐标平面内运动,其运动方程为x=5t,y=0.5t2(SI),从t=2s 到t=4s这段时间内,外力对质点作功为()(A)1.5J ;(B) 3J;(C) 4.5J ;(D) -1.5J;4.炮车以仰角θ发射一炮弹,炮弹与炮车质量分别为m和M,炮弹相对于炮筒出口速度为v,不计炮车与地面间的摩擦,则炮车的反冲速度大小为()(A);(B) ;(C) ;(D)5.A、B为两个相同的定滑轮,A滑轮挂一质量为M的物体,B滑轮受拉力为F,而且F=Mg,设A、B两滑轮的角加速度分别为βA和βB,不计滑轮轴的摩擦,这两个滑轮的角加速度的大小比较是()(A)βA=β B ;(B)βA>β B;(C)βA<βB;(D)无法比较;6.一倔强系数为k的轻弹簧,下端挂一质量为m的物体,系统的振动周期为T。
若将此弹簧截去一半的长度,下端挂一质量为0.5m的物体,则系统振动周期T2等于()(A)2T1;(B)T1;(C) T1/2 ;(D) T1/4 ;7.一平面简谐波在弹性媒质中传播时,媒质中某质元在负的最大位移处,则它的能量是:()(A)动能为零,势能最大;(B)动能为零,势能为零;(C)动能最大,势能最大;(D)动能最大,势能为零。
8.在一封闭容器中盛有1mol氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于: ()(A) 压强p;(B)体积V;(C)温度T;(D)平均碰撞频率Z;9.根据热力学第二定律判断下列哪种说法是正确的()(A)热量不可能从低温物体传到高温物体;(B)不可能从单一热源吸取热量使之全部转变为有用功;(C)摩擦生热的过程是不可逆的;(D)在一个可逆过程中吸取热量一定等于对外作的功。
大学物理模拟题一、选择题:1、下列叙述中正确的是( )(A)质点受到几个力的作用时,一定产生加速度(B)质点运动的速率不变时,它所受到的合外力不一定为零(C)质点运动速度大,它所受的合外力也一定大(D)质点运动的方向与合外力的方向一定相同2.一质量m=0.1kg 的质点作平面运动,其运动方程为x=5+3t (SI ),y=3+t-21t 2(SI ),则质点在t=5s 时的动量大小为( )A.0.7kg·m /sB.0.5kg·m /sC.0.4kg·m /sD.0.3kg·m /s3.一质点作简谐振动,其振动表达式为x=0.02cos(4)2t π+π(SI),则其周期和t=0.5s 时的相位分别为( ) A.2s 2π B.2s 5/2π C.0.5s 2π D.0.5s 5/2π4.μ子相对地球以0.8c(c 为光速)的速度运动,若μ子静止时的平均寿命为τ,则在地球上观测到的μ子的平均寿命为( )A .τ54B .τC .τ35D .τ25 5.关于刚体对轴的转动惯量,下列说法中正确的是( )。
A.只取决于刚体的质量,与质量的空间分布和轴的位置无关B.取决于刚体的质量和质量的空间分布,与轴的位置无关C.取决于刚体的质量、质量的空间分布和轴的位置D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关6.在波长为λ的驻波中,两个相邻波腹之间的距离为( )。
A. λ/4B. λ/2C. 3λ/4D. λ7.一质点作简谐振动的运动学方程为x =A cos(ϕω+t ),当振动相位为π32时,质点的 ( ) A.位移为负,速度与加速度反向 B.位移为负,速度与加速度同向C.位移为正,速度与加速度反向D.位移为正,速度与加速度同向8一静止长度为1m 的直尺相对于惯性系K 以速率v=0.6c (c 为光速)沿x 轴运动,且直尺平行于x 轴,则在K 系中测得该直尺的长度为( )A.1.2mB.1mC.0.8mD.0.6m9.质点沿x 轴运动,运动方程为x =2t 2+6(SI),则质点的加速度大小为( )A.2m /s 2B.4m /s 2C.6m /s 2D.8m /s 210..对于一个物体系来说,在下列条件中,那种情况下系统的机械能守恒?( )A.合外力为0B.合外力不作功C.外力和非保守内力都不作功D.外力和保守内力都不作功11..关于同时性有人提出以下一些结论,其中哪个是正确的?( )A.在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生B.在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生C.在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生D.在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生12.已知一平面简谐波的波动方程为y=Acos(at -bx),(a 、b 为正值),则( )。
第2页(共页)
6、一质量为m、电量为q的小球,在电场力作用下,从电势为U的a点,移动到电
势为零的b点,若已知小球在b点的速率为V
b
,则小球在a点的速率V
a =。
7、如图所示,在一长直导线L中通有恒定电流I,ABCD为一矩形线圈,它与L皆
在纸面内,且AB边与L平行。
(1) 矩形线圈在纸面内向右移动时,线圈中感应电流方向为__________;(2) 矩形线圈绕AD边旋转,当BC边离开纸面向外运动时,线圈中感应电流的方向为___________。
第7题图第8题图
8、由金属制成的直角三角形框架,勾长为a,放在磁感应强度为B
ϖ
的均匀磁场中,B
ϖ
与股平行,如图所示。
当这框架以股为轴,每秒旋转n圈时,勾里产生的电动势
为
a
ε= ,整个框里的电动势为ε= 。
9. 一质点沿半径R=0.4m作圆周运动,其角位置2
3
2t
+
=
θ,在t=2s时,它的法向
加速度
n
a= 2
/s
m,切向加速度
t
a= 2
/s
m。
10、一长为1m的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动。
抬起另
一端使棒向上与水平面呈60°,然后无初转速地将棒释放,已知棒对轴的转动惯量
为2
3
1ml,则(1)放手时棒的角加速度为__________2
/s
rad;(2) 棒转到水平位置时的角加速度为__________2
/s
rad。
三、计算题(每小题10分,共40分)
1、一物体从高度h处,以初速率
v竖直向下或沿水平方向抛出,试用动能定理计算在这两次抛掷过程(竖直下抛过程和平抛过程)中物体落地的速率。
2、一连续纵波+x方向传播,频率为25
z
H,波线上相邻密集部分中心之距离为24cm,
第3页(共页)
某质点最大位移为3cm 。
原点取在波源处,且t=0时,波源位移为0,并向+y 方向运动。
求:
(1)波源振动方程; (2)波动方程;
(3)t=1s 时波形方程;
(4)x=0.24m 处质点振动方程;
(5)1x =0.12m 与2x =0.36m 处质点振动的位相差。
3、一容器中原来盛有10.0210-⨯kg 氧气,其压强为10.0atm ,温度为320K 。
由于容器
漏气,进过一段时间后,测得容器中气体压强减为原来的8
5
,同时温度降为300K 。
求
容器的容积及漏掉氧气的质量。