只需求出与杆轴线垂直的反力。
1.悬臂刚架
可以不求反力,由自由端开始直接 求作内力图。
L
q ½qL²↓↓↓↓↓↓↓↓↓
L
qL² qL²
2.简支刚架弯矩图
简支型刚架绘制弯矩图时,往往
只须求出一个与杆件垂直的支座
反力,然后由支座作起。
q
l
D
qa2/2
C
l/2
l/2
q
↓↓↓↓↓↓↓↓↓↓↓↓
ql2/2
qL2/2
(3)绘制内力图(弯矩图 剪力图 轴力图)
由已求得各杆端力,分别按各杆件作内力图。
弯矩图可由已知杆端弯矩,按直杆段的区段叠加法作杆
件的弯矩图。
连接两个杆端的刚结点,若 结点上无外力偶作用,则两 个杆端的弯矩值相等,方向 相反.
M图(KN·m)
拆成单个杆,求出杆两端的所 有内力,按与单跨梁相同的方法 画内力图.
铰拱的合理拱轴线的纵
只限于三铰平拱受 竖向荷载作用
坐标与相应简支梁弯矩 图的竖标成正比。
试求图示对称三铰拱在均布荷载作用下 的合理拱轴线。
MC0=ql2/8 H=ql2/8f M0(x)=qlx/2-qx2 /2 =qx(l-x)/2
y=4fx(l-x)/l2
抛物线
拱的合理拱轴线的形状与相应的简支梁的弯矩 图相似。
三铰拱在竖向集中荷载作用下的的无荷载区段上, 合理拱轴是一条直线,并在集中荷载作用点出现转折; 在均布荷载作用区段上,合理拱轴是一条抛物线。
(2)计算杆端力 取AB杆B截面以下部分, 计算该杆B端杆端力:
MBA = 160kN·m (右侧受拉) 同理:取BD杆B截面以右部 分,计算该杆B端杆端力: MBD = 160kN·m (下侧受拉)