快速成型技术及在模具制造中的应用共32页文档
- 格式:ppt
- 大小:1.79 MB
- 文档页数:16
简述快速成型技术的应用快速成型技术(Rapid Prototyping,简称RP)是一种通过计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,直接从三维CAD模型中构建实物模型的方法。
它在工业设计、制造、医疗、艺术等领域有着广泛的应用。
快速成型技术在工业设计领域得到了广泛的应用。
传统的产品设计过程需要经历多个阶段,包括手工制作模型、校对设计、制作模具等步骤。
而使用快速成型技术,设计师可以通过CAD软件直接生成三维模型,并使用快速成型机器将其转化为实物模型。
这样不仅可以减少设计时间,还可以快速验证设计的可行性,降低产品开发的风险。
快速成型技术在制造领域也有着重要的应用。
传统的制造过程通常需要制作模具,然后再进行大规模生产。
而使用快速成型技术,可以直接从CAD模型中生成产品原型,然后再根据需要进行小批量生产。
这种灵活的生产方式可以满足个性化定制的需求,提高生产效率,降低生产成本。
快速成型技术在医疗领域也有着广泛的应用。
医生可以利用快速成型技术生成患者特定的三维模型,用于手术模拟、医疗器械设计等方面。
这种个性化的医疗模型可以帮助医生更好地了解患者的病情,制定更精确的治疗方案,提高手术的成功率。
快速成型技术还被广泛应用于艺术创作领域。
艺术家可以使用CAD 软件设计出复杂的艺术品模型,然后通过快速成型技术将其转化为实物。
这种技术不仅可以大大缩短艺术品制作的时间,还可以实现艺术家的创作理念。
同时,快速成型技术还可以帮助艺术家实现雕塑、陶瓷等多种材质的艺术品制作。
快速成型技术在工业设计、制造、医疗和艺术等领域的应用非常广泛。
它可以大大缩短产品开发周期,提高生产效率,降低生产成本。
同时,它还可以帮助医生提高诊断和治疗的准确性,艺术家实现创作理念。
随着技术的不断发展,快速成型技术将会在更多领域发挥重要作用,推动各行各业的创新和发展。
快速成型技术在工业设计中的应用快速成型技术是一种基于计算机辅助设计和制造的先进技术,它在工业设计中有着广泛的应用。
通过该技术,设计师可以快速地将设计概念转化为实际的产品原型,从而提高工作效率、降低成本。
在工业设计中,快速成型技术能够帮助设计师将创意快速转化为实际的产品原型。
传统的产品开发过程中,设计师需要通过手工制作或者借助模具来制造产品原型,这个过程通常耗时较长且费用较高。
而快速成型技术能够通过快速地堆叠材料来制造产品原型,大大缩短了制造周期,节省了时间和成本。
在产品设计的早期阶段,快速成型技术可以帮助设计师快速验证设计概念的可行性。
设计师可以通过将设计文件输入到快速成型设备中,快速制造出产品原型,进而进行实物验证。
如果设计存在问题,设计师可以及时进行修改,从而避免了在后期制造过程中可能出现的错误和延误。
快速成型技术还可以帮助设计师进行产品的外观设计和功能测试。
通过快速制造出产品原型,设计师可以更直观地了解产品的外观效果,从而进行必要的修改和优化。
同时,快速成型技术还可以制造出具有实际功能的产品原型,设计师可以通过对原型进行测试来评估产品的性能和可靠性。
在产品定制方面,快速成型技术也发挥着重要的作用。
传统的产品制造过程中,生产线通常需要进行大规模的调整和改装,以满足不同产品的需求。
而快速成型技术可以根据用户的需求快速制造出定制化的产品,大大提高了生产线的灵活性和适应性。
快速成型技术还可以帮助设计师进行产品的小批量生产。
在传统的生产方式中,小批量生产往往需要进行专门的模具制造,成本较高且周期较长。
而快速成型技术可以通过直接制造产品来降低生产成本,提高生产效率,满足小批量生产的需求。
快速成型技术在工业设计中有着广泛的应用。
它可以帮助设计师将创意快速转化为实际的产品原型,提高工作效率、降低成本。
同时,它还可以帮助设计师进行产品的外观设计、功能测试、定制生产和小批量生产。
随着技术的不断发展,相信快速成型技术将在工业设计中发挥更大的作用,为创新和进步提供更多可能性。
快速成形技术现代成形理论是研究所有产品制造的成形方式,即研究将成形材料有序地组织成具有确定外形和特定功能的三维实体的科学,建立起产品制造的理论模型。
根据工艺可以将产品成形的过程分为如下四种:1.受迫成形成形材料受到压力的作用而成形的方法,如金属材料成形的冷冲压成形、锻压成形、挤压成形以及铸造成形等。
2.去除成形这是人类从制作工具到现代化生产一直沿用的主要成形方法,如刀具切削加工、磨削加工、电火花加工等。
3.离散/堆积成形与传统制造不同,离散/堆积成形从零件的CAD实体模型出发,通过软件分层离散和数控成形系统,用层层加工的方法将成形材料堆积而形成实体零件。
4.生长成形生长成形或称仿生成形是指模仿自然界中生物生长方式而成形的方法。
快速成形技术是基于离散/堆积思想和数字化的新型成形技术,它突破了传统的加工方式,不需机械加工设备即可快速地制造形状极为复杂的工件,被认为是近20年制造技术领域的一次重大突破。
快速成形技术是当前世界上先进的产品开发与快速工具制造技术,对制造企业的模型、原型及成型件的制造方式正产生深远的影响。
1.1快速成形技术1.1.1快速成形技术原理快速成形(RP,Rapid Prototyping)技术又称快速原型制造,诞生于20世纪80年代后期,至今已有20多年的历史,是基于材料堆积法的新型制造技术。
快速制造技术集机械工程、计算机辅助制造(CAD)、逆向工程技术、分层制造技术、数控技术、材料科学等于一身,可以自动、直接、快速、精确地将计算机上设计的模型转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供一种高效低成本的实现方法。
Terry Wohlers和美国制造工程师协会(SME)对RP技术进行了定义[]:RP系统依据三维CAD模型数据、CT(计算机断层扫描,computer tomography)和MRI(核磁共振成像,magnetic resonance imaging)扫描数据和由三维实物数字化系统创建的数据,把所得数据分成一系列二维平面,又按相同序列沉积或固化出物理实体。
快速成型技术原理及应用快速成型技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。
成型原理:基于离散-叠加原理而实现快速加工原型或零件特点:不需机加工设备或者模具即可快速制造形状极为复杂的工件简介:(Rapid Prototyping&Manufacturing, 缩写为RP)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术. 其特点是可以不需机加工设备或者模具即可快速制造形状极为复杂的工件, 从而在小批量产品生产或新产品试制时节省时间和初始投资.这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用. 而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性.快速成型技术(RP)的成型过程: 首先建立目标件的三维计算机辅助设计(CAD 3D)模型, 然后对该实体模型在计算机内进行模拟切片分层,沿同一方向(比如Z轴)将CAD 实体模型离散为一片片很薄的平行平面; 把这些薄平面的数据信息传输给快速成型系统中的工作执行部件,将控制成型系统所用的成型原材料有规律地一层层复现原来的薄平面, 并层层堆积形成实际的三维实体,最后经过处理成为实际零件.经过20多年的发展, 快速成型技术(RP)有较大发展, 应用非常广泛,尤其在汽车制造,航天航空,建筑,家电,卫生医疗及娱乐等领域有强大的应用.目前基于快速成型技术(RP)开发的工艺种类较多, 可以分别按所用材料划分, 成型方法划分等.1) 利用激光或其它光源的成型工艺的成型:---(SL)---(简称LOM)---(简称SLS)---形状层积技术(简称SDM);2) 利用原材料喷射工艺的成型:---(简称FDM)---三维印刷技术(简称3DP)其它类型工艺有:---树脂热固化成型 (LTP)---实体掩模成型 (SGC)---弹射颗粒成型 (BFM)---空间成型 (SF)---实体薄片成型 (SFP)应用:RPM技术的发展水平而言,在国内主要是应用于新产品(包括产品的更新换代)开发的设计验证和模拟样品的试制上,即完成从产品的概念设计(或改型设计),造型设计,结构设计,基本功能评估,模拟样件试制这段开发过程。
题目:1、快速成型原理是什么?其技术有何特点?2、按制造工艺原理分,快速成型工艺主要分成哪几类?3、简述快速成型技术有哪些应用?4、典型的快速成型工艺有哪几种?试分析成型工艺的特点。
5、反求工程的基本含义是什么?应用在那几个方面?6、结合课程知识点,谈谈快速成型技术对新产品设计的作用。
1、快速成型原理是什么?其技术有何特点?快速成型原理RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。
当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。
不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。
这种工艺可以形象地叫做"增长法"或"加法"。
每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。
RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。
RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。
自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。
其成形原理分别介绍如下:(1)SLA快速成形系统的成形原理:成形材料:液态光敏树脂;制件性能:相当于工程塑料或蜡模;主要用途:高精度塑料件、铸造用蜡模、样件或模型。
快速成型技术在产品设计中的应用快速成型技术,即Rapid Prototyping,简称RP技术,是一种利用计算机辅助设计(CAD)和计算机辅助制造(CAM)技术,通过堆叠或涂覆材料来逐层制造实体模型的技术。
随着科技的不断发展,快速成型技术在产品设计中的应用得到了越来越广泛的应用,为产品开发提供了更快、更灵活的解决方案。
本文将探讨快速成型技术在产品设计中的应用,并介绍其优势和未来发展趋势。
快速成型技术在产品设计中的应用主要体现在以下几个方面:1.快速制作实体模型:传统上,产品的开发需要花费大量的时间和成本来制作实体模型进行测试和验证。
而有了快速成型技术,设计师可以通过CAD软件设计出模型,并利用快速成型技术将设计图转化成实体模型,实现快速制作和验证设计的效果。
这样可以有效缩短产品开发周期,提高产品设计的灵活性和精度。
2.灵活性和创新性:快速成型技术可以很容易地制作复杂形状的实体模型,从而为设计师提供了更多的创意空间。
设计师可以通过快速成型技术制作出各种各样的模型,包括曲线、空间结构等复杂形状,从而激发设计的创新性,提高产品的竞争力。
3. 降低成本:传统的产品设计需要雕刻模型或制作模具,这些过程通常需要大量的时间和成本。
而快速成型技术可以直接将设计图转化为实体模型,无需制作模具和雕刻,从而大大节省了成本和时间。
4. 可视化效果:产品设计师可以通过快速成型技术将设计图快速转化为实体模型,从而更直观地展现给客户和团队成员,加快决策过程。
这种可视化效果可以帮助客户和团队更好地理解设计意图,提出意见和建议,从而更好地满足市场需求。
5. 高效的定制化生产:快速成型技术可以帮助企业快速响应市场需求,实现定制化生产。
设计师可以根据客户需求快速制作出客户需求的产品,实现小批量、多样化的生产,从而提高产品的市场竞争力。
未来,随着科技的不断发展和应用场景的不断扩大,快速成型技术在产品设计中的应用将会越来越广泛。
随着快速成型技术的不断创新和发展,将会有更多的材料可以用于快速成型技术,从而更好地满足产品设计的需求。
四种常见快速成型技术FDM丝状材料选择性熔覆 Fus ed Dep osi tion Mod eling 快速原型工艺是一种不依*激光作为成型能源、而将各种丝材加热溶化的成型方法,简称FDM。
丝状材料选择性熔覆的原理室,加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作X-Y平面运动。
热塑性丝状材料如直径为1.78m m的塑料丝由供丝机构送至喷头,并在喷头中加热和溶化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。
一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层"画出"截面轮廓,如此循环,最终形成三维产品零件。
这种工艺方法同样有多种材料选用,如ABS塑料、浇铸用蜡、人造橡胶等。
这种工艺干净,易于操作,不产生垃圾,小型系统可用于办公环境,没有产生毒气和化学污染的危险。
但仍需对整个截面进行扫描涂覆,成型时间长。
适合于产品设计的概念建模以及产品的形状及功能测试。
由于甲基丙烯酸ABS M AB S 材料具有较好的化学稳定性,可采用加码射线消毒,特别适用于医用。
但成型精度相对较低,不适合于制作结构过分复杂的零件。
FD M快速原型技术的优点是:1、操作环境干净、安全可在办公室环境下进行。
2、工艺干净、简单、易于材作且不产生垃圾。
3、尺寸精度较高,表面质量较好,易于装配。
可快速构建瓶状或中空零件。
4、原材料以卷轴丝的形式提供,易于搬运和快速更换。
5、材料利用率高。
6、可选用多种材料,如可染色的A BS和医用A BS、PC、PP SF等。
FDM快速原型技术的缺点是:1、做小件或精细件时精度不如SLA,最高精度0.127mm。
2、速度较慢。
SL A敏树脂选择性固化是采用立体雕刻Stereo litho gra phy原理的一种工艺,简称SLA,也是最早出现的、技术最成熟和应用最广泛的快速原型技术。
在树脂液槽中盛满液态光敏树脂,它在紫外激光束的照射下会快速固化。