(完整版)专业解读:发动机ECU标定全流程
- 格式:doc
- 大小:20.93 KB
- 文档页数:14
发动机ECU匹配标定发动机ECU匹配标定基本概述ECU内部的控制策略是固定的,但其包含的数千个自由参数是可调的。
对不同的发动机,不同的车型,这些参数都需要进行调试优化,使得整车通过各种排放法规并满足各种驾驶性能指标。
这一调试过程被称之为发动机匹配标定。
匹配标定是一个复杂的系统工程。
它包括台架试验、可控环境实验室试验、基于数学模型的标定计算、排放试验、功能验证试验等。
ECU 标定系统的主要类型有:1)ATI VISION CCP 标定系统;2)ATI VISION M6标定系统;3)ETAS INCA CCP标定系统;4)ETAS INCA ETK标定系统等。
但无论那一种标定系统都离不开软件和硬件的支持。
目前,我公司提供的软件平台主要有:ATI VISION、ETAS INCA、RA DiagRA MCD.这三种软件各有特色,但均包含项目管理、标定、数据分析及标定对比等功能。
同时,我公司也为广大客户提供了丰富的硬件支持模块:Therme-Scan SMB/CAN温度采集模块、Dual-Scan SMB/CAN温度-模拟信号混合采集模块、AD-Scan SMB/CAN模拟信号数据采集模块、Thermo-Scan Minimcdule CAN温度采集微型模块、AD-Scan Minimodul CAN 微型模拟信号数据采集工具、ATI EDAQModules数据采集模块、Lambda测量仪、Bosch宽域型氧传感器、IGTM-2000点火时间测试仪、SmartTach通用转速测试仪等。
而且,基于我们丰富的软硬资源,我们还将根据客户的不同需求搭建起完整的ECU匹配标定平台。
发动机ECU快速开发平台-NO-Hooks技术NO-Hooks OnTarget 是一项最新的美国专利技术。
该产品是一款软件工具,主要用于ECU策略软件开发与标定。
这一产品功能强大,价格低廉,无需任何附加硬件。
用户可首先用SimulinkR建立新的控制策略开的与标定,EOBD(OBDⅡ)开发,标定及功能验证、对车辆设置某种特定工作状态或进行某种重复试验。
汽车研发:整车ECU开发方法及流程!美女分为很多种,有外貌美女、气质美女、知性美女、还有内涵美女等等,往往是这几种综合到一起是最迷人的!汽车也是,外观漂亮了,还需要有好的性能,两者结合是最完美的。
要想有好的性能,汽车的心脏(发动机)很重要,心脏好了,还需要聪明的大脑来指挥,作为大脑的ECU就至关重要。
那么,今天漫谈君就和大家聊一聊:汽车大脑(ECU)的开发方法及流程一ECU的定义ECU(Electronic Control Unit):电子控制单元,又称“行车电脑”、“车载电脑”等。
从用途上讲则是汽车专用微机控制器,用一句简单的话来形容就是“ECU就是汽车的大脑”。
二ECU的组成ECU和普通的电脑一样,由微处理器(CPU)、存储器(ROM、RAM)、输入/输出接口(I/O)、模数转换器(A/D)以及整形、驱动等大规模集成电路组成。
三ECU体系结构四ECU的工作原理ECU中CPU是核心部分,它具有运算与控制的功能,发动机在运行时,它采集各传感器的信号,进行运算,并将运算的结果转变为控制信号,控制被控对象的工作。
它还实行对存储器(ROM/FLASH/EEPROM、RAM)、输入/输出接口(I/O)和其它外部电路的控制;存储器ROM中存放的程序是经过精确计算和大量实验取得的数据为基础编写出来的,这个固有程序在发动机工作时,不断地与采集来的各传感器的信号进行比较和计算。
把比较和计算的结果用来对发动机的点火、空燃比、怠速、废气再循环等多项参数的控制。
五ECU开发流程01原型ECU—原型阶段又叫原型PCM(Powertrain Control Module),代表设计产品的早期阶段。
主要是用来定义基本结构,设计底层软件一级开发控制策略。
硬件配置较为灵活,信号调节和输出信号驱动都是初始设计的。
一般来讲,体积比较大,并未考虑产品阶段产品阶段的要求。
换言之,原型ECU是用来优化软件质量的。
02开发ECU—标定阶段又叫标定ECU,开发PCM,代表设计产品的优化阶段,需要将原型ECU上开发的软件移植到开发ECU中,在开发ECU中主要用来修改ECU 的标定参数,以使得ECU与具体的发动机或者整车能够匹配。
专业解读:发动机ECU标定全流程标定好比磨刀,基于这把刀的材质、硬度、形状,功能来打造一把合适的刀,完美的标定是发挥出刀的最佳性能,突出重点!一、发动机匹配工作的目标:1 通过发动机台架的匹配,使发动机具有良好的稳态性能,在保证发动机工作可靠性(无爆震,无过热)的情况下,达到发动机的设计功率,扭矩和油耗性能。
2 通过对发动机在车辆上的匹配,使发动机与车辆其他系统(各种电器负载,传动系统,制动系统,三元催化转化器等等)协调工作,保证发动机在各种环境和工作条件下,都具有良好的起动怠速性能,良好的驾驶舒适性和排放性能。
同时还要进行完善的车载诊断系统(OBD)的匹配。
3 通过高温,高寒和高原等道路环境试验,对匹配好的各种性能进行全方位地验证,保证发动机和车辆在各种情况下都能达到既定的安全,环保和驾驶舒适性等严格的指标.对于汽油机来说,技术上就是控制进气(合理的配气相位,节气门开度等)、喷油(最佳的空燃比)及点火(合适的点火提前角)三者的配合。
需要加以说明的是,发动机的动力性能和经济性能的最大潜力取决于发动机的本体设计,发动机匹配工作只不过是努力使这些潜力得到挖掘或协调。
例如,汽油机通过改变进气量来改变输出的扭矩和功率,进排气系统的设计决定了发动机的充气效率,因此当发动机结构确定时,一定工况下发动机的最大充气量就已确定,发动机的动力性能也就确定;又如,发动机的工作效率,即燃油经济性,决定于燃烧效率及机械效率,通过改变喷油时间、喷油量以及点火提前角可以改善燃油经济性,但是不能突破由于发动机设计限定的燃油经济性极限.二。
发动机管理系统(EMS)和电子控制单元(ECU)发动机管理系统(EngineManagement System, 缩写为EMS):1979年,BOSCH公司将点火提前角电子控制与燃油定量电子控制融为一体,开发出Motronic,并引入爆震控制、排气再循环等,以满足更趋严格的性能和排放要求,其电子控制范围覆盖整个发动机,称为发动机电子管理系统,其核心是燃油定量和点火正时电子控制。
发动机ECU匹配标定基本概述ECU内部的控制策略是固定的,但其包含的数千个自由参数是可调的。
对不同的发动机,不同的车型,这些参数都需要进行调试优化,使得整车通过各种排放法规并满足各种驾驶性能指标。
这一调试过程被称之为发动机匹配标定。
匹配标定是一个复杂的系统工程。
它包括台架试验、可控环境实验室试验、基于数学模型的标定计算、排放试验、功能验证试验等。
ECU标定系统的主要类型有:1)ATI VISION CCP 标定系统;2)ATI VISION M6标定系统;3)ETAS INCA CCP标定系统;4)ETAS INCA ETK标定系统等。
但无论那一种标定系统都离不开软件和硬件的支持。
目前,我公司提供的软件平台主要有:ATI VISION、ETAS INCA、RA DiagRA MCD.这三种软件各有特色,但均包含项目管理、标定、数据分析及标定对比等功能。
同时,我公司也为广大客户提供了丰富的硬件支持模块:Therme-Scan SMB/CAN温度采集模块、Dual-Scan SMB/CAN温度-模拟信号混合采集模块、AD-Scan SMB/CAN模拟信号数据采集模块、Thermo-Scan Minimcdule CAN温度采集微型模块、AD-Scan Minimodul CAN 微型模拟信号数据采集工具、ATI EDAQ Modules数据采集模块、Lambda测量仪、Bosch宽域型氧传感器、IGTM-2000点火时间测试仪、SmartTach通用转速测试仪等。
而且,基于我们丰富的软硬资源,我们还将根据客户的不同需求搭建起完整的ECU匹配标定平台。
发动机ECU快速开发平台-NO-Hooks技术NO-Hooks OnTarget 是一项最新的美国专利技术。
该产品是一款软件工具,主要用于ECU策略软件开发与标定。
这一产品功能强大,价格低廉,无需任何附加硬件。
用户可首先用SimulinkR建立新的控制策略开的与标定,EOBD(OBDⅡ)开发,标定及功能验证、对车辆设置某种特定工作状态或进行某种重复试验。
汽车发动机台架标定全程讲解概述:发动机台架标定作为ECU标定的第一步,通过进气模式、扭矩模型、喷油点火等标定来最大程度的发挥发动机的性能,是整车标定的基础。
一.台架标定核心工作45天:●VVT选择●点火角标定●温度模型标定●扭矩模型标定●VVT VE标定●爆震控制●外特性●万有特性二:标定手段●控制油门:PUMA设备直接调节.●控制发动机转速:PUMA设备直接调节.●控制平均缸内压力:PUMA工具可设置油门开度为100%,即可通过调节标定改变缸内压力.●控制点火角:即可通过设置SprkAdvSlewValue改变点火提前角度数.●控制空燃比:通过设置FUEL.SlewValue改变点火提前角度数.●控制VVT开度:设置Intk_DsrdPstn.mode=1即可.三.发动机改造及台架搭建:2天●4个进气歧管温度热电偶、4个排气歧管热电偶、1个催化器中心热电偶.●进气压力传感器(发动机自带)、空滤前压力传感器、节气门前压力传感器、排气背压传感器.●油耗分析仪、空燃比检测仪(ES630).●开发电脑、ES590 592.●燃烧分析仪,缸压信号.●示波器采集58X,凸轮轴信号、喷油信号、点火信号、爆震传感器信号.●测功机、油门踏板和PUMA设备.●废气分析仪.●台架搭建:线束改造、发动机安放.四:数据准备:0.5天●Engine dyno disable function 因在台架上进行试验,缺少整车上的必要线束、传感器等,为保证正常标定,需关闭ECU的部分诊断功能.●关闭误报的各种EOBD故障码.●关闭闭环控制长期自学习值.●关闭碳罐控制.●COT 关闭.●PE关闭.●DFCO关闭.●关闭失火诊断.●关闭Baro预测.●设置VVT开度.五:台架标定:1.1第一次外特性和信号一致性检查目的:●检验原始发动机是否接近工程目标●检查4缸一致性方法:●根据扭矩特性,选择标定最佳VVT开度.●根据扭矩特性,选择最佳空燃比.●根据扭矩特性,选择最优点火角.●节气门全开工况,从1200rpm开始,每隔400rpm,稳定一定时间(如15S)采数,直到6000rpm.数据处理:●根据外特性数据,作出最大扭矩、最大功率、最小比油耗值曲线1.2各缸排温一致性检查:通过对各缸排温温度在WOT工况下对比排温偏差。
七步标定流程
当然可以,咱们用更通俗的话来说几个“七步标定流程”的例子:
调教汽车发动机的七步法:
先想好要干啥,列个清单,确保零件一个不落,按时到货。
接着组装发动机,把油路、点火那些系统都接好。
然后开始试车,看看动力咋样,排出来的烟颜色对不对。
再来就是慢慢调整,比如汽油啥时候喷,喷多少,都得调到最佳。
得让发动机连着跑很久,看看耐不耐用。
收集数据,分析哪里还能再优化。
最后,把所有的调整步骤和参数写下来,领导点头,大功告成。
教学的七步秘籍:
先定个小目标,这节课学生得学会啥。
复习下之前学的,别让新知识跟旧的打架。
开始上新课,老师讲,学生听,还可以演示一下。
让学生在老师眼皮底下试试,错了不怕,老师在旁边指导。
学生自己做作业,练手,增强记忆。
老师检查作业,指出哪里做得好,哪里还需要努力。
最后,总结今天学的,做个测试,看看掌握得怎么样。
投资基金的七步计划:
先挑几个好基金,就像挑水果一样,得新鲜又甜。
看看管基金的大佬靠不靠谱,业绩咋样。
分析现在股市天气,是晴天多还是阴雨绵绵。
按计划定期投钱,就像每月存零花钱一样。
市场天天变,得时不时看看,适时调整策略。
过段时间,检查下自己的“篮子”里哪个果子长得好,哪个该换掉了。
设个赚了就卖、亏了止损的小目标,别让钱袋子受太大伤。
每个流程都是为了让事情更有条理,更容易成功,用这些步骤一步步来,事情就会变得更简单明了。
ECU的基本标定过程1.连接标定接口及笔记本电脑,打开点火开关后再打开标定软件,到监测界面查看MAP值,看是否在97—103内,若不在此范围内,请调此项,直到MAP显示值在此区间为止。
对于空气压力型传感器,一般只需微调此项。
微调方法:若MAP显示值为96,请把第七项里的每一个值都选定后除以0.96后再写入固化;若显示为114,则除以1.14后再写入固化,此时MAP值一般会在100左右。
对于空气流量型传感器,也可以先不标定,发动车辆急加速看MAP值能否到达100左右再修正。
2.切换温度(第38项)的标定:此值根据具体车型标定。
说明:当本系统温度传感器温度>本值方可切换到烧甲醇。
此值的标定应在发动机水温刚达到90度时,监测界面读出的本系统温度传感器温度。
3.最低转换转速(第25项)的标定:标定值为700,但当车辆怠速小于700时请把此项值标为小于怠速转速值。
4.转速计算常数(第29项)的标定:通常标为1,但当软件显示转速是原车转速表的二倍时请标为2。
5.甲醇系统排气方法:请把第41项标为0后,再在TEST界面选择一个缸(即去掉另三个缸前的√),点击燃料选择开关,让甲醇泵工件进行甲醇管道排气;当发动机运行平稳后把其余三个缸前√勾上,再把第41项标为1。
(若标为1后监测界面上的甲醇压力变为350KPA,则说明压力开关功能正常)6.基本系数(第1项)、主系数(第2项)、发动机系数(第5项)的标定:标定原则:标定完第1、2、5项后,尽量使烧汽油和烧甲醇时两者的汽油脉宽值相等。
(若两者相差太大,则故障灯会点亮。
即当烧甲醇的汽油脉宽大于烧汽油的汽油脉宽时,会报混合气过稀故障;反之,会报混合气过浓故障。
)标定过程:启动车辆暧车,使水温升到90℃,在电子风扇运行过后,读出烧汽油时的汽油脉宽值,转到烧甲醇,标定1、2、5项,使烧甲醇时的汽油脉宽值和读出的汽油脉宽值尽可能相等,否则重新进行标定。
基本系数取值:尽可能取 0.99;主系数取值范围:1.01—1.99;发动机系数尽可能不进行修改。
发动机标定前期工作流程一、安装发动机1.发动机固定安装(以下资料为电涡流测功机通用操作和台架试验通用注意事项)选择合适的台架工装,固定好发动机后,安装联轴节。
与测功机联轴节对中,对中应确保同轴度优于0.1mm,两联轴器之间必须有大于2mm的轴向间隙,无法到达时,应垫薄铁片调整,对中后完成固定安装。
装上消音器、化油器、空滤器、电器、缸盖温度传感器,接好油管,并固定到指定位置。
将油门拉线装在油门调节器上,调节油门调节器最大位置,检查发动机油门是否全开,或者拉的过紧,都应调整油门调节器,以便油门全开时,油门也全开,且拉的不过紧。
2.各个部位检查a.连接试验前要对试验台架、发动机、测功机、联轴节、各连接螺栓及运动部件进行检查,运动部件不得受到阻碍,连接不允许有松动现象。
b.仪器检查发动机燃油、机油、冷却水和测功机润滑油、冷却水是否足够正常。
检查各仪器是否安装正确。
c.传感器检查氧传感器、压力传感器、温度传感器、节气门位置传感器、转速传感器、扭矩传感器等等是否连接正常,是否正常运作。
3.安全操作须知a.测功机安全操作打开测功机进水阀,检验水压表,水压不低于0.02Mpa,控制柜接通电源,检查给定旋钮,确保其在最小位置,旋转最高转速旋钮重新设定最高转速警报,仪器预热15分钟后,检查测功机扭矩零位,如果偏差不在0~0.2N.m 范围内,应该轻转动测功机主轴和检查主机上是否有异物阻碍,看能否恢复,重复三次,如果仍然有误差,调整零位旋钮,调整到规定的范围。
b.台架安全操作启动发动机,调整发动机怠速,检查发动机是否正常,如正常,怠速3分钟后,中速预热缸盖温度至160摄氏度左右,如异常,应停机检查。
设定合适的控制特性,一般推荐综合特性,按下点火、工作按钮,启动发动机,调节给定电位器加电流加载,给定电位器与油门执行器协调操作,加载时,一边加油门一边加负载,停机时应一边减负载一边减少油门开度,直至怠速,再关机。
不允许发动机转速太高,进行控制特性之间的转换必须在发动机怠速或者停机,且给定旋钮在零状态时转换。
汽车ecu 生产标定汽车ECU(Engine Control Unit)是指引擎控制单元,是现代汽车中非常重要的一个部件。
ECU的主要功能是监测和控制发动机的工作状态,以确保发动机能够高效稳定地运行。
而ECU的生产标定则是指对ECU进行参数设置和调整,以使其适应不同的发动机和车辆类型。
ECU的生产标定是在汽车生产过程中进行的一项重要工作。
它包括了对ECU中的各种参数进行设置和调整,以使其能够准确地控制发动机的工作。
这些参数包括燃油喷射量、点火时机、气门正时等。
通过对这些参数的合理调整,可以使发动机在各种工况下都能够达到最佳的工作状态,提高燃烧效率,降低排放和油耗。
在ECU的生产标定过程中,首先需要进行参数的测量和采集。
这一步骤主要是通过传感器来获取发动机工作状态的各种参数,如转速、负荷、温度等。
然后,这些参数将被输入到ECU中进行处理和分析。
根据这些参数的分析结果,ECU会相应地调整发动机的工作参数,以使其能够适应不同的工况需求。
ECU的生产标定是一个非常复杂和精细的过程。
它需要对发动机的各种工况进行全面的测试和分析,以确定最佳的工作参数。
这些工况包括不同的负荷、转速、温度等。
通过对这些工况下的参数进行测试和调整,可以确保发动机在实际使用中能够有良好的性能和可靠性。
除了参数的设置和调整,ECU的生产标定还包括了对诊断功能的测试和验证。
诊断功能是ECU的一个重要功能,它可以监测和诊断发动机的各种故障和问题。
在生产标定过程中,需要对诊断功能进行全面的测试,以确保其能够准确地诊断出发动机的故障和问题,并给出相应的报警和保护措施。
ECU的生产标定是确保发动机性能和可靠性的重要环节。
通过对ECU进行合理的参数设置和调整,可以使发动机在各种工况下都能够达到最佳的工作状态,提高燃烧效率,降低排放和油耗。
而对诊断功能的测试和验证,则可以确保ECU能够准确地监测和诊断发动机的故障和问题,提供及时的保护措施。
汽车ECU的生产标定是一个复杂而精细的过程,它对发动机的工作状态进行全面的监测和控制。
电喷发动机的匹配标定一、概述在一个电控系统软件和硬件模式基本确定的前提下,发动机能否发挥出最好的性能,基本上取决于电控系统与发动机的匹配是否成功。
所谓匹配标定,就是通过对安装了电子控制系统的汽油机进行喷油特性、点火提前特性、怠速稳定性以及瞬态过度工况下各参数的综合试验,使电子控制系统在试验中获取最佳控制数据,从而使由该控制系统精确控制下的汽油机在动力性、经济性及排放性能等方面均获得令人满意的效果。
二、匹配标定试验系统对电控汽油机进行匹配标定的实质是通过大量的试验来实现发动机工作过程的优化。
为了保证匹配标定工作的顺利进行,要求标定试验系统能够实现在线修改,具有良好的精度、稳定性和重复性。
因此,传统的试验设备及方法无法进行电控发动机的匹配标定试验。
用于电喷发动机匹配试验的试验台架应具有以下特点:1)能够根据标定需要,精确地设定发动机运行工况点,且稳定性好;2)实时检测发动机的运行状态,可方便精确地获取发动机经济性、动力性及排放等性能指标;3)通过应用特定的控制软件,能够实现对发动机电子控制单元控制参数的实时在线修改;整个试验系统由发动机、供开发用的ecu、计算机、测功机、排放测试分析仪、油耗仪及其它监控仪器等设备组成。
供开发用的ecu 写入发动机ecu内的eprom中的电控系统软件,主要包括控制程序和供程序使用的数据。
在标定过程中,主要是对这些数据进行调整,最终达到发动机性能的最优化。
产品ecu的存储器为只读存储器,无法对其内部数据进行修改。
匹配标定过程中使用的ecu是专门供匹配用的,该ecu的存储器为eeprom,可根据需要方便地改写数据。
匹配标定专用ecu带一个udasys,它通过标定专用的接口与pc机相连,可将pc机中的数据实时传送给ecu中的eeprom,从而实现对发动机ecu参数的实时在线修改。
专用匹配标定软件cat pc机通过专用的接口与ecu相连,通过专用匹配标定软件,可以对发动机的运行状态参数,如转速、节气门开度、喷油脉宽、发动机温度和点火提前角等参数进行实时监测或标定。
第一章标定过程概述动力传动系统得目标每个标定过程得第一步就是确定动力传动系统标定得目标.典型情况应包括以下几方面内容:—发动机得功率与输出扭矩—驱动性能—ﻩ不同温度下起动时间—加速与减速性能—ﻩ期望得燃油特性- 工作温度范围硬件选择在性能指标确定后,为了达到这些目标,需要选择各种各样得系统硬件。
节气门口得直径由发动机节气门全开时得最大空气流量决定。
油泵流量与喷油器动态范围由怠速与节气门全开时发动机燃油需要量决定。
排放标准排放标准可能要求使用外接EGR阀、防燃油蒸气污染系统、催化转换器得数量与大小、暖机催化转换器与辅助空气阀(脉动空气/空气泵等)。
爆震控制如果需要用最大点火提角来满足功率与燃油经济性要求,或者车辆可能使用不同辛烷值得汽油,那么可能需要安装爆震控制系统。
§1。
1发动机在测功器上得初步开发一旦系统硬件配置确定,就可以利用一或两台手工装配得发动机进行发动机测功器初步开发.试验前,必须安排时间排除测功器硬件得故障,确认系统零部件达到技术要求,并且实际上通讯系统已正常工作。
发动机测功器用于评价发动机性能以及制定空燃比分布、所要求得点火提前角与充气效率图。
发动机性能—在节气门部分开度与全开时测量空燃比分布。
—分析O2传感器对各缸得响应来确定混合气浓与稀情况下得最佳扭矩点影响。
—确定节气门部分开度与功率加浓得燃油精度。
—测定有效燃油消耗率。
发动机控制参数图—部分负荷/节气门全开得MBT.—点火界线与燃油辛烷值关系.-点火与冷却水温得关系。
—点火与EGR得关系。
—EGR图与发动机排放关系.—点火图与EGR与发动机排放得关系。
—燃油经济性/NOx与HC得折衷选择。
—充气效率(VE)图(速度密度系统).—空气流量计校准(质量流量系统)。
§1。
2车辆驱动性能得开发一旦可以得到足够数量得能够批量生产得零部件,就应马上着手组装一或两辆试验车,作为一个典型得开发平台,进行早期得标定开发与车辆驱动性能评价。
ECU标定流程
一、标定前准备
1.确定标定目标
(1)确认需要标定的参数
(2)设定标定的目标数值
2.准备工具和设备
(1)确保标定软件及硬件准备就绪(2)连接ECU至标定设备
二、读取原始数据
1.连接至车辆ECU
(1)确认连接正确
(2)读取ECU原始数据
2.导出数据文件
(1)将原始数据导出至标定工具(2)确认数据完整性
三、参数调整
1.根据标定目标调整参数
(1)调整燃油喷射量
(2)调整点火提前角度
2.进行多次反复调整
(1)进行参数微调
(2)反复测试并记录结果
四、验证与优化
1.验证调整效果
(1)进行实际行驶测试
(2)检查参数表现
2.优化参数
(1)根据测试结果再次调整参数(2)确保性能与效率达到最佳状态
五、写入新参数
1.确认最终参数
(1)确认标定结果符合要求
(2)确定最终调整参数
2.写入新参数至ECU
(1)将最终参数写入ECU内存(2)确认写入成功。
专业解读:发动机ECU标定全流程标定好比磨刀,基于这把刀的材质、硬度、形状,功能来打造一把合适的刀,完美的标定是发挥出刀的最佳性能,突出重点!一、发动机匹配工作的目标:1 通过发动机台架的匹配,使发动机具有良好的稳态性能,在保证发动机工作可靠性(无爆震,无过热)的情况下,达到发动机的设计功率,扭矩和油耗性能。
2 通过对发动机在车辆上的匹配,使发动机与车辆其他系统(各种电器负载,传动系统,制动系统,三元催化转化器等等)协调工作,保证发动机在各种环境和工作条件下,都具有良好的起动怠速性能,良好的驾驶舒适性和排放性能。
同时还要进行完善的车载诊断系统(OBD)的匹配。
3 通过高温,高寒和高原等道路环境试验,对匹配好的各种性能进行全方位地验证,保证发动机和车辆在各种情况下都能达到既定的安全,环保和驾驶舒适性等严格的指标。
对于汽油机来说,技术上就是控制进气(合理的配气相位,节气门开度等)、喷油(最佳的空燃比)及点火(合适的点火提前角)三者的配合。
需要加以说明的是,发动机的动力性能和经济性能的最大潜力取决于发动机的本体设计,发动机匹配工作只不过是努力使这些潜力得到挖掘或协调。
例如,汽油机通过改变进气量来改变输出的扭矩和功率,进排气系统的设计决定了发动机的充气效率,因此当发动机结构确定时,一定工况下发动机的最大充气量就已确定,发动机的动力性能也就确定;又如,发动机的工作效率,即燃油经济性,决定于燃烧效率及机械效率,通过改变喷油时间、喷油量以及点火提前角可以改善燃油经济性,但是不能突破由于发动机设计限定的燃油经济性极限。
二.发动机管理系统(EMS)和电子控制单元(ECU)发动机管理系统(EngineManagement System, 缩写为EMS):1979年,BOSCH公司将点火提前角电子控制与燃油定量电子控制融为一体,开发出Motronic,并引入爆震控制、排气再循环等,以满足更趋严格的性能和排放要求,其电子控制范围覆盖整个发动机,称为发动机电子管理系统,其核心是燃油定量和点火正时电子控制。
目前,各种发动机电子管理系统已经成为提高燃油经济性和满足更为严格的排放法规的决定性因素。
发动机管理系统以电子控制单元(ElectronicControl Unit,以下简称ECU)为中心,ECU接受来自传感器的各种信息,经过处理、分析以后,发出控制信号给各种执行器。
在发动机匹配工作中,就是通过各种匹配实验,对ECU各种参数进行设置,从而达到发动机匹配工作的目标。
三.发动机匹配工作发动机匹配工作就是在某个确定的发动机管理系统(EMS)下,通过各种项目匹配,为发动机控制器(ECU)各类参数设置合适的值,以达到汽车的动力性、经济性、可靠性、安全性、排污性而确定的各工况最佳空燃比、最佳点火提前角的要求。
发动机匹配工作是为众多的匹配参数设置合适的值,匹配参数的数量随着系统的复杂程度、控制软件的先进程度的变化而变化的。
这些匹配参数有些是特性值,有些是一条二维特性曲线,有些则是矩阵(三维特性图),匹配参数的确定需要通过大量的试验和数据分析而得。
四. 发动机匹配的标准流程一般来说,在项目确定后,发动机匹配工作可以分为四个阶段,即:项目准备阶段、基本匹配阶段、精细匹配阶段和认可阶段,直至对最终匹配数据认可(SOP 阶段),一般需要18个月左右(完成三高试验)。
二.发动机匹配工作主要内容:一.匹配准备在台架上安装发动机及其相关附件。
匹配车匹配检查和准备:为了使匹配数据能覆盖制造上的公差,每一种状态的车型必须有两辆以上的匹配车。
二.发动机台架基本匹配(约40工作日)1.传感器信号检查(约3 天)确定所有传感器(水温传感器,空气温度传感器,HFM 等)输入和输出信号准确。
ECU通过A/D转换能正确接受信号,各执行器工作正常(炭罐电磁阀,喷油嘴,点火线圈等)。
确保系统正常工作。
2.标定喷油结束时间(约2天)喷油结束时间决定了燃油的雾化即混合气形成的好坏,这将直接影响到发动机的燃烧情况。
标定喷油结束时间主要以尾气中的HC排放含量为指标。
确定最合适的喷油结束时间。
(a)空燃比脉谱图(b)点火定时脉谱图3.标定负荷模型(约15天)精确地判断进入汽缸的新鲜空气量是发动机控制的基础,由于进气脉动和汽缸中残余废气的存在,以及如废气再循环,曲轴箱通风和油箱通风等导致的进气量变化,使得完全依靠传感器来精确判断进气量已不可能。
负荷模型通过测量进气压力,燃油消耗量,原始排放和空燃比,以及各种环境和发动机参数,并通过一系列的数学模型和函数对各种工况下的进气特性进行计算和模拟,最终达到精确地判断进入汽缸的新鲜空气量的目的。
标定负荷模型所需的工作量随系统配置的复杂程度变化,如可变进气系统(进气长短管切换),可变气门正时系统,废气再循环系统废气涡轮增压系统等都会大大地增加负荷模型的匹配时间。
4.标定喷油量(约2天)在负荷模型匹配好以后,按照理论计算可以得到在各工况点让空燃比λ=1的喷油量,但是由于供油系统也存在偏差,导致在某些情况下空燃比偏离1,这需要在这里得到修正。
5.扭矩模型(约15 天)发动机的扭矩是发动机控制系统的中心变量,因此首先要匹配发动机在各种转速和节气门开度下,在空燃比等于1以及各种点火提前角等条件下,发动机所能发出的最大扭矩,这是发动机扭矩控制的基础值(对应100%的空燃比效率和100%的点火角效率)。
然后通过测量在各种空燃比(一般从1.1到0.9)和各种点火角(从最大点火提前角一直推迟到失火)情况下的扭矩,可以得到关于空燃比的效率特性和关于点火角的效率特性。
这样以后在发动机控制中,只需要提到发动机的扭矩以及实现该扭矩的空燃比和点火提前角效率,发动机控制系统就可以计算出相应的进气量(节气门开度),喷油量和点火提前角。
6.标定点火提前角(约4天)在进行点火提前角标定前,一般应完成爆震控制的爆震识别部分的初步匹配(见三爆震控制匹配)。
匹配原则:在不同的转速和负荷点,控制λ=1,在不发生爆震的前提下寻找使输出扭矩最大的点火提前角。
7.匹配数据校验(约2 天)对试验数据进行分析,把相关的匹配数据填入模型,最后把数据模型的输出与实际发动机台架输出进行比较。
校正偏差。
8.外特性(约2 天)完成了爆震和三元催化器过热保护的匹配后,在节气门全开的条件下,在每个转速点通过调节λ(调节全负荷加浓系数),使发动机达到设计最大的功率和输出扭矩,同时尽可能地降低比油耗。
三.爆震控制匹配(约20工作日)爆震是一种非正常燃烧,强烈爆震会损坏发动机,而现代高压缩比的发动机导致更多的爆震倾向,因此爆震匹配是发动机匹配过程中必不可少的一个工作环节,为此发动机控制器中有一块专用的芯片用于爆震传感器信号的分析和处理。
爆震控制的匹配是一项非常复杂的工作,需要应用大量的专用工具和设备(如带燃烧压力传感器的火花塞,专用的爆震匹配控制器,爆震测量分析仪等等)。
1.爆震识别(约15 天)在台架上测量汽缸内的燃烧压力并应用爆震测量分析仪,可以准确地识别和判断爆震是否发生。
同时爆震传感器的信号输入到ECU,经过信号放大,带通滤波,整流,积分等一系列处理,最后的积分信号由ECU用来判断是否发生爆震,同时该信号还被用来确定信号放大倍数和带通滤波的中心频率。
2.动态爆震(约5 天)动态爆震指加速爆震、高速爆震,其识别的复杂性在于发动机转速、负荷的变化产生的振动和噪音会使其不易被识别出。
匹配方法:在各种动态工况点,如Tipin,急加速情况等震动和噪音较大的情况下识别爆震,通过推迟点火提前角避免发生爆震。
3.爆震功能诊断(约2 天)测试在故障状态和正常工作状态下传感器的输出,存储在控制器中用于诊断传感器的开路和短路四.热车性能匹配(约40工作日)1.氧传感器闭环控制(约10 天)氧传感器用于测定废气中的过量空气系数λ。
λ表示实际混合气空燃比与理论值(14.7:1)的偏离程度。
λ =吸入空气量/化学当量燃烧所需空气量λ =1:表示吸入空气量相当于理论要求量。
三元催化器在λ =1附近对HC,NOx和CO的转化效率最高。
氧传感器闭环控制的目标就是把λ精确控制在1±0.03,保证三元催化器有最高的催化转化效率,补偿λ预控偏差,补偿混合气浓度的动态偏移。
通过λ自学习,消除由于零件制造和燃油品质等造成的λ偏移。
若有下游传感器,其作用a)对KAT老化进行监测,b)提高氧传感器闭环控制的精度。
匹配时间也相应增加约10天。
2.排气温度模型和三元催化器保护(约10 天)排气温度模型用于模拟氧传感器周围(催化器前后)和催化器内部的温度在不同环境和发动机工作条件下随发动机负荷和转速变化而变化的情况。
通过实际测量,建立各工况点的排气系统温度模型。
高速大负荷,如发现三元催化器温度大于其温度限值,通过加浓混合气降低排气温度,保护三元催化器不受损坏。
同时与氧传感器加热控制结合,模拟排气系统露点阶段结束的条件,以保护氧传感器。
3.氧传感器加热控制(约5天)主要是为了防止氧传感器陶瓷体裂碎。
发动机起动后,排气系统管壁和氧传感器护套上会有水珠形成,这些水珠有可能随着废气而飞溅到氧传感器的陶瓷体上,如果氧传感器陶瓷体温度过高,则容易发生裂碎。
因此,此试验的要求是在排气管壁面温度达到60度时,氧传感器陶瓷体温度不能超过350度。
4.过渡工况(约10天)当节气门开度变动时,由于负荷测量和相应的喷油量计算与实际的喷油时刻不同步,导致实际的空燃比过浓或过稀,严重地影响了发动机的排放性能和驾驶性能。
这种现象可以通过在不同负荷情况下在进气歧管上形成的不同燃油膜厚度来得到很好的解释,过渡工况匹配的目的就是要补偿这些变化,使得空燃比控制在一个合理的范围之内。
匹配的基本原则:加速加浓,减速减稀。
先在转鼓台上用踏板位置模拟器改变负荷。
模拟加速和减速的情况,增加和减少喷油以使得空燃比在一个合理的范围内(主要考虑排放和驾驶舒适性)。
然后在实际道路上进行加减速试验,进行匹配数据修正。
5.炭罐控制(10—30 天)炭罐控制的匹配目的:为防止燃油蒸汽从油箱逸出造成污染,要使炭罐有足够的通风,同时维持λ的偏差在最小值。
在不同的工况点,设定炭罐开启时间(TEP),通过控制λ反馈控制,对喷油量进行修正。
在炭罐工作时,λ自学习停止。
五.起动怠速匹配(约40工作日)1.怠速控制(约10 天)匹配目的:控制λ=1,发动机转速稳定在怠速±20转。
在突加电器负载,空调开关以及动力转向机工作时,不允许出现明显的转速震荡和发动机抖动。
通常在怠速情况下不把点火提前角调节到最大,为了有一定的扭矩储备。
突加负载通过调节点火提前角(快速)和增加进气量(慢速)来维持怠速稳定。
2.冷起动(-30度—40度)冷起动是指当发动机和车辆经过较长时间的停放,给部件与所处的环境温度达到一致情况下进行的起动,其温度范围大约从-30度到+40度。