均相催化臭氧氧化设备处理染料废水技术
- 格式:pdf
- 大小:237.21 KB
- 文档页数:2
臭氧催化氧化技术在废水处理中的应用随着工业的发展以及城市化的进程,废水处理成为一个日益重要的问题。
废水中的有机污染物、酸性物质和重金属等物质对环境和人体健康都具有极大的危害。
因此,开发出一种高效、节能、环保的处理技术是很有必要的。
臭氧催化氧化技术便是其中一种较为理想的选择。
一、臭氧催化氧化技术的定义及原理臭氧催化氧化技术,简称催化氧化,是利用高效臭氧发生装置将氧气转化为臭氧,再将臭氧与废水中的污染物接触发生氧化反应的一种废水处理技术。
催化氧化技术主要基于臭氧具有较强氧化作用的特点,将臭氧作为一种氧化剂,与废水中的有机物、难降解物质发生氧化反应,可以高效地降解废水中的有机物、难降解物质和部分微污染物,降低废水中有害物质的含量,达到净化废水的目的。
同时,臭氧还有消毒和去除异味的作用。
二、催化氧化技术的优点1. 高效净化废水催化氧化技术对废水中的有机物、难降解物质和部分微污染物都具有很高的降解率,特别是对一些需要高浓度催化氧化的难降解有机物,如苯酚、草酸等废水处理效果优于其他技术。
同时,催化氧化技术可以去除废水中的异味,达到水体资源的保护和循环利用。
2. 药剂消耗量低相比其他处理技术,催化氧化技术的药剂消耗量较低,只需适量的臭氧气体和少量的辅助药剂,可以降低废水处理成本,减轻环境污染。
3. 自动化程度高催化氧化技术的操作过程相对较简单,可以实现智能化控制,自动控制设备参数,减少作业人员的劳动强度,提高工作效率。
三、催化氧化技术的应用场景1. 废水深度处理催化氧化技术具有高效处理废水的能力,可以在市政污水处理厂、工业废水处理厂中得到应用,特别是一些难降解有机废水的处理效果显著,同时也适用于化工、制药、食品、印染、纸浆造纸等行业的废水处理。
2. 水环境净化催化氧化技术可以降低水环境中有害物质的含量,减少对水环境的污染,例如城市排水沟、河流、湖泊等水域的水质净化。
3. 其他应用催化氧化技术还可用于食品工业中的废水处理和鼎力环保科技有限公司豆腐清污废水处理,以及污染物氧化降解、精细有机物合成、臭氧消毒等领域。
高级氧化技术处理染料废水的研究进展高级氧化技术处理染料废水的研究进展摘要:随着纺织工业的快速发展,废水处理成为亟待解决的环境问题。
染料废水具有高浓度、难以降解、色度高等特点,传统的废水处理方法效果不佳。
而高级氧化技术作为一种有效的废水处理方法,受到了广泛关注。
本文综述了高级氧化技术处理染料废水的研究进展,包括光催化氧化、臭氧氧化、高级氧化过程等。
1. 引言纺织工业是全球最大的水污染源之一,废水中的染料成分使其具有难以降解和高度有毒性的特点。
传统的物理、化学方法无法彻底处理染料废水,因而高级氧化技术应运而生。
高级氧化技术是利用强氧化剂产生高活性的氧自由基,将有害物质转化为无害物质,从而实现废水的净化和去除染料的目的。
2. 光催化氧化技术光催化氧化技术利用紫外线、可见光等能量激发催化剂产生高活性的氧自由基,进而进行染料废水的氧化降解。
光催化氧化技术具有处理速度快、降解效率高、环境友好等优点。
研究表明,通过调节催化剂种类、光源强度以及反应条件可以显著改善光催化氧化技术的效果。
3. 臭氧氧化技术臭氧氧化技术是利用臭氧气体对废水进行氧化降解的方法。
臭氧是一种强氧化剂,可以迅速降解染料废水中的有机物。
然而,使用臭氧氧化技术处理染料废水存在一定的挑战,如臭氧生成量的控制、反应时间的控制等。
4. 高级氧化过程高级氧化过程是综合利用多种高级氧化技术进行染料废水处理的方法。
比如,利用光催化氧化技术产生的自由基和臭氧氧化技术产生的臭氧自由基相结合,可以实现染料废水的高效降解。
此外,还可以结合其他辅助技术,如奥氏体催化剂、电化学技术等,进一步改善高级氧化过程的效果。
5. 研究现状与问题目前,高级氧化技术在染料废水处理领域取得了一定的进展,但还存在一些问题亟待解决。
首先,高级氧化技术对染料废水中的不同颜料呈现不同的降解效果,如何选择最适合的处理技术成为了一个难题。
其次,高级氧化技术在处理过程中产生的副产物对环境和人体健康的影响也需要进一步研究。
铁碳微电解/臭氧氧化工艺处理蒽醌染料废水的研究我国的印染废水数量巨大,其具有水质水量变化大、有机物浓度高、色度高、pH高及可生化性差等特点,属难降解的工业废水.被公认为最难治理的废水之一。
目前,国内对该类有机废水处理的方法主要包括膜分离、混凝、间歇式活性污泥法(SBR)、芬顿氧化等方法。
但是随着印染行业工艺的发展,新的染料助剂和中间体不断出现,传统物化,生化处理工艺出水难以达到国家不断提高的标准要求。
铁碳微电解技术是通过氧化、还原、物理吸附、絮凝及催化效应等协同作用,实现重金属离子的去除、废水脱色、有机污染物去除、降低毒性、提高有机废水的可生化性等目的,具有适用范围广、成本低、工程可操作性强、处理效果好、低碳环保等优点。
臭氧氧化技术因其高效、二次污染小、工艺条件相对温和稳定等特点,逐渐引起注意。
臭氧具有高还原电位,尤其在碱性条件下,可分解产生强氧化性的羟基自由基,把难降解的大分子有机物氧化降解成低毒或无毒的小分子物质,从而提高废水的可生化性或直接将有机物降解矿化。
但单独使用臭氧氧化处理印染废水有其局限性,其原因是臭氧分子的直接氧化具有很强的选择性,且速度慢,氧化速率不高。
铁碳微电解/臭氧氧化工艺,正是基于上述方法的一种废水处理技术,通过直接向铁碳微电解体系中曝臭氧,以期充分发挥微电解与臭氧的优势及协同作用。
目前,关于铁碳微电解/臭氧氧化工艺的文献较少,且鲜有关于铁碳填料对于工艺的影响的报道。
本实验采用铁碳微电解/臭氧氧化工艺处理模拟蒽醌类废水,通过单因素实验,考察初始pH值、铁用量、铁碳比和反应时间、曝气方式、回流方式对COD去除率及脱色率的影响,找出最佳工艺参数,为其在废水治理工艺中的实际应用提供技术参考。
1.材料与方法1.1实验材料取活性艳蓝XB-R0.1g溶于1L水中,配置成100mg/L的模拟蒽醌类染料废水。
采用机械加工厂的铁刨花作为实验铁原料,先将铁原料处理成2~3cm大小,用10%NaOH溶液浸泡0.5h,以除去表面油脂和其他杂物;再用10%盐酸浸泡0.5h,以去除铁屑表面的氧化物和氢氧化物,提高铁屑活性,洗净烘干备用。
臭氧氧化法深度处理印染废水生化处理出水臭氧氧化法深度处理印染废水生化处理出水在印染工业中,印染废水的产生是一项严重的环境问题。
大量的印染废水中含有大量的有机物、色素、酸碱物质等有害物质,对环境产生严重的污染。
因此,如何有效地处理印染废水成为了一项重要的任务。
传统的印染废水处理采用生化处理工艺,通过利用微生物将有机污染物分解为无机物,但这种方法存在一些问题,例如处理时间长、容易受到抗生物质的干扰等。
臭氧氧化法作为一种新型的废水处理技术,可以提供一种快速高效的方式来处理印染废水。
臭氧氧化法是通过臭氧气体的强氧化作用,将有机污染物降解为无机物。
其工作原理是在臭氧的作用下,有机污染物中的双键、三键等易被氧化的结构被破坏,产生氧化物质和较低的分子量有机化合物。
同时,臭氧氧化法还可以破坏有机污染物的分子链,降低其毒性。
臭氧氧化法具有处理效率高、处理时间短、不受抗生物质的干扰等优点。
其处理后的废水中有机物降解程度高,色度低,可以达到环境排放标准。
而且,臭氧氧化法还可以通过调节反应条件,使得处理过程更加稳定,提高其处理效率。
在印染废水处理中,臭氧氧化法可以与生化处理工艺相结合,通过两者的协同作用,达到更好的处理效果。
生化处理是一种微生物氧化有机物的过程,可以将残留的有机物进一步分解为无机物。
而臭氧氧化法可以提前将有机物氧化,降低生化处理的难度,提高处理效率。
综上所述,臭氧氧化法是一种高效、快速的处理印染废水的技术。
通过该技术的应用,可以有效降低废水中有机物和色素的含量,使处理后的废水达到环境排放标准。
在实际应用中,可以结合生化处理工艺,通过两种技术的协同作用,进一步提高废水处理效果。
但是,值得注意的是,臭氧氧化法还存在一些问题,例如臭氧产生和利用成本较高、反应器设备成本较高等,需要进一步的研究来解决这些问题臭氧氧化法是一种常用的印染废水处理技术,其具有高效、快速、可降解有机物和色素的优点,可以使处理后的废水达到环境排放标准。
电解均相催化氧化还原法降解印染废水的研究摘要:利用自制的电解装置,以铁电极作为阳极,铜电极作为阴极对模拟印染废水进行电解.电解过程中产生的过氧化氢与阳极溶解生成的Fe2+生成羟基自由基,具有很强的氧化性,能与模拟印染废水中的发色基团(苯环)发生自由基链反应,并将苯环破坏降解。
通过分子光谱法研究分析,结果表明:印染废水中的发色基团被完全破坏降解,脱色率可达99%以上,而用的时间仅为20min左右.关键词染料降解 Fenton试剂印染废水;水处理技术环境保护与污染防治越来越受到人们的重视,被认为是新世纪里最为关注的一项工程。
特别是对于纺织业印染废水的处理,一直为人们所困扰,据资料表明,在纺织印染过程中,染料的损失率约为10%左右。
由于该类废水具有水量大。
成分复杂。
难降解。
色度深,因此,所产生的危害尤为严重(1)。
对于这类废水的处理一般所采用的方法有吸附。
混凝。
氧化。
还原与生化等(2-3)。
而这些方法都有着一些难以克服的缺点,很难达到对高色度印染废水的处理的要求。
Eisenuer等利用Fenton试剂首次在处理苯酚工业废水中得到很好效果,引起了广泛关注(4)。
本文利用了自制电解装置,以铁电极为阳极,铜电极为阴极,研究了在电解过程中产生过氧化氢与阳极溶解生成的Fe2+反应,生成的氢氧根自由基。
由于氢氧根自由基具有很高的氧化电位,可以通过引发自由基链反应而使得印染废水中的有机物被氧化降解为最简单的分子H2O和CO2,因此对于纺织印染废水的脱色处理卓有成效,具有很高的实用价值.该方法具有操作简便,设备简单,效率高且没有二次污染,是纺织业印染废水处理中的一种很好的方法。
本文基于对于电极的选择.工艺条件.电解质的加入量和实验条件的优化选择进行了研究,并且对于其脱色机理作了初步探讨.1、实验部分:1、1 试剂模拟印染废水:邻苯三酚红(PR);溴邻苯三酚红(BPR);溴酚红;茜素紫;溴甲酚绿.浓度均为0.5×10-3mol/L。
染料废水的处理方法
染料废水的处理方法主要有以下几种:
1. 生物降解法:利用微生物对染料进行分解和降解。
可以通过调整废水的pH 值、温度和营养物质的添加等条件来优化生物降解过程。
2. 物理化学法:包括吸附、沉淀、氧化还原、膜分离等方法。
吸附法用活性炭等材料吸附染料,沉淀法利用化学反应使废水中的染料形成不溶性沉淀物,氧化还原法通过氧化或还原染料分子来降解染料,膜分离法则通过膜的选择性通透性将废水中的染料分离出来。
3. 光/电解法:利用紫外光、紫外可见光、电解等方法来降解染料。
光解法通过辐照废水使染料分子发生光解反应,电解法则利用电解过程中产生的氧化还原作用来分解染料
4. 组合处理法:结合以上多种处理方法进行综合处理,以提高废水的处理效果。
例如,先利用生物降解法将染料分解为较小分子,然后再进行物理化学处理。
需要根据具体情况选择合适的处理方法,并针对性地进行工艺设计和操作调控等操作。
同时,对于染料废水处理过程中产生的副产物和残留物,也要进行妥善处理和处置,以保护环境和人体健康。
催化臭氧氧化之均相催化氧化技术以催化臭氧氧化之均相催化氧化技术为标题的文章一、引言均相催化氧化技术是一种重要的氧化反应方法,能够在常温常压下将有机物氧化为有机酸、酮、醛等化合物。
其中,催化臭氧氧化技术作为一种高效的均相催化氧化技术,在环境保护和有机合成领域具有广泛应用前景。
二、催化臭氧氧化的原理催化臭氧氧化是利用催化剂促进臭氧分子与有机物发生氧化反应的过程。
催化剂通常为金属离子或过渡金属化合物,其作用是提供活性位点,吸附臭氧分子并激活臭氧分子中的氧原子。
臭氧分子激活后,与有机物发生反应,将有机物中的碳氢键氧化为羟基、羰基等功能团。
三、催化臭氧氧化的应用领域1. 环境保护领域:催化臭氧氧化技术可以将有机废水中的有害有机物进行有效降解,达到环境排放标准。
同时,催化臭氧氧化还可以有效去除大气中的有机污染物,提高空气质量。
2. 有机合成领域:催化臭氧氧化技术能够在有机合成中实现高效、高选择性的氧化反应。
通过调节催化剂的种类和反应条件,可以实现对不同官能团的选择性氧化,从而合成目标化合物。
四、催化臭氧氧化的优势和挑战1. 优势:(1)高效性:催化臭氧氧化技术在常温常压下能够高效完成氧化反应,提高反应速率和产率。
(2)环保性:催化臭氧氧化技术无需加热或高压条件,减少能源消耗和环境污染。
(3)选择性:通过选择合适的催化剂和反应条件,可以实现对特定官能团的选择性氧化。
2. 挑战:(1)催化剂的选择:不同的有机物需要不同的催化剂来实现有效氧化,催化剂的选择对反应效果至关重要。
(2)副反应的控制:催化臭氧氧化过程中,可能会产生一些副反应,如酸解、脱羧等,需要进一步研究和优化反应条件,以提高产率和选择性。
(3)催化剂的稳定性:催化剂的稳定性对反应的持续进行具有重要影响,需要开发更稳定的催化剂。
五、结论催化臭氧氧化技术作为一种高效的均相催化氧化技术,在环境保护和有机合成领域具有广泛应用前景。
通过调节催化剂的种类和反应条件,可以实现对不同官能团的选择性氧化,从而合成目标化合物。
染料废水处理技术方法的研究染料废水是指染料生产、印染等行业的废水。
其中含有各种有机物、无机盐、重金属等有害物质,对环境造成严重污染。
因此,如何有效处理染料废水成为环保工作中重要的课题之一。
本文将介绍染料废水处理技术方法的研究现状。
一、化学法1. 氧化法:将染料废水中的有机物氧化分解,使其变成无害水体。
氧化方式有化学氧化和生物氧化两种。
化学氧化一般采用臭氧氧化法、氧气氧化法、高压氧化法等。
臭氧氧化法是指用臭氧气体对染料废水进行氧化处理。
臭氧具有很强的氧化性,可以直接氧化有机物,能够彻底分解染料污染物。
但是臭氧气体的使用成本较高,设备复杂,需要专业人员进行操作。
氧气氧化法是指将氧气引入染料废水,使其氧化分解称为无害物质。
这种方法操作简单、成本较低,但适用范围较窄。
高压氧化法是指将染料废水经过机械强制进入加压釜,同时向其中注入氧气,使压力快速升高,引发氧化反应。
该方法具有反应速度快、处理效果好等优点,但需要较高的压力要求,设备价格较高。
生物氧化一般采用好氧生物法和厌氧生物法。
好氧生物法主要利用一些特殊的菌类将染料废水中的有机物质分解成 CO2 和 H2O 等无害物质,该方式比较适合处理低浓度染料废水。
厌氧生物法则能够分解难分解的有机物,处理效果好,但设备复杂,控制难度较大。
2. 沉淀法:将染料废水中的沉淀物和悬浮颗粒物通过沉淀物理处理方式进行分离,从而去除染料污染物。
这种方法的优点是可以同时去除废水中的重金属等有害物质。
但由于沉淀后难以达到二次沉淀要求,因此不太适合处理高浓度染料废水。
二、物理法1. 膜过滤法:膜过滤法常常使用反渗透膜、超滤膜、微滤膜等进行处理。
反渗透膜是一种半透膜,能够过滤掉染料废水中的有机物质、无机盐、重金属等有害物质,同时保留水分子。
该方法具有高效、节能、无二次污染等优点,但设备成本和维修成本较高。
2. 吸附法:将染料废水中的污染物质通过吸附剂或吸附树脂进行分离,从而去除染料污染物。
臭氧氧化技术处理直接紫染料废水的分析摘要:采用臭氧氧化法处理直接紫染料废水,考察了反应时间、臭氧投加量和初始pH等条件下臭氧氧化过程对废水COD和色度去除率的影响。
结果表明,臭氧氧化过程中COD去除率随着臭氧投加量的增加而增强,随着反应时间和初始pH的增加先增大后减小;色度的去除率随着臭氧投加量和反应时间的增加而增加,随着初始pH的增加先增加后略有减小。
当初始pH为10、臭氧投加量为35 μg/L、处理7 min时,COD去除率达92.8%,色度去除率可达98.3%,污水处理效果最佳。
关键词:臭氧氧化;染料废水;COD;色度染料废水通常具有有机污染物含量高、色度深、成分复杂、可生化性差等特点,且排放量大,用传统的物化法和生物处理很难使出水达标[1,2]。
如果直接排放到环境中,势必给环境带来严重污染。
因此,寻求一种高效的染料废水处理技术对环境污染治理具有重大意义[3,4]。
臭氧氧化作为一种实用、高效的氧化技术,具有氧化能力强、反应时间短、无二次污染、设备简单等优点[5],它通过活泼的羟基自由基与有机污染物反应,生成易生化降解的小分子有机酸、醛等物质或者完全矿化为CO2和H2O,达到降解有机物、去除色度和提高废水生化性的目的,易于后续生物处理,在印染废水、抗生素废水、石化行业废水等生物难降解废水的处理过程中有巨大的应用潜力,受到人们的广泛关注[6]。
采用臭氧氧化技术处理直接紫染料废水,研究了反应时间、臭氧投加量和初始pH等因素对废水COD和色度去除效果的影响,为臭氧氧化技术处理染料废水的工业实施与控制提供理论研究基础。
1 材料与方法1.1 材料1.1.1 试验水样模拟染料废水为339 mg/L的紫染料,水样的初始COD值为160 mg/L,初始pH 8.26,色度为500倍。
1.1.2 试剂新配制的0.1 mol/L 的Na2SO3溶液;2%的KI溶液;0.1 g/L 的淀粉溶液;H2SO4和NaOH溶液。
臭氧化处理可作为印染废水的预处理阶段1.臭氧氧化设备降低污泥产量在废水的生物处理过程中生产的污泥日益成为一个很重要的问题,因为通过土地填埋或者农业回用处理的污泥量是有限的,所以需要研究污水处理厂生产的污泥的处置方法。
臭氧氧化设备是一种很好的污泥减量化技术,它通过银行固体颗粒物,提高污泥的可生化性,来减少污泥的量。
尤其对于厌氧生物处理系统中产生的污泥特别有用,因为厌氧生物处理系统产生的污泥的可生化性特别低。
光电催化氧化技术这种工艺是在一定的时段内向污泥回流管路投加臭氧进行臭氧氧化。
臭氧氧化设备也可以在污泥回流线路终端设置的反应罐中进行。
臭氧能够破坏微生物组织,产生更多的有机物,部分矿化污泥。
而另外一部分臭氧氧化设备后的污泥则进入好氧罐后发生矿化,这样使得整个过程产生的污泥量很少。
这种工艺对系统的其他的指标也有改善作用。
2.污水臭氧氧化设备脱色杀菌消毒处理随着对自来水水源环境及下水道二次处理水再利用的关注,二次处理水去色受到重视及印染废水脱色处理。
印染废水中偶氮色素稳定性高、水溶性大,是一种难降解的有机物。
传统的化学氧化法和生物法难以取得令人满意的效果。
臭氧的氧化性极强,在自然界中其氧化还原电位仅次于氟,常用于工业废水的杀菌消毒、除臭、脱色等。
臭氧化技术作为一种高级氧化技术近年来被用于去除染料和印染废水的色度和难降解有机物。
其反应原理主要是通过活泼的自由基(OH·)与污染物反应,使染料的发色基团中的不饱和键断裂,生成分子量小、无色的有机酸、醛等中间产物,这些中间产物难以被臭氧彻底氧化,但能够被微生物进一步降解,所以臭氧化处理可以作为印染废水的预处理阶段,提高废水的可生化性。
(1)碱性条件下,臭氧化使印染废水的脱色速率加快,提高废水初始pH可以使活性艳红X-3B的降解、脱色速率上升。
(2)活性艳红X-3B初始浓度小于50 mg/L时,臭氧降解活性艳红X-3B的过程基本符合一级反应,表观速率常数与活性艳红X-3B初始浓度基本成反比。
臭氧催化氧化技术深度处理印染废水的研究李桂菊;李弘涛;夏欣;杨浩伟;岳悦【摘要】为了提高臭氧催化氧化技术在印染废水深度处理中的去除效率,提高催化剂的使用寿命,本研究利用混合法自制非均相催化剂,并考察了其在深度降解印染废水中橙黄G的应用.对废水初始pH、催化剂的投加量和臭氧投放速率3个过程参数进行了优化.研究结果表明,臭氧催化氧化降解橙黄G废水的最佳工艺参数是废水初始pH 6~7、反应时间60 min,催化剂的投加量为300 g/L、臭氧投放速率为1.60 mg/(L·min).利用该工艺参数对某印染厂二沉池出水进行深度处理,60 min后出水COD为58.7 mg/L,COD去除率为67.4%,出水COD已经达到国家排放标准(GB 18918—2002)的一级B标准.臭氧催化氧化降解橙黄G的过程符合一级反应动力学模型,反应速率常数随废水pH、臭氧投放速率及催化剂投加量的变化规律与单因素实验结果相吻合.【期刊名称】《天津科技大学学报》【年(卷),期】2019(034)002【总页数】6页(P55-59,80)【关键词】橙黄G;臭氧催化氧化;印染废水【作者】李桂菊;李弘涛;夏欣;杨浩伟;岳悦【作者单位】天津市海洋环境保护与修复技术工程中心,天津科技大学海洋与环境学院,天津 300457;天津市海洋环境保护与修复技术工程中心,天津科技大学海洋与环境学院,天津 300457;天津市海洋环境保护与修复技术工程中心,天津科技大学海洋与环境学院,天津 300457;天津市海洋环境保护与修复技术工程中心,天津科技大学海洋与环境学院,天津 300457;天津市海洋环境保护与修复技术工程中心,天津科技大学海洋与环境学院,天津 300457【正文语种】中文【中图分类】X791染料废水排放量巨大,而且染料废水中难生物降解有机物种类多,具有致畸、致癌和致突变的作用,可生化性差.新的环保法规对印染废水的排放有更严格的要求,因此印染废水的深度处理面临更高的挑战[1-2].当今印染废水的深度处理方法主要有吸附法、电化学法、Fenton氧化法以及臭氧氧化法[3-5].吸附法中吸附剂再生后性能变差,所以需要不断更换,费用较高;电化学法耗电较大、电极消耗较多,产业化还有一定距离;Fenton氧化法药剂成本高,会产生铁泥;而臭氧氧化技术既可以实现有机物的有效降解,又可以很好地脱色,非常适合印染废水的深度处理.但是,单纯的臭氧氧化技术氧化效率不高,当加入催化剂构成催化氧化体系后,可以对有机物实现良好的降解,然而在实际应用过程中,均相催化剂组分存在无法回收的不足[6].本课题组采用混合法制备非均相催化剂,一方面保证了催化剂的机械强度和硬度,易固液分离,有利于催化剂重复利用;另一方面提高了载体与活性组分之间的结合力,降低活性组分的溶出,提高催化剂稳定性[7-9].本研究拟利用自制的催化剂臭氧催化氧化对印染废水进行深度处理,为产业化应用提供理论支持.1 材料与方法1.1 废水来源臭氧催化氧化工艺参数确定时,采用偶氮染料橙黄G(天津市百世化工有限公司)配制的模拟废水,实验所用模拟废水质量浓度为 250mg/L.真实印染废水来自四川绵阳某染料厂的二沉池出水,该废水仅为COD和色度不达标,其他水质参数均达到 GB 18918—2002《城镇污水处理厂污染物排放标准》中的一级 B标准.本实验主要利用臭氧催化氧化技术进行深度处理.实验用水水质指标见表1.表1 实验用水主要水质指标Tab. 1 Main water quality indexes of experimental water?1.2 实验装置臭氧反应装置如图 1所示.该装置主要包括NOP 10P-3-2型臭氧发生器(东绿邦光光电设备有限公司)、臭氧反应柱、气体流量计、臭氧浓度计、臭氧尾气吸收瓶.图1 臭氧反应装置图Fig. 1 Ozone reaction set-up diagram1. 臭氧发生器;2.气体流量计;3. 臭氧反应柱;4. 曝气头;5—7. 臭氧尾气吸收液;8. 臭氧浓度计1.3 臭氧投放速率的计算臭氧投放速率为每分钟通入装置内的臭氧总量与臭氧利用率之积,而臭氧总量为产生气体中臭氧的浓度与臭氧流量之积.反应后的剩余臭氧通过 KI吸收法测定,臭氧的利用率为通入的臭氧总量与剩余臭氧量差值与通入的臭氧总量的比值,所以臭氧的实际投放速率可通过式(1)求得.式中:v为臭氧投放速率,mg/(L·min);ρ为产生混合气体中的臭氧质量浓度,mg/L;Q为气体流量,L/min;η为臭氧利用率;V为废水体积,L.1.4 检测方法使用德国 WTW 公司的 CR2200型消解仪,采用重铬酸钾法进行 COD测定;使用日本岛津公司UV-2550型紫外可见分光光度仪,采用紫外分光光度法进行橙黄G浓度测定;采用稀释倍数法进行色度测定;使用上海奥豪斯公司的STARTER 310型pH计进行pH测定.2 结果与讨论2.1 工艺条件的探索以含橙黄 G的模拟废水为实验对象探讨废水pH、臭氧投放速率以及实验室自制催化剂的投加量对橙黄 G的降解效率的影响,确定臭氧催化氧化的最佳工艺条件.实验室自制催化剂通过将一定量活性炭粉浸渍于质量分数为 6%的硝酸铜溶液中搅拌 2h,过滤烘干后在氮气环境保护下升温至800℃烧结而成.工艺探索过程中所使用催化剂均经过吸附饱和处理,即在实验前将催化剂在250mg/L的橙黄G模拟废水浸泡5h,经测定本催化剂对 COD的饱和吸附量为1.87mg/g.催化剂达到吸附饱和后,再进行催化氧化研究,排除催化剂吸附造成的影响.2.1.1 pH的影响取500mL质量浓度为250mg/L的橙黄G模拟废水于反应容器中,实验室自制催化剂的一次投加量为 300 g/L(固液体积比1∶3),臭氧的投放速率为1.60mg/(L·min).探讨废水 pH 为 3、5、6.5、9、11 对臭氧催化氧化的影响,其中 pH=6.5为原水 pH.结果如图 2、图 3所示.在对不同 pH废水进行降解过程中,随着溶液pH由3逐渐升高到11,COD的去除率先增大后减小,处理效果最佳为原水pH 6.5.反应进行 25min后,在溶液 pH为 6.5的条件下,COD去除率达到了83.17%.分析其原因,在较低pH的条件下,有机染料橙黄 G的降解原理主要为臭氧的直接接触氧化,废水 pH由 3升高至 6.5的过程中,随着溶液 pH 的升高,OH-的浓度增大,产生羟基自由基的速率变快,逐渐转变到臭氧的间接氧化,因而能够提高 COD 的去除率[10-11].但是,随着溶液 pH的进一步升高,COD的去除率反而下降,产生这一现象的原因可能是当溶液 pH过高,溶液中就会存在大量的 OH-,会促使臭氧很快分解产生大量羟基自由基,当溶液中的羟基自由基浓度较大时,羟基自由基之间相互碰撞猝灭的概率将会显著升高,从而致使羟基自由基数量下降,对橙黄 G的降解产生不利影响[12-15].由图3可知:在pH 6.5的条件下,橙黄G的降解效率最高,在 5min左右基本全部被分解,色度几乎为0.图2 废水pH对COD去除率的影响Fig. 2 Effect of different wastewater initial pH on the removel rate of COD图3 废水pH对橙黄G去除率的影响Fig. 3 Effect of different wastewater initial pH on the removel rate of orange G2.1.2 臭氧投放速率的影响取500mL质量浓度为250mg/L的橙黄G模拟废水于反应容器中,实验室自制催化剂的一次投加量为 300g/L,pH 为 6.5,控制臭氧的投放速率分别为0.53、1.07、1.60、2.13、2.66mg/(L·min),确定臭氧催化氧化橙黄 G的臭氧最佳投放速率,其实验结果如图4、图5所示.图4 臭氧投放速率对COD去除率的影响Fig. 4 Effect of different ozone acceleration rate on the removal rate of COD图5 臭氧投放速率对橙黄G去除率的影响Fig. 5 Effect of different ozone acceleration rate on the removal rate of orange G由图 4可知:当臭氧投放速率不断增大时,溶液中 COD的去除率明显提高.这是因为当臭氧投放速率不断增大时,气液两相中的臭氧浓度差异较大,增强了臭氧在溶液中的传质效果,导致大量臭氧分子溶于水中参与降解有机物,这样就会使COD及橙黄 G的去除率增大[16].当臭氧投放速率为0.53mg/(L·min)时,反应25min后 COD的去除率仅为 59.4%;当臭氧投放速率为1.60mg/(L·min)时,25min后COD去除率达到了 83.2%,但当臭氧投放速率增大到2.13mg/(L·min)和2.66mg/(L·min)时,COD 的去除效果没有显著提高,这是因为在标准状况下,1体积水溶解0.494体积臭氧,废水中臭氧的溶解度在一定温度下达到饱和,即使继续增大臭氧投加量,废水中臭氧浓度也不会进一步提升.并且,臭氧再其浓度较大的情况下便会成为羟基自由基的捕获剂,从而影响臭氧降解有机物效率.因此,本研究确定臭氧投放速率为1.60mg/(L·min).2.1.3 催化剂投加量的影响取500mL质量浓度为250mg/L的橙黄G模拟废水,臭氧的投放速率为1.60mg/(L·min),废水的初始 pH为 6.5,实验室自制催化剂的一次投加量分别为50、100、200、300、400g/L,探究实验室自制催化剂的投加量对臭氧催化氧化橙黄 G的影响,其实验结果如图6、图7所示.图6 催化剂投加量对COD去除率的影响Fig. 6 Effect of different catalyst dosage on the removal rate of COD图7 催化剂投加量对橙黄G去除率影响Fig. 7 Effect of different catalyst dosage on the removal rate of orange G由图 6、图 7可知:当实验室自制催化剂的投加量不断增加时,废水中COD及橙黄G的去除率逐渐升高.在 25min时,未投加自制催化剂情况下,废水中 COD的去除率为29.3%,自制催化剂投加量分别为50、100、200、300、400g/L 时,废水中 COD 的去除率分别为 51.9%、67.3%、72.4%、83.2%、84.0%.分析其原因,这主要是由于随着实验室自制催化剂投加量的增加,可利用的活性位点也随着增多,臭氧分子、橙黄 G和实验室自制催化剂碰撞机会和接触面积显著增大,臭氧得到更加充分的利用[17].但当实验室自制催化剂投加量从 300g/L 提高至400g/L时,COD的去除率并没有显著的变化,这可能的原因是,当臭氧浓度一定时,过多的实验室自制催化剂中活性位点无法被完全占据,造成了实验室自制催化剂的浪费;也有可能是因为实验室自制催化剂投加量过高,产生的过多的羟基自由基又可以相互作用形成过氧化氢[18].实验室自制催化剂的一次性臭氧投加量选取300g/L.2.2 臭氧催化氧化的动力学研究对臭氧催化氧化动力学进行研究,不仅可以得知有机物降解过程中的一般规律,而且可以明确各工艺条件对污染物降解的贡献,从而为实践应用提供指导.本实验分别对不同 pH、不同臭氧投放速率以及不同催化剂投加量下COD的降解情况进行一元线性回归分析,其拟合结果如图8和表2所示.由此可见,在不同的条件下,臭氧催化氧化降解橙黄G的过程都能较好地符合一级动力学模型.图8 不同条件下的一级动力学拟合Fig. 8 The first-order reaction kinetics under different conditions随着溶液pH的增大,橙黄G的降解速率常数先增大而后减小,pH为 6.5时,降解速率常数最大,此时橙黄G的降解速率常数为0.035,与前文催化体系最佳pH 筛选结果相吻合.随着臭氧投放速率及催化剂投加量的增加,反应速率常数均增加,进一步验证了单因素的实验结果.表2 不同条件下一级反应动力学反应速率常数Tab. 2 The first-order reaction kinetics constant under different conditionspH K/min-1 R2 3 0.029 0.966 5 0.034 0.996 6.5 0.035 0.975 9 0.030 0.986 11 0.029 0.984臭氧投放速率/(mg·L-1·min-1) K/min-1 R2 0.53 0.023 0.996 1.07 0.025 0.981 1.60 0.034 0.985 2.13 0.034 0.982 2.66 0.037 0.987催化剂投加量/(g·L-1)K/min-1 R2 50 0.027 0.978 100 0.028 0.993 200 0.033 0.999 300 0.035 0.982 400 0.036 0.9892.3 臭氧催化氧化技术处理真实印染废水对单独臭氧氧化降解和臭氧催化氧化降解真实印染废水进行比较,考察催化剂的贡献,结果见表 3和图9.单独臭氧氧化反应120min后,出水COD值为64.9mg/L,而《城镇污水处理厂污染物排放标准》(GB 18918—2002)中的一级B标准要求 COD的最高值为 60mg/L,即单独臭氧氧化处理 120min仍达不到排放标准,如若进一步延长处理时间来达到排放标准,则相应的成本会大大提高.而臭氧催化氧化处理5min后,色度便降为0,处理60min后,出水COD 为58.7mg/L,出水 BOD5为 19.1mg/L.这一结果已经达到国家排放标准(GB 18918—2002)中的一级B标准.表3 不同处理工艺下真实废水COD出水水质Tab. 3 Effluent quality of wastewater COD with different treatment processesCOD/(mg·L-1)时间/min 单独臭氧氧化臭氧催化氧化15 133.1 93.4 30 106.3 72.9 45 94.7 66.6 60 86.2 58.7 90 79.4 53.8 120 64.9 45.6图9 不同处理工艺对COD去除率的影响Fig. 9 Effect of different treatment processes on the removal of COD由图9可见:催化剂的加入使得在相同的反应时间内,COD的去除率提高了20%~25%.3 结论臭氧催化氧化降解橙黄 G废水的最佳工艺参数:废水初始 pH 为 6~7、催化剂的投加量为300g/L、臭氧投放速率为1.60mg/(L·min).动力学分析表明,臭氧催化氧化降解橙黄 G过程符合一级反应动力学模型.对某印染厂废水二沉池出水的处理结果表明:臭氧催化氧化真实印染废水处理效果显著,处理5min后,色度便降为0;处理60min后出水COD 为 58.7mg/L,出水 BOD5为 19.1mg/L,已经达到国家一级 B的排放标准(GB 18918—2002).催化剂的加入使得在相同的反应时间内,COD的去除率提高了20%~25%.参考文献:【相关文献】[1]张林生. 水的深度处理与回用技术[M]. 北京:化学工业出版社,2004.[2]高俊发. 水环境工程学[M]. 北京:化学工业出版社,2003.[3]刘伟京. 印染废水深度降解工艺及工程应用研究[D].南京:南京理工大学,2013.[4]金建华. 生化/芬顿试剂氧化组合工艺处理印染废水试验研究[D]. 武汉:武汉理工大学,2012. [5]蔡华,李克林,陈毅忠,等. 活性炭催化臭氧氧化深度处理印染废水[J]. 常州大学学报:自然科学版,2010,22(3):38-41.[6]黄仲涛,耿建铭. 工业催化[J]. 2版. 北京:化学工业出版社,2006.[7]Khadhraoui M,Trabelsi H,Ksibi M,et al. Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse[J].Journal of Hazardous Materials,2009,161(2):974-981.[8]He Z Q,Lin L L,Song S,et al. Mineralization of C. I.Reactive Blue 19 by ozonation combined with sonolysis:Performance optimization and degradation mechanism[J]. Separation and Purification Technology,2008,62(2):376-381.[9]Zhang H,LÜ Y J,Liu F,et al. Degradation of C. I. Acid Orange 7 by ultrasound enhanced ozonation in a rectangular air-lift reactor[J]. Chemical Engineering Journal,2008,138(1):231-238.[10]吴耀国,赵大为,焦剑,等. 臭氧化的负载型非均相催化剂制备及其作用机理[J]. 材料导报,2005,19(10):8-11.[11]洪浩峰,潘湛昌,徐阁,等. 活性炭负载催化剂臭氧催化氧化处理印染废水研究[J]. 工业用水与废水,2010,41(3):29-33.[12]袁淼卉. 粉煤灰基催化剂催化臭氧氧化深度处理印染废水的研究[D]. 苏州:苏州科技学院,2012.[13]Patnaik P. Handbook of Inorganic Chemicals[M]. New York:McGraw-Hill,2003. [14]He K,Dong Y,Yin L,et al. A facile hydrothermal method to synthesize nanosized Co3O4/CeO2 and study of its catalytic characteristic in catalytic ozonation of phenol[J]. Catalysis Letters,2009,133(1/2):209.[15]Qi F,Xu B,Chen Z,et al. Catalytic ozonation of 2-isopropyl-3-methoxypyrazine in water by γ-AlOOH and γ-Al2O3:Comparison of removal efficiency and mechanism[J]. Chemical Engineering Journal,2013,219:527-536.[16]张冉. 非均相催化臭氧氧化深度处理煤化工废水[D].哈尔滨:哈尔滨工业大学,2011. [17]Li W W,Qiang Z M,Zhang T,et al. Kinetics and mechanism of pyruvic acid degradation by ozone in the presence of PdO/CeO2[J]. Applied Catalysis B:Environmental,2012,113:290-295.[18]Qi F,Xu B,Zhao L,et al. Comparison of the efficiency and mechanism of catalytic ozonation of 2,4,6-trichloroanisole by iron and manganese modified bauxite[J]. Applied Catalysis B:Environmental,2012,121:171-181.。
开放性实验项目报告项目名称臭氧氧化法处理印染废水实验指导教师评价一、实验目的及意义1.了解臭氧制备的工艺流程及装置,掌握臭氧发生器的操作方法和臭氧用于水处理的实验方法;2.测定印染废水用臭氧脱色的效果;3.考察臭氧投加量对脱色效果的影响;4.熟练掌握用稀释倍数法测印染废水的色度。
二、实验内容1.测定不同电压下的臭氧浓度;2.测定通入臭氧后不同反应时间所取的水样的色度。
三、实验原理(1)臭氧的特点1.氧化能力强,对除臭、脱色、杀菌、去除有机物都有明显的效果;2.处理后废水中的臭氧易分解,不产生二次污染;3.制备臭氧的空气和电不必贮存和运输,操作管理也比较方便。
(2)臭氧处理印染废水的原理普遍存在于印染废水中的偶氮染料稳定性高、水溶性大,是一种难降解的有机物。
传统的化学氧化法和生物法难以取得令人满意的效果。
臭氧的氧化性极强,在自然界中其氧化还原电位仅次于氟,常用于工业废水的杀菌消毒、除臭、脱色等。
臭氧化技术作为一种高级氧化技术近年来被用于去除染料和印染废水的色度和难降解有机物。
其反应原理主要是通过活泼的自由基(OH·)与污染物反应,使染料的发色基团中的不饱和键断裂,生成分子量小、无色的有机酸、醛等中间产物,这些中间产物难以被臭氧彻底矿化,但能够被微生物进一步降解,所以臭氧化处理可以作为印染废水的预处理阶段,提高废水的可生化性。
臭氧的产生方法有化学法、电解法、紫外线法和电极放电法,应用最多的是电极放电法。
本实验所用的就是电极放电法,即在高压下产生的电火花把空气中的氧气转化为臭氧。
(3)臭氧浓度的测定一般采用化学碘量法。
利用臭氧与碘化钾的氧化还原反应,置换出与臭氧等当量的碘。
再用硫代硫酸钠与碘作用,待完全反应生成无色碘化钠。
根据硫代硫酸钠的消耗量计算出臭氧浓度。
其化学反应方程式如下:臭氧浓度计算:式中:N2、V2―Na2S2O3的当量浓度(0.1000N)和滴定用量(ml)V1―臭氧取样体积C―臭氧浓度(mg/L)(4)稀释倍数法测定水样的色度取25mL水样置于比色管中,加蒸馏水至50mL,摇匀,与另一个比色管中同体积的蒸馏水相比较,如颜色深,则取此稀释2倍之水样25mL置于比色管,加蒸馏水至50mL摇匀再比较,即每次按稀释2倍的方法做下去,直至所稀释的溶液与蒸馏水比较刚好看不出颜色为止,所稀释的倍数即为所测之色度,按2n计算(n为稀释次数)。
均相催化臭氧氧化设备处理染料废水技术
催化臭氧氧化设备是使催化剂和反应物作用, 形成不稳定的中间产物, 改变反应途径, 或加快氧化剂的分解并使之与水中有机物迅速反应, 在较短的时间内降解染料分子并提高氧化剂的利用效率的方法。
而光电催化氧化技术根据催化剂的形态不同又分为均相催化臭氧化和非均相催化臭氧化。
催化臭氧氧化设备
1、均相催化臭氧氧化设备处理染料废水技术
前人多选用均相催化剂处理染料废水,虽然均相催化臭氧氧化可以达到令人满意的处=理效果, 但因为催化剂是以离子的形态分布在水中,无法与反应体系分离, 处理完毕后催化剂便同染料废水一起排放, 不仅造成催化剂的流失浪费, 同时也造成了水体的金属离子的二次污染。
为了解决这一问题, 研究人员把具有催化作用的活性组分通过某些方法固定到一些载体上, 把负载了活性组分的固体催化剂投入到废水中在臭氧存在的条件下与废水反应, 进行非均相催化臭氧氧化反应。
2、非均相催化臭氧氧化设备处理染料废水技术
在非均相催化中, 催化剂是以固态存在, 主要有贵金属系、铜系和稀土系三大类。
而贵金属因为价格昂贵其应用受到限制, 目前研究最多的是廉价金属及金属氧化物。
非均相催化剂根据其制备工艺分为非负载型和负载型, 目前研究的重点在负载型非均相催化剂。
负载型非均相催化剂由载体、活性组分和助剂三部分组成。
常用的载体有Al2O3、沸石、活性炭纤维、分子筛等, 活性组分多为过渡金属。
为了进一步提高催化臭氧氧化的效果, 往往需要在单组分催化剂的基础上进行多元组分催化剂的研究, 根据催化剂的制备条件、各种活性组分的配比和助剂的选择来制备催化效率更高的催化剂。