数学建模,姜启源第三章 简单的优化模型
- 格式:ppt
- 大小:6.31 MB
- 文档页数:48
数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。
在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。
本讲将介绍一些简单的优化模型。
一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。
其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。
线性规划模型指的是目标函数和约束条件都是线性的情况。
通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。
二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。
非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。
对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。
这些方法通过迭代的方式逐步靠近最优解。
三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。
整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。
整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。
针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。
四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。
五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。
模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。
数学建模》一、课程性质、目的与任务数学建模课程是数学与应用数学专业的一门专业选修课程,且属于能力课程模块。
是一门应用非常广泛的学科,数学建模是研究如何将数学方法和计算机知识结合起来用于解决实际生活中存在问题的一门边缘交叉学科,是高等学校教学计划中的一门方法实验课。
通过本课程的学习,使学生掌握数学建模的基本步骤,了解常用的建模方法, 学会进行科学研究的一般过程,并能进入一个实际操作的状态。
着重学生分析问题能力的培养,强调利用计算机及各种资料解决实际问题动手能力的培养,增加受益面。
为学生所学专业服务,给课程设计、毕业论文提供强有力的方法论指导。
其先修课程为数学分析、高等代数、常微分方程、线性规划和概率论与数理统计等。
本课程主要介绍数学建模的概述、初等模型、简单优化模型、微分方程模型、差分方程模型、概率统计模型、离散模型、线性规划模型等模型的基本建模方法及求解方法。
以及介绍Matlab、Lindo、Lingo 和SPSS 等数学软件在数学建模中的基本使用方法和技巧。
数学建模是进一步提高运用数学知识解决实际问题的基本技能,培育和训练综合能力所开设的一门新学科。
通过具体实例的引入使学生掌握数学建模基本思想、基本方法、基本类型,学会进行科学研究的一般过程,并能进入一个实际操作的状态。
通过数学模型有关概念、特征的学习和数学模型应用实例的介绍,培养学生数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力, 综合分析能力;培养学生应用数学方法解决实际问题的能力。
二、课程教学内容和基本要求第一章建立数学模型1. 教学内容:(1) 稳定的椅子问题(2) 商人过河问题(3) 人口增长问题(4) 公平的席位问题2. 教学要求:使学生正确了解数学描述和数学建模不同于常规数学理论的思维特征,了解数学模型的意义及分类,掌握建立数学模型的一般方法及步骤。
第二章初等模型1. 教学内容:(1) 双层玻璃窗的功效问题(2) 划艇比赛的成绩(3) 动物身长和体重(4) 核军备竞赛2. 教学要求:掌握比例方法、类比方法、图解法、定性分析方法及量纲分析方法建模的基本特点。
《数学建模(公选)》课程教学大纲一、课程基本信息课程代码:12130541课程英文名称: Mathematical Modelling课程面向专业:理工类专业课程类型:选修课先修课程:高等数学、线性代数、概率论与数理统计学分:2.5总学时:48 (其中理论学时:48 ;实验学时:0)二、课程性质与目的本课程主要介绍用数学知识解决实际问题的手段——建立数学模型。
通过教学,使学生掌握数学模型的基本知识;培养学生认识问题,用数学模型和计算机分析解决实际问题的初步能力;增强学生学习数学的兴趣和自学的能力,了解数学的一些应用分支的理论,会建立相应的简单模型,并能对模型进行分析。
三、课程教学内容与要求第一章建立数学模型1、教学内容与要求主要内容:学习数学建模课程的意义;数学模型的定义及分类;建立数学模型的方法及步骤;数学建模示例。
基本要求:了解数学模型的意义及分类,理解建立数学模型的方法及步骤。
2、教学重点:数学建模的基本方法和步骤。
3、教学难点:数学建模初步能力的培养。
第二章初等模型1、教学内容与要求主要内容:比例方法建模;类比方法建模;定性分析方法建模;量纲分析方法建模;初等模型举例。
基本要求:掌握比例方法,类比方法,定性分析方法及量纲分析方法建模的基本特点。
能运用所学知识建立数学模型,并对模型进行综合分析。
2、教学重点:比例方法建模,类比方法建模。
3、教学难点:量纲分析法建模第三章简单的优化模型1、教学内容与要求主要内容:存贮模型;生猪的出售时机;森林救火;冰山运输;量纲分析法基本要求:理解优化模型的一般意义,能运用高等数学的知识解决简单的优化模型。
掌握较简单的优化模型的建立和解法。
2、教学重点:比例方法建模,类比方法建模3、教学难点:量纲分析法建模第四章数学规划模型1、教学内容与要求主要内容:奶制品的生产与销售;自来水输送与货机装运;汽车生产与原油采购;接力队的选拔与选课策略;饮料厂的生产与检修;钢管和易拉罐下料基本要求:理解线性规划、整数规划模型和非线性规划模型的基本特点,能熟练利用数学软件进行数学规划模型的求解与灵敏度分析。
数学建模姜启源教学设计数学建模是指利用数学的理论和方法对实际问题进行抽象和描述,并通过数学模型来解决问题的过程。
姜启源是一位优秀的数学建模教师,他在教学设计中注重培养学生的逻辑思维能力和解决问题的能力。
本文将以姜启源的教学设计为例,介绍数学建模的基本原理和姜启源的教学方法。
数学建模是将实际问题抽象为数学模型的过程。
姜启源在教学中注重培养学生的问题意识和建模能力。
他通过提供实际问题的案例,引导学生从实际问题中提取关键信息,并将其转化为数学符号和表达式。
这种抽象的过程可以帮助学生深入理解问题,并为进一步的数学分析和求解提供基础。
数学建模的核心是建立数学模型。
姜启源在教学设计中注重培养学生的数学建模能力。
他通过引导学生分析问题的特点和要求,选择合适的数学方法和工具,构建数学模型。
同时,他鼓励学生在建模过程中进行合理的假设和简化,以减少问题的复杂性,提高求解的效率。
这种能力的培养可以让学生在实际问题中应用数学知识解决复杂的实际问题。
数学建模的求解过程是关键。
姜启源在教学设计中注重培养学生的问题解决能力。
他引导学生运用数学工具和方法,对建立的数学模型进行求解。
他鼓励学生灵活运用各种数学知识和技巧,以找到最优的解决方案。
同时,他注重培养学生的数学推理和证明能力,使学生能够合理地解释和解释数学模型的结果。
这种能力的培养可以让学生在实际问题中独立思考和解决问题。
数学建模的结果分析和应用是评价一个模型的重要标准。
姜启源在教学设计中注重培养学生的结果分析和应用能力。
他鼓励学生对求解结果进行合理的解释和评价,并将结果应用到实际问题中。
这种能力的培养可以帮助学生将数学建模的理论和方法应用到实际问题中,提高问题的解决效果。
姜启源的教学设计充分体现了数学建模的基本原理和方法。
他通过培养学生的问题意识、建模能力、问题解决能力、结果分析和应用能力,帮助学生掌握数学建模的核心技巧和方法。
姜启源的教学设计在培养学生的数学思维能力和解决问题的能力方面具有一定的参考价值。
姜启源数学模型姜启源数学模型是指以姜启源为主导的一种数学建模方法。
姜启源是中国工程院院士、中国科学院数学与系统科学研究院院长,他在数学模型领域有着丰富的经验和深厚的造诣。
数学模型是一种将现实问题抽象化、形式化的方法,通过建立数学模型来描述和解决实际问题。
姜启源数学模型的特点是综合运用数学、统计学、计算机科学等多学科知识,通过数学建模的方法解决实际问题。
姜启源数学模型的应用领域非常广泛,包括但不限于工程、经济、环境、医学等各个领域。
在工程领域,姜启源数学模型可以用于优化设计、预测分析、风险评估等方面。
在经济领域,姜启源数学模型可以用于市场预测、投资决策、风险控制等方面。
在环境领域,姜启源数学模型可以用于气候变化模拟、环境保护规划等方面。
在医学领域,姜启源数学模型可以用于疾病传播模拟、药物研发等方面。
姜启源数学模型的建立过程一般包括问题分析、数学建模、模型求解和模型验证等步骤。
首先,需要对实际问题进行深入的分析,明确问题的目标和约束条件。
然后,根据问题的特点,选择合适的数学方法和模型类型。
接下来,通过数学方法将实际问题转化为数学问题,并进行数学建模。
然后,利用数学工具和计算机进行模型求解,并对结果进行分析和解释。
最后,需要对模型进行验证,检验模型的准确性和可靠性。
姜启源数学模型的优势在于能够将复杂的实际问题转化为简单的数学问题,并通过数学方法进行求解。
这种模型可以提供决策支持和问题解决的方法,帮助人们更好地理解和解决实际问题。
姜启源数学模型的应用可以提高效率、降低成本、减少风险,对社会和经济发展具有重要意义。
姜启源数学模型的发展离不开数学研究和科学技术的支持。
近年来,随着数学建模方法和计算机技术的不断发展,姜启源数学模型在各个领域得到了广泛应用和推广。
同时,姜启源也致力于培养和引进优秀的科研人才,推动数学建模在中国的发展和应用。
姜启源数学模型是一种综合运用数学、统计学、计算机科学等多学科知识的数学建模方法。
《数学建模(一)》课程教学大纲【课程基本情况】一、课程代码:000373二、课程类别及性质:公共选修课三、课程学时学分:54学时(教学:24 实践:30)2学分四、教学对象:12、13级学生五、课程教材:《数学模型》、姜启源谢金星叶俊等、高等教育出版社六、开设系(部):信科系七、先修课:高等数学、线性代数【教学目的】通过本课程的学习,使学生能够较好地理解数学模型、数学建模的含义,了解数学建模的重要性。
通过示例的学习使同学们基本掌握建立数学模型的方法和步骤,并能通过数学方法、数学软件求解模型,而且能够对模型的精准性进行分析。
通过学习,培养了同学们的把实际问题表述成数学问题的能力,从而提高了他们的抽象思维能力。
并且通过MATLAB、LINGO 数学软件的应用,提高了他们的计算机应用水平。
【教学内容、基本要求及学时分配】第一章建立数学模型教学时数:2学时第一节从现实对象到数学模型基本要求:掌握数学模型、数学建模的含义。
第二节数学建模的重要意义基本要求:了解数学建模的重要性。
第三节数学建模的示例(不讲授)基本要求:掌握三个示例的建模过程;重点:模型的建立、模型的求解。
第四节数学建模的基本方法和步骤基本要求:掌握数学建模的基本方法和步骤;重点:建模的基本方法和步骤。
第五节数学模型的特点和分类基本要求:了解数学模型的特点和分类。
第六节数学建模能力的培养(不讲授)基本要求:了解建立数学模型所需要的能力。
第二章初等模型教学时数:4学时第一节公平的席位分配基本要求:掌握公平席位的建模方法;重点:建立数量指标。
第二节录像机计数器的用途基本要求:掌握录像机计数器的建模方法;重点:模型的假设及模型的构成。
难点:建立模型的过程。
第三节双层玻璃的功效基本要求:掌握双层玻璃的功效的建模方法及模型应用;重点:模型的构成。
第四节汽车刹车距离基本要求:掌握t秒准则的建立方法;重点:模型建立的过程。
第五节划艇比赛的成绩(不讲授)第六节动物的身长和体重(不讲授)第七节实物交换(不讲授)第八节核军备竞赛(不讲授)第九节扬帆远航(不讲授)第十节量纲分析与无量纲化(不讲授)第三章简单的优化模型教学时数:4学时第一节存贮模型基本要求:掌握存贮模型在两种情况下的建模方法;重点:模型假设。