数字图像处理课程设计人脸检测与识别
- 格式:doc
- 大小:17.64 KB
- 文档页数:9
人脸识别的课课程设计一、教学目标本节课的教学目标是让学生了解人脸识别技术的基本原理和应用场景,掌握人脸识别技术的基本方法和技巧,提高学生运用人脸识别技术解决实际问题的能力。
知识目标:使学生了解人脸识别技术的基本原理,掌握人脸识别技术的基本方法和技巧。
技能目标:培养学生运用人脸识别技术进行图像处理和分析的能力,提高学生解决实际问题的能力。
情感态度价值观目标:培养学生对新技术的敏感性和好奇心,使学生认识到人脸识别技术在现实生活中的重要应用,提高学生对科技进步的认同感。
二、教学内容本节课的教学内容主要包括人脸识别技术的基本原理、人脸识别技术的应用场景以及人脸识别技术的基本方法。
1.人脸识别技术的基本原理:介绍人脸识别技术的基本原理,包括人脸图像的采集、预处理、特征提取和匹配等。
2.人脸识别技术的应用场景:介绍人脸识别技术在现实生活中的应用场景,如安防、金融、医疗等。
3.人脸识别技术的基本方法:介绍人脸识别技术的基本方法,包括基于特征的方法、基于模型的方法、基于深度学习的方法等。
三、教学方法为了提高教学效果,本节课将采用多种教学方法,包括讲授法、案例分析法、实验法等。
1.讲授法:通过讲解人脸识别技术的基本原理、应用场景和基本方法,使学生了解和掌握人脸识别技术的基本知识。
2.案例分析法:通过分析人脸识别技术在现实生活中的具体应用案例,使学生了解人脸识别技术的实际应用,提高学生解决实际问题的能力。
3.实验法:通过人脸识别实验,使学生亲自体验人脸识别技术的实际操作,提高学生的动手能力。
四、教学资源为了保证教学效果,本节课将准备丰富的教学资源,包括教材、参考书、多媒体资料、实验设备等。
1.教材:选用权威、实用的教材,为学生提供全面、系统的人脸识别技术知识。
2.参考书:提供相关领域的参考书籍,丰富学生的知识体系。
3.多媒体资料:制作精美的多媒体课件,生动展示人脸识别技术的原理和应用。
4.实验设备:准备人脸识别实验所需的设备,如摄像头、人脸识别系统等,为学生提供实践操作的机会。
数字图像处理在人脸识别中的应用随着人们对科技的追求以及生活水平的提高,人脸识别技术已经越来越普及。
无论是在社会领域还是在个人生活方面,人脸识别技术在保障人民安全、提高用户体验等方面有非常广泛的应用。
而数字图像处理技术正是构建人脸识别系统的核心技术,因此深入研究数字图像处理在人脸识别中的应用具有重要的意义。
数字图像处理技术是指通过计算机对数字图像进行操作和处理的技术。
这种技术通常包含了图像采集、预处理、特征提取以及分类识别等几个步骤。
而当它与人脸识别技术结合时,数字图像处理技术将起到至关重要的作用。
在数字图像处理技术中,最为重要的一步是特征提取。
特征提取的目的是通过不同方式提取出图像中的特征信息,以便于人脸识别算法能够准确地识别不同人脸的特征。
数字图像处理技术中较为常见的人脸特征提取方式包括基于颜色、形态和纹理等几个方面。
其中,基于颜色的人脸识别方式是基于人脸的颜色特征进行识别,比如通过提取人脸区域的颜色直方图,以提高人脸识别的准确度。
除了基于颜色的人脸识别方式之外,基于形态和纹理的人脸识别方式也很重要。
基于形态的人脸识别方式是通过提取人脸的特征形态信息,如轮廓、脸型、面积等来进行识别。
而基于纹理的人脸识别方式是基于人脸纹理特征进行识别,比如通过提取人脸的纹理特征来提高人脸识别的准确率。
这些特征的提取和分类,离不开数字图像处理的强大支持。
在实际的人脸识别应用中,数字图像处理技术的作用更凸显。
人脸检测是人脸识别系统的第一步。
通过技术手段提取图像中有关的人脸数据,挑选其中的特定点,限定面部的形状,并进行相关的计算处理。
这对于后续的人脸识别来说,非常重要。
其次,从确定的关键点坐标中确定人脸位置,以更精细的方式分割出该部分人脸。
接下来,对人脸图像进行预处理,移除噪声和图像背景等无关信息,提高图像质量的同时保护人脸的完整性和特征性。
当人脸图像预处理后,我们需要从中提取有用的特征信息。
人脸识别应用中,数字图像处理技术最为重要的一部分就是特征提取。
数字图像处理课程设计人脸检测与识别课程设计一、简介人脸检测与识别是当前模式识别领域的一个前沿课题,人脸识别技术就是利用计算机技术,根据数据库的人脸图像,分析提取出有效的识别信息,用来“辨认”身份的技术。
人脸识别是模式识别研究的一个热点, 它在身份鉴别、信用卡识别, 护照的核对及监控系统等方面有着广泛的应用。
人脸图像由于受光照、表情以及姿态等因素的影响, 使得同一个人的脸像矩阵差异也比较大。
因此, 进行人脸识别时, 所选取的特征必须对上述因素具备一定的稳定性和不变性. 主元分析(PCA)方法是一种有效的特征提取方法,将人脸图像表示成一个列向量, 经过PCA 变换后, 不仅可以有效地降低其维数, 同时又能保留所需要的识别信息, 这些信息对光照、表情以及姿态具有一定的不敏感性. 在获得有效的特征向量后, 关键问题是设计具有良好分类能力和鲁棒性的分类器. 支持向量机(SVM ) 模式识别方法,兼顾训练误差和泛化能力, 在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。
本此课程设计基于MATLAB,将检测与识别分开进行。
其中检测部分使用实验指导书上的肤色模型算法进行,不进行赘述。
识别部分采用PCA算法对检测出的人脸图像进行特征提取, 再利用最邻近距离分类法对特征向量进行分类识别,将在后文具体表述。
仿真结果验证了本算法是有效的。
二、人脸检测1.源码img=imread('D:\std_test_images\face3.jpg');figure;imshow(img);R=img(:,:,1);G=img(:,:,2);B=img(:,:,3);faceRgn1=(R>95)&(G>40)&(B>20)&max(img,[],3)-min(img,[], 3)>15&abs(R-G)>15&R>B;figure;imshow(faceRgn1);r=double(R)./double(sum(img,3));g=double(G)./double(sum(img,3));Y=0.3*R+0.59*G+0.11*B;faceRgn2=(r>0.333)&(r<0.664)&(g>0.246)&(g<0.398)&(r>g)&g>=0.5-0.5*r;figure;imshow(faceRgn2);Q=faceRgn1.*faceRgn2;P=bwlabel(Q,8);BB=regionprops(P,'Boundingbox');BB1=struct2cell(BB);BB2=cell2mat(BB1);figure;imshow(img);[s1 s2]=size(BB2);mx=0;for k=3:4:s2-1p=BB2(1,k)*BB2(1,k+1);if p>mx&(BB2(1,k)/BB2(1,k+1))<1.8mx=p;j=k;hold on;rectangle('position',[BB2(1,j-2),BB2(1,j-1),BB2(1,j),BB 2(1,j+1)],'linewidth',3,'edgecolor','r');hold off;end end2.处理过程三、人脸识别1.算法简述在Matlab 2012a版本中添加了对PCA算法的支持,由于水平有限我选择直接调用。
第一章前言第一节课题背景一课题的来源随着安全入口控制和金融贸易方面应用需要的快速增长,生物统计识别技术得到了新的重视。
目前,微电子和视觉系统方面取得的新进展,使该领域中高性能自动识别技术的实现代价降低到了可以接受的程度。
而人脸识别是所有的生物识别方法中应用最广泛的技术之一,人脸识别技术是一项近年来兴起的,但不大为人所知的新技术。
人们更多的是在电影中看到这种技术的神奇应用:警察将偷拍到的嫌疑犯的脸部照片,输入到电脑中,与警方数据库中的资料进行比对,并找出该嫌犯的详细资料和犯罪记录。
这并非虚构的情节。
在国外,人脸识别技术早已被大量使用在国家重要部门以及军警等安防部门。
在国内,对于人脸识别技术的研究始于上世纪90年代,目前主要应用在公安、金融、网络安全、物业管理以及考勤等领域.二人脸识别技术的研究意义1、富有挑战性的课题人脸识别是机器视觉和模式识别领域最富有挑战性的课题之一,同时也具有较为广泛的应用意义。
人脸识别技术是一个非常活跃的研究领域,它覆盖了数字图像处理、模式识别、计算机视觉、神经网络、心理学、生理学、数学等诸多学科的内容.如今,虽然在这方面的研究已取得了一些可喜的成果,但是FRT在实用应用中仍面临着很严峻的问题,因为人脸五官的分布是非常相似的,而且人脸本身又是一个柔性物体,表情、姿态或发型、化妆的千变万化都给正确识别带来了相当大的麻烦。
如何能正确识别大量的人并满足实时性要求是迫切需要解决的问题。
2、面部关键特征定位及人脸2D形状检测技术在人脸检测的基础上,面部关键特征检测试图检测人脸上的主要的面部特征点的位置和眼睛和嘴巴等主要器官的形状信息。
灰度积分投影曲线分析、模板匹配、可变形模板、Hough变换、Snake算子、基于Gabor小波变换的弹性图匹配技术、主动性状模型和主动外观模型是常用的方法。
可变形模板的主要思想是根据待检测人脸特征的先验的形状信息,定义一个参数描述的形状模型,该模型的参数反映了对应特征形状的可变部分,如位置、大小、角度等,它们最终通过模型与图像的边缘、峰、谷和灰度分布特性的动态地交互适应来得以修正。
人脸识别课设报告一、引言人脸识别技术是一种基于人脸特征进行身份验证和辨认的技术,它已经广泛应用于各个领域,如人脸解锁、人脸支付、人脸门禁等。
本篇报告将从人脸识别技术的原理、应用场景、算法以及未来发展等方面进行详细阐述。
二、人脸识别技术原理及流程人脸识别技术的原理主要包括图像采集、预处理、特征提取和匹配四个步骤。
首先,通过摄像头等设备采集人脸图像,然后对图像进行预处理,包括灰度化、归一化、直方图均衡化等操作。
接下来,通过特征提取算法,将人脸图像转换成特征向量,常用的特征提取算法有主成分分析法(PCA)和线性判别分析法(LDA)等。
最后,将提取到的特征向量与数据库中的已知特征进行匹配,从而实现人脸的识别和辨认。
三、人脸识别技术的应用场景1. 人脸解锁:通过人脸识别技术,可以实现手机、电脑等设备的解锁操作,提高设备的安全性和用户的便利性。
2. 人脸支付:利用人脸识别技术,可以实现线上线下的支付功能,无需携带实体卡片或密码,提高支付的安全性和便捷性。
3. 人脸门禁:将人脸识别技术应用于门禁系统中,可以实现无感知的出入门禁控制,提高安全性和效率。
4. 人脸监控:结合人脸识别技术和监控系统,可以实现对特定人员的追踪和监控,有助于保障公共安全。
四、人脸识别算法1. 主成分分析法(PCA):通过对人脸图像进行降维处理,提取出最重要的特征信息,从而实现人脸的识别和辨认。
2. 线性判别分析法(LDA):通过对人脸图像进行线性变换,使得同一类别的人脸图像尽可能接近,不同类别的人脸图像尽可能远离,从而提高人脸识别的准确率。
3. 卷积神经网络(CNN):通过多层卷积和池化操作,从原始图像中提取出高层次的抽象特征,用于人脸的识别和辨认。
4. 支持向量机(SVM):通过构建超平面来实现对人脸的分类和辨别,具有较强的泛化能力和分类性能。
五、人脸识别技术的挑战与未来发展1. 光照变化:光照条件的变化对人脸识别技术的准确性有很大影响,如何解决光照变化对人脸识别的干扰是一个重要的挑战。
QT人脸识别课程设计一、课程目标知识目标:1. 学生能理解人脸识别的基本概念,掌握QT环境下进行人脸识别的关键技术。
2. 学生能描述人脸检测、特征提取和识别等环节的基本原理。
3. 学生了解人脸识别技术在现实生活中的应用。
技能目标:1. 学生能运用QT编程环境进行人脸识别程序的编写和调试。
2. 学生掌握使用相关算法库(如OpenCV)进行人脸检测和特征提取的方法。
3. 学生具备分析和解决人脸识别过程中出现问题的能力。
情感态度价值观目标:1. 学生培养对人工智能技术的兴趣,激发创新精神和实践能力。
2. 学生认识到人脸识别技术在保护个人隐私、维护公共安全等方面的积极作用。
3. 学生在团队协作中学会尊重他人,培养合作精神和沟通能力。
课程性质:本课程为信息技术学科选修课程,以实践操作为主,注重培养学生的编程能力和实际应用能力。
学生特点:八年级学生,具备一定的计算机操作和编程基础,对新鲜事物充满好奇心,喜欢动手实践。
教学要求:结合学生特点,注重理论与实践相结合,以项目驱动教学,让学生在实践过程中掌握知识,提高能力。
通过课程目标的设定,使学生在知识、技能和情感态度价值观等方面得到全面提升。
在教学过程中,关注学生的个体差异,提供有针对性的指导,确保每位学生都能达到课程目标。
二、教学内容1. 人脸识别技术概述- 介绍人脸识别的基本概念、发展历程和应用领域。
- 分析人脸识别技术的优势和挑战。
2. QT环境配置与基本操作- 指导学生安装和配置QT开发环境。
- 介绍QT的基本操作和编程方法。
3. 人脸检测与特征提取- 讲解人脸检测的常用算法(如Haar级联分类器)。
- 介绍特征提取方法(如LBP、HOG)。
4. 人脸识别算法- 详细讲解支持向量机(SVM)、深度学习(如卷积神经网络)等常用识别算法。
- 分析不同算法的优缺点及适用场景。
5. 实践项目:人脸识别系统开发- 按照项目需求,指导学生进行人脸检测、特征提取和识别模块的设计与实现。
数字图像处理课程设计--人脸检测数字图像处理课程设计报告(人脸检测)姓名:xxx学号:xxxx1 引言随着科学技术的飞速发展,互联网的广泛应用,重要部门(机场、银行、军政机关、重点控制地区)的进出,计算机网络中重要信息的存储与提取,都需要可靠的人身鉴别。
身份的识别已经成为一种人们日常生活中经常遇到的问题。
人脸识别作为生物特征识别中成功的应用之一,因为其巨大的商业应用前景,受到越来越多的重视。
人们更多的是在电影中看到这种技术的神奇应用:警察将偷拍到的嫌疑犯的脸部照片,输入到电脑中,与警方数据库中的资料进行比对,并找出该嫌犯的详细资料和犯罪记录。
这并非虚构的情节,在国外,人脸识别技术早已被大量使用在国家重要部门以及军警等安防部门。
在国内,对于人脸识别技术的研究始于上世纪90年代,目前主要应用在公安、金融、网络安全、物业管理以及考勤等领域。
近 30 年以来,人脸识别技术有了长足的发展,并且逐步走向实际应用阶段[1]。
2 实验方法2.1 方法综述典型人脸识别系统的实现过程如图2.1所示,一般包括三个步骤:人脸检测、人脸特征提取、人脸识别与验证。
在实现过程中,首先输入图像集,然后用人脸检测模块进行人脸检测。
如果检测到人脸图像,则进行特征点定位,一般以两眼中心为基准,根据两眼距离d,对人脸图像进行归一化处理,归一化处理包含了图像预处理,图像缩放以及有效人脸区域选取等操作。
最后对归一化的人脸图像进行特征提取,送入分类器进行识别,最终获得识别结果[2]。
图像预处理特征提取特征对比(分类器)结果输出图像输入图2.1 人脸识别技术处理流程图在预处理阶段,对图像进行优化,尽可能去除或者减小光照、成像系统、外部环境等对待处理图像的干扰,为后续处理提高质量。
以便使不同的人脸图像尽可能在同一条件下完成特征提取、训练和识别。
人脸图像的预处理主要包括人脸扶正,人脸图像的增强,以及归一化等工作。
人脸扶正是为了得到人脸位置端正的人脸图像;图像增强是为了改善人脸图像的质量,不仅在视觉上更加清晰图像,而且使图像更利于计算机的处理与识别。
数字图像处理课程设计
人脸检测与识别课程设计一、简介人脸检测与识别是当前模式识别领域的一个前沿课题,人脸识别技术就是利用计算机技
术,根据数据库的人脸图像,分析提取出有效的识别信息,用来
“辨认”身份的技术。
人脸识别是模式识别研究的一个热点, 它
在身份鉴别、信用卡识别, 护照的核对及监控系统等方面有着广
泛的应用。
人脸图像由于受光照、表情以及姿态等因素的影响,
使得同一个人的脸像矩阵差异也比较大。
因此, 进行人脸识别时,
所选取的特征必须对上述因素具备一定的稳定性和不变性. 主
元分析(PCA)方法是一种有效的特征提取方法,将人脸图像表示成
一个列向量, 经过PCA 变换后, 不仅可以有效地降低其维数, 同
时又能保留所需要的识别信息, 这些信息对光照、表情以及姿态
具有一定的不敏感性. 在获得有效的特征向量后, 关键问题是设
计具有良好分类能力和鲁棒性的分类器. 支持向量机(SVM ) 模
式识别方法,兼顾训练误差和泛化能力, 在解决小样本、非线性及
高维模式识别问题中表现出许多特有的优势。
本此课程设计基于MATLAB,将检测与识别分开进行。
其中检测
部分使用实验指导书上的肤色模型算法进行,不进行赘述。
识别
部分采用PCA算法对检测出的人脸图像进行特征提取, 再利用最
邻近距离分类法对特征向量进行分类识别,将在后文具体表述。
仿真结果验证了本算法是有效的。
二、人脸检测源码
1.img=imread('D:\std_test_images\face3.jpg');
figure;
imshow(img);
R=img(:,:,1);
G=img(:,:,2);
B=img(:,:,3);
faceRgn1=(R>95)&(G>40)&(B>20)&max(img,[],3)-min(img,[],3)>15& abs(R-G)>15&R>B;
figure;
imshow(faceRgn1);
r=double(R)./double(sum(img,3));
g=double(G)./double(sum(img,3));
Y=0.3*R+0.59*G+0.11*B;
faceRgn2=(r>0.333)&(r<0.664)&(g>0.246)&(g<0.398)&(r>g)&
g>=0.5-0.5*r;
figure;
imshow(faceRgn2);
Q=faceRgn1.*faceRgn2;
P=bwlabel(Q,8);
BB=regionprops(P,'Boundingbox');
BB1=struct2cell(BB);
BB2=cell2mat(BB1);
figure;
imshow(img);
[s1 s2]=size(BB2);
mx=0;
for k=3:4:s2-1
p=BB2(1,k)*BB2(1,k+1);
if p>mx&(BB2(1,k)/BB2(1,k+1))<1.8
mx=p;
j=k;
hold on;
rectangle('position',[BB2(1,j-2),BB2(1,j-1),BB2(1,j),BB2(1,j+1)],'linew idth',3,'edgecolor','r');
hold off;
end
end
2.处理过程
三、人脸识别算法简述 1.在Matlab 2012a版本中添加了对PCA算法的支持,由于水平有限我选择直接调用。
在本次课程设计中,PCA算法又分为样本训练和人脸识别两个过程,在样本训练阶段,将样本库(每组15张共15组人脸图像,对每组前11
张进行特征提取用于训练,后4张用于检测)中的人脸图像转换为特征向量表示,并投影到PCA子空间,最终将这些向量数据保存到训练数据库中。
而在识别阶段,同样将待识别的人脸图像使用PCA子空间的向量表示,通过计算待识别图像的向量与样本中的向量之间的距离,寻找其中最相近的人脸图像,作为识别结果。
源码 2.clear
clc
% 样本数量15*11
people_count=15;
face_count_per_people=11;
% 训练比率,设置为75%识别正确率可达100%
training_ratio=.75;
% 能量
energy=90;
training_count=floor(face_count_per_people*training_ratio); training_samples=[];
path_mask='D:\\pca_face_rec\\d\\d.jpg';
% 训练
for i=1:people_count
for j=1:training_count
img=im2double(imread(sprintf(path_mask,i,j)));
img=imresize(img,[10 10]); % 归一化至50*50
if ndims(img)==3
img=rgb2gray(img);
end
training_samples=[training_samples;img(:)'];
end
end
mu=mean(training_samples);
[coeff,scores,~,~,explained]=pca(training_samples);
idx=find(cumsum(explained)>energy,1);
coeff=coeff(:,1:idx);
scores=scores(:,1:idx);
% 测试
acc_count=0;
for i=1:people_count
for j=training_count+1:face_count_per_people
img=im2double(imread(sprintf(path_mask,i,j)));
img=imresize(img,[10 10]);
if ndims(img)==3
img=rgb2gray(img);
end
score=(img(:)'-mu)/coeff';
[~,idx]=min(sum((scores-repmat(score,size(scores,1),1)).^2,2));
if ceil(idx/training_count)==i
acc_count=acc_count+1;
end
end
end
test_count=(people_count*(face_count_per_people-training_count ));
acc_ratio=acc_count/test_count;
fprintf('测试样本数量:%d,正确识别
率:%2.2f%%',test_count,acc_ratio*100)
仿真结果及说明 3.样本库举例:
结果为:测试样本数量:45,正确识别率:100.00%
四、总结人脸识别是一个多学科领域的挑战性难题,近30年来人脸识别的研究虽然取得了巨大的进步,但与人类的感
知能力相距甚远。
人脸识别还涉及到很多理论和技术问题,这一技术的不断进步还需要研究者们的不断创新和努力。
本次课程设计让我对人脸识别算法有了初步的认识,了解到了PCA算法,K-L 变换及特征向量的提取,最近邻分类器等人脸识别所需要的知识,为我的进一步学习指明了方向。