电 源 供 应 器 简 介
- 格式:doc
- 大小:44.00 KB
- 文档页数:6
电源的“整体分类”及“常见电源”简单介绍什么叫电源电源是将其它形式的能转换成电能的装置。
电源自磁生电原理,由水力、风力、海潮、水坝水压差、太阳能等可再生能源,及烧煤炭、油渣等产生电力来源。
常见的电源是干电池(直流电)与家用的110V-220V 交流电源。
电源分类(一)普通电源普通电源可细分为:开关电源、逆变电源、交流稳压电源、直流稳压电源、DC/DC电源、通信电源、模块电源、变频电源、UPS电源、EPS应急电源、净化电源、PC电源、整流电源、定制电源、加热电源、焊接电源/电弧电源、电镀电源、网络电源、电力操作电源、适配器电源、线性电源、电源控制器/驱动器、功率电源、其他普通电源、逆变电源、参数电源、调压电源、变压器电源。
(二)特种电源特种电源可细分为:岸电电源、安防电源、高压电源、医疗电源、军用电源、航空航天电源、激光电源、其他特种电源。
特种电源即特殊种类的电源。
所谓特殊主要是由于衡量电源的技术指标要求不同于常用的电源,其主要是输出电压特别高,输出电流特别大,或者对稳定度、动态响应及纹波要求特别高,或者要求电源输出的电压或电流是脉冲或其它一些要求。
这就使得在设计及生产此类电源时有比普通电源有更特殊甚至更严格的要求。
特种电源一般是为特殊负载或场合要求而设计的,它的应用十分广泛。
主要有:电镀电解、阳极氧化、感应加热、医疗设备、电力操作、电力试验、环保除尘、空气净化、食品灭菌、激光红外、光电显示等。
而在国防及军事上,特种电源更有普通电源不可取代的用途,主要用于:雷达导航、高能物理、等离子体物理及核技术研究等。
(感觉主要用于军事上)TI特种电源常见类型电源交流稳压电源能够提供一个稳定电压和频率的电源称交流稳定电源。
国内多数厂家所做的工作是交流电。
电源的分类与特性在现代社会中,电源是我们生活中不可或缺的一部分。
无论是日常生活还是工业生产,电源都扮演着重要的角色。
本文将介绍电源的分类与特性,以帮助读者更好地理解和应用电源。
一、电源的分类电源可以根据不同的标准和功能进行分类。
下面将介绍几种常见的电源分类。
1.按电磁性质分类根据电源的电磁性质,电源可以分为直流电源和交流电源。
直流电源是提供直流电的设备,其输出的电压和电流方向保持不变。
交流电源则是提供交流电的设备,其输出的电压和电流方向周期性地改变。
2.按输出性质分类根据电源的输出性质,电源可以分为恒定电流源和恒定电压源。
恒定电流源能够提供一个稳定的电流输出,而恒定电压源则能够提供一个稳定的电压输出。
3.按工作原理分类根据电源的工作原理,电源可以分为线性电源和开关电源。
线性电源是通过变压器、整流器和稳压器等元件进行电压转换和稳定,其工作原理比较简单。
而开关电源则是通过高频开关器件进行电压转换和调节,其效率相对较高。
二、电源的特性除了不同的分类,电源还具有一些特定的特性。
下面将介绍几个常见的电源特性。
1.输出电压范围和精度电源的输出电压范围指的是其能够提供的电压的最大和最小值。
而输出电压精度则是指电源输出电压与其标称值的偏差。
这些特性非常重要,因为不同的电器设备对电源输出的电压范围和精度有不同的要求。
2.输出电流能力电源的输出电流能力决定了其能够提供的最大电流。
对于一些功率较大的设备,需要具备较高的输出电流能力。
因此,选择电源时需要考虑设备的功率需求和电源的输出电流能力。
3.效率和稳定性电源的效率和稳定性也是非常重要的特性。
效率是指电源输出功率与输入功率的比值,高效率的电源可以减少能源浪费;而稳定性则指电源输出的电压或电流在各种工作条件下的波动程度,稳定性好的电源可以确保设备的正常运行。
4.保护功能一些先进的电源还具备多种保护功能,如过载保护、过压保护、过流保护等。
这些保护功能可以保护设备免受电源异常情况的影响,提高设备的可靠性和安全性。
变电站直流电源系统介绍发布时间:2022-07-28T08:59:42.011Z 来源:《福光技术》2022年16期作者:徐洋[导读] 通信直流供电系统主要由高频开关电源、蓄电池组、直流配电、电源监控等设备组成,为通信设备提供48V直流电源。
通信直流电源系统主要为变电站内通信设备提供48V直流电源,同时也为其他保护装置、安稳装置、自动化装置等设备提供直流电源,保证变电站内信息网络、业务通道安全稳定的传输。
云南电网有限责任公司普洱供电局云南普洱 665000摘要:变电站通信电源系统是为变电站站内通信设备、保护接口装置等设备提供48V直流电源的设备。
二次直流系统是为变电站内各类二次设备、操作机构等提供220V直流电源的电源设备。
它们分别为变电站内不同设备提供所需的不同电压等级直流电源,是保证变电站设备运行不可缺少的动力来源。
一体化电源是将220V与48V电源集成后的直流电源系统,在新建变电站用得到推广运用。
关键词:通信直流电源二次直流系统一体化电源1通信直流电源系统1、通信直流电源系统简介通信直流供电系统主要由高频开关电源、蓄电池组、直流配电、电源监控等设备组成,为通信设备提供48V直流电源。
通信直流电源系统主要为变电站内通信设备提供48V直流电源,同时也为其他保护装置、安稳装置、自动化装置等设备提供直流电源,保证变电站内信息网络、业务通道安全稳定的传输。
通信直流电源的核心是整流模块,通过整流模块将220V交流电源整流成稳定的48V直流电源供给通信设备使用。
因此在配置整流模块时需要有冗余配置。
按照《南方电源通信电源技术规范》,电源整流模块应满足M+N冗余配置,其中N中主用,N≤10时,1只备用,N>10时,每10只备用1只。
整流模块数量应不少于3只。
通信直流电源系统供电来源是变电站内380V站用交流电源,两路来自不同站用电系统的电源同时为其供电,保证一路交流输入中断后可有另一路交流为其供电,同时其配备有48V蓄电池组,在发生交流电源全部中断时,蓄电池组也会继续供电,保证48V直流供电的持续稳定,因此也可称为不间断电源。
最简单的电流源1.引言1.1 概述概述部分需要简要介绍本文的主题和内容。
针对最简单的电流源这个主题,我们将探讨电流源的定义、分类以及最简单电流源的实现方法。
在电子工程和电路设计领域,电流源扮演着重要的角色。
它是一种能够提供特定电流输出的电路元件或设备。
电流源的作用类似于电压源,但不同之处在于电压源提供一个固定电压而电流源提供一个固定电流。
电流源在我们日常生活和工业生产中得到广泛应用,例如电池、稳压器、升压器等,都是常见的电流源。
本文将首先阐述电流源的定义,以帮助读者全面了解电流源是什么以及它的基本原理。
其次,我们将对电流源进行分类,探讨不同类型的电流源的特点和用途。
最后,我们将分享关于实现最简单的电流源的方法,以便读者在实际应用中能够快速实现电流源功能。
希望通过本文的阐述,读者能够对电流源有一个全面的认识,并且能够根据实际需求选择合适的电流源。
接下来,我们将从电流源的定义开始,深入探讨这一领域的知识。
1.2文章结构文章结构部分的内容:文章结构是指文章所采用的组织和布局方式,用于合理地展现论点和论证逻辑。
一个清晰的文章结构可以让读者更好地理解文章内容,并且能够更好地引导读者的阅读思路。
在本文中,文章结构主要分为引言、正文和结论三个部分。
引言部分主要包括概述、文章结构和目的三个方面。
在概述中,可以介绍电流源是电工学中重要的基础概念,以及为什么研究最简单的电流源具有一定的意义。
在文章结构中,说明本文将按照什么样的组织方式展开讨论,以及各个部分的主要内容。
在目的部分,可以明确阐述本文的目的,即探讨最简单的电流源的实现方法。
正文部分是文章的主体部分,将重点介绍电流源的定义和分类。
在电流源的定义中,可以详细讲解电流源是指能够提供恒定电流的设备或元件,以及其重要性和应用领域。
在电流源的分类中,可以根据不同的标准和特点,将电流源分为理想电流源、非理想电流源、独立电流源和受控电流源等,并分别介绍它们的特点和应用。
多路电流源芯片-概述说明以及解释1.引言1.1 概述概述多路电流源芯片是一种集成多路电流源的芯片,可以同时输出多个电流信号。
它广泛应用于各种领域,如电子测量仪器、医疗设备、通信系统等。
本文将介绍多路电流源芯片的定义、原理、应用领域、优势和特点,总结其重要性,并展望其未来发展。
通过对多路电流源芯片的深入了解,我们可以更好地应用和推动其在各个领域的发展。
1.2 文章结构本文将分为三个部分进行论述:引言、正文和结论。
在引言部分,将对多路电流源芯片进行概述,介绍文章的结构和目的,为读者提供一个全面的引导。
在正文部分,将首先介绍多路电流源芯片的定义和原理,为读者解释其工作原理和实现方式。
然后将讨论多路电流源芯片在不同应用领域中的实际应用,展示其在各个领域中的重要性和价值。
最后,将分析多路电流源芯片相对于其他解决方案的优势和特点,以及其在实际应用中的实际效果。
在结论部分,将总结多路电流源芯片在各个方面的重要性,并对其未来发展进行展望,指出其在未来的发展趋势和可能的应用场景。
最后,将进行全文总结,并得出结论。
1.3 目的:本文的目的是介绍多路电流源芯片的定义、原理、应用领域以及优势特点,帮助读者更加深入了解这一领域。
通过对多路电流源芯片的详细描述和分析,我们希望读者能够了解其在各种领域的重要性和广泛应用,并对未来发展方向有更清晰的认识。
同时,通过本文的撰写,也可以促进相关技术的研究和发展,推动多路电流源芯片技术的进步和创新。
我们希望本文能够为读者提供有益的参考和启发,引领大家更深入地探讨和应用多路电流源芯片技术。
2.正文2.1 多路电流源芯片的定义和原理多路电流源芯片是一种集成了多个独立电流源输出通道的集成电路芯片。
它的主要功能是通过控制电压和电流的变化,提供多路可调节的恒定电流输出。
在电子电路设计中,多路电流源芯片通常用于模拟电路、传感器接口、电压参考以及仪器仪表等领域。
多路电流源芯片的原理主要是通过内部的电流控制电路来实现对每个通道输出电流的精确控制。
1引⾔ 在⼤功率电⼒电⼦器件应⽤中,IGBT 已取代GTR 或MOsF 龃成为主流。
⼼盯的优点在予输⼊阻抗⾼、开关损耗⼩、饱和压降低、通断速度快、热稳定性能好、耐⾼压且承受⼤电流、驱动电路简单。
⽬前,由妇BT 单元构成的功率模块在智能化⽅⾯得到了迅速发展,智能功率模块(IPM)不仅包括基本组合单元和驱动电路,还具有保护和报警功能。
IPM 以其完善的功能和⾼可靠性创造了很好的应⽤条件,利⽤IPM 的控制功能,与微处理器相结合,可⽅便地构成智能功率控制系统。
IGBT ⼀IPM 模块适⽤变频器、直流调速系统、DC—DC 变换器以及有源电⼒滤波器等,其中富⼠R 系列IGBT ⼀IPM 是应⽤较⼴泛的产品之⼀。
2 IGBll_IPM 的结构 IPM Ⅱ模块有6单元或7单元结构,⽤陶瓷基板作绝缘构造,基板可直接安装在散热器上,控制输⼊端为2.54m 标准单排封装,可⽤⼀个通⽤连接器直接与印刷电路板相连。
主电源输⼊(P ,N)、制动输出(B)及输出端(u ,v ,w)分别就近配置,主配线⽅便;主端⼦⽤M5螺钉,可实现电流传输。
IPM 的结构框图如图l 所⽰,其基本结构为IGBT 单元组成的三相桥臂;内含续流⼆极管、制动⽤IG 明和制动⽤续流⼆极管;内置驱动电路、保护电路和报警输出电路。
IPM 共有6个主回路端(P ,N ,B ,u ,v ,w)、16个控制端,其中vccu 、vccv 、vccw 分别为u 、v 、w 相上桥臂控制电源输⼊的+端,GNDU 、GNDV 、GNDW 分别为对应的⼀端;Vinu 、vinV 、vinW 分别为上桥臂u 、v 、w 相控制信号输⼊端,vcc 、GND 为下桥臂公⽤控制电源输⼊;vinX 、vinY 、vinZ 分别为下桥臂x 、Y 、z 相控制信号输⼊端;vinDB 为制动单元控制信号输⼊端;ALM 为保护电路动作时的报警信号输出端。
图1 IPM 结构框图 R 系列IGBT—IPM 产品包括:中容量600v 系列50A ~150A 、1200v 系列25A ~75A;⼤容量600v 系列200A ~300A 、1200v 系列100A ⼀150A 。
电力电子变压器简要介绍电力电子变压器介绍0、前言电力电子变压器(Power Electronic Transformer 简称PET)作为一种新型的能量转换设备,与传统的变压器相比,具有体积小、重量轻、空载损耗小、不需要绝缘油等优点。
它是集电力电子、电力系统、计算机、数字信号处理与自动操纵理论等领域为一体的电力系统前沿研究课题,通过电力电子器件与电力电子变流技术,对能量进行转换与操纵,以替代传统的电力变压器。
1、基本原理PET 的设计思路源于具有高频连接的AC/AC变换电路, 其基本原理见图1, 即通过电力电子变换技术将变压器原边的工频交流输入信号变换为高频信号, 经高频变压器耦合到副边后, 再经电力电子变换还原成工频交流输出。
因高频变压器起隔离与变压作用, 因铁心式变压器的体积与频率成反比, 因此高频变的体积远小于工频变压器, 其整体效率高。
图1 电力电子变压器基本原理框图PET 的具体实现方案分两种形式: 一是在变换中不含直流环节, 即直接AC/AC变换, 其原理是: 在高频变压器原边进行高频调制, 在副边同步解调; 二是在变换中存在直流环节, 通常在变压器原边进行AC/AC变换, 再将直流调制为高频信号经高频变压器耦合到副边后, 在副边进行DC/AC变换。
比较两种方案, 后种操纵特性良好, 通过PWM 调制技术可实现变压器原副边电压、电流与功率的灵活操纵, 有望成为今后的进展方向。
2、研究现状自1970 年美国GE 公司首先发明了具有高频连接的AC/AC 变换电路后, 很多科研工作者对各类不一致结构的具有高频连接的AC/AC 变换器进行了深入的探讨与研究, 并提出了PET 的概念。
美国海军与美国电力科学研究院(EPRI)的研究小组先后提出了一种固态变压器结构, Koo suke Harada等人也提出了一种智能变压器, 他们通过对高频技术的使用, 使变压器体积减小, 实现恒压、恒流、功率因数校正等功能。
电源供应器简介会发生电容爆炸的危险情况Power Supply (简称POWER):计算机内一切动力来源,决定了一台计算机的稳定与长期使用的品质。
电源供应器性能指针:瓦数:电源供应器可以将市电的交流电(AC,alternating current),转成您计算机运作所需的直流电(DC,direct current)。
大部分电源供应器提供计算机+3.3V、+5V、+12V、-12V、-5V的电源,通常我们以瓦数(watts)来衡量它的能力,一般而言300W足以应付目前4颗硬盘两台光驱跟主机板上基本零件所需电源。
多国安规:好电源还有个卖点就是其产品是否通过了「多国安规」,这个名词实际上是其通过的安全规范代名词的简称,其具体含义就是通过多个国家的安全规范,如N(挪威)、CSA(加拿大标准协会)、D(丹麦)、CB(国际认证机构)、UL(美国认证实验室)、DVE(德国)、TUV(北美)、SWEDEN(瑞典)。
其还通过了电磁兼容和电磁辐射干扰认证,如CE(欧洲电器设备标准)、FCC(美国联邦通讯)、CCC(中国认证)等。
电容:电容在电源中扮演着重要角色,大容量的滤波电容可以为主机提供更好的更纯净的输入电流,这对计算机的稳定工作非常重要,如果输入电流不纯会致使主机中的信号扰乱,干扰计算机正常处理信号,引起不稳定现象。
许多廉价的电源厂商为了降低生产,采用低容量的滤波电容,使计算机的性能大打折扣.直流电源供应器为一将交流电源转换成所需直流电源的装置。
一个良好的电源供应器必须符合所有功能规格、保护特性、安全规范(如UL、CSA、VDE、DEMKO、SEMKO等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容能力(如FCC、CE等之传导与幅射干扰)、可靠度(如烧机之寿命测试)、及其它之特定需求等。
本文之主要内容系以讨论电源供应器之功能规格及保护特性之测试为主。
电源供应器包括下列之型式:‧AC-DC:如个人用、家用、办公室用、工业用(桌上型PS/2或ATX计算机、外围)‧DC-DC:如可携带式产品(行动电话、笔计型计算机、摄影机)‧DC-AC:如车用转换器(12V~115/230V) 、通信交换机之振铃信号电源‧AC-AC:如交流电源变压器、变频器、UPS不断电电源以上之输出还包含电压源(一般大多数为电压源)或电流源(如电池充电器)之单组输出或多组输出(视需求而定)之各种结构。
电源供应器之设计、制造及品质管制等测试需要精密的电子仪器设备来仿真电源供应器实际工作时之各项特性(亦即为各项规格),并验证能否通过。
实务上,电源供应器有许多不同的组成结构(单输出、多输出、正负极性等)和输出电压、电流、功率之组合,因此需要具弹性多样化的测试仪器才能符合众多不同规格之需求。
电气功能(Electrical Specifications) 测试: 当验证电源供应器的品质时,下列为一般的功能性测试项目,兹分别详细说明如下:功能(Functions)测试:‧输出电压调整(Hold-on Voltage Adjust)‧电源调整率(Line Regulation)‧负载调整率(Load Regulation)‧综合调整率(Conmine Regulation)‧输出涟波及噪声(Output Ripple & Noise, RARD)‧输入功率及效率(Input Power, Efficiency)‧动态负载或瞬时负载(Dynamic or Transient Response)‧电源良好/失效(Power Good/Fail)时间‧起动(Set-Up)及保持(Hold-Up)时间保护动作(Protections)测试:‧过电压保护(OVP, Over Voltage Protection)‧短路保护(Short)‧过电流保护(OCP, Over Current Protection)‧过功率保护(OPP, Over Power Protection安全(Safety) 规格测试:‧输入电流、漏电电流等‧耐压绝缘:电源输入对地,电源输出对地;电路板线路须有安全间距。
‧温度抗燃:零组件需具备抗燃之安全规格,工作温度须于安全规格内‧机壳接地:需于0.1欧姆以下,以避免漏电触电之危险。
‧变压输出特性:开路、短路及最大伏安(VA)输出‧异常测试:散热风扇停转、电压选择开关设定错误电磁兼容(Electromagnetic Compliance)测试:电源供应器需符合CISPR 22、CLASS B之传导与幅射的4dB余裕度,电源供应器需在以下三种负载状况下测试:每个输出为空载、每个输出为50%负载、每个输出为100%负载。
‧传导干扰/免疫:经由电源线之传导性干扰/免疫‧幅射干扰/免疫:经由磁场之幅射性干扰/免疫可靠度(Reliability)测试:烧机寿命测试:高温(约50-60度)及长时间(约8-24小时)满载测试。
功能规格测试输出电压调整:制造交换式电源供应器时,第一个测试步骤为将输出电压调整至规格范围内。
此步骤完成后才能确保后续的规格能够符合。
通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac/230Vac),并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其电位器(VR)直到电压读值位于要求之范围内。
电源调整率:电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。
此项测试系用来验证电源供应器在最恶劣之电源电压环境下,如夏天之中午(因气温高,用电需求量最大)其电源电压最低;又如冬天之晚上(因气温低,用电需求量最小)其电源电压最高。
在前述之两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格,为精确测量电源调整率,需要下列之设备:‧能提供可变电压能力的电源,至少提供待测电源供应器的最低到最高之输入电压。
‧一个均方根值交流电压表来测量输入电源电压。
‧一个精密直流电压表,具备至少高于待测物调整率十倍以上。
‧连接至待测物输出的可变负载。
测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。
电源调整率通常以一正常之固定负载(Nominal Load)下,由输入电压变化所造成其输出电压偏差率(deviation)的百分比,如下列公式所示:V0(max)-V0(min) V0(normal)电源调整率亦可用下列方式表示之:于输入电压变化下,其输出电压之偏差量须于规定之上下限范围内,即输出电压之上下限绝对值以内。
负载调整率:定义:电源供应器于输出负载电流变化时,提供其稳定输出电压的能力。
此项测试系用来验证电源供应器在最恶劣之负载环境下,如个人计算机内装置最少之适配卡且磁盘驱动器均不动作(因负载最少,用电需求量最小)其负载电流最低;又如个人计算机内装置最多之适配卡且磁盘驱动器有动作(因负载最多,用电需求量最大)其负载电流最高。
在前述之两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格。
所需的设备和连接与电源调整率相似,唯一不同的是需要精密的电流表与待测电源供应器的输出串联。
测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,测量正常负载下之输出电压值,再分别于轻载(Min)、重载(Max)负载下,测量并记录其输出电压值(分别为Vmax与Vmin),负载调整率通常以正常之固定输入电压下,由负载电流变化所造成其输出电压偏差率的百分比,如下列公式所示:V0(max)-V0(min)V0(normal)负载调整率亦可用下列方式表示:于输出负载电流变化下,其输出电压之偏差量须于规定之上下限电压范围内,即输出电压之上下限绝对值以内。
综合调整率:综合调整率的定义为电源供应器于输入电压与输出负载电流变化时,提供其稳定输出电压的能力。
这是电源调整率与负载调整率的综合,此项测试系为上述电源调整率与负载调整率的综合,可提供对电源供应器于改变输入电压与负载状况下更正确的性能验证。
综合调整率用下列方式表示:于输入电压与输出负载电流变化下,其输出电压之偏差量须于规定之上下限电压范围内(即输出电压之上下限绝对值以内)或某一百分比界限内。
输出噪声(PARD):输出噪声(PARD)系指于输入电压与输出负载电流均不变的情况下,其平均直流输出电压上的周期性与随机性偏差量的电压值。
输出噪声是表示在经过稳压及滤波后的直流输出电压上所有不需要的交流及噪声部份(含低频之50/60Hz电源信号、高于20 KHz之高频切换信号及其谐波,再与其它之随机性信号所组成)),通常以mVp-p峰对峰值电压为单位来表示。
一般的交换式电源供应器的规格均以输出直流输出电压的1%以内为输出噪声之规格,其频宽为20Hz到20MHz(或其它更高之频宽如30MHz、50MHz等)。
电源供应器实际工作时最恶劣的状况(如输出负载电流最大、输入电源电压最低等),若电源供应器在恶劣环境状况下,其输出直流电压加上噪声后之输出瞬时电压,仍能够维持稳定的输出电压不超过输出高低电压界限情形,否则将可能会导致电源电压超过或低于逻辑电路(如TTL电路)之承受电源电压而误动作,进一步造成当机现象.例如5V输出,其输出噪声要求为50mV以内(此时包含电源调整率、负载调整率、动态负载等其它所有变动,其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作),而12V输出其输出噪声要求为120mV以内,24V 输出其输出噪声要求为240mV以内。
在测量输出噪声时,电子负载的PARD必须比待测之电源供应器的PARD值为低,才不会影响输出噪声之测量。
同时测量电路必须有良好的隔离处理及阻抗匹配,为避免导线上产生不必要的干扰、振铃和驻波,一般都采用双同轴电缆并以50Ω于其端点上,并使用差动式量测方法(可避免地回路之噪声电流),来获得正确的测量结果.输入功率与效率:电源供应器的输入功率之定义为以下之公式:True Power = Pav(watt) = V1 Ai dt= Vrms x Arms x Power Factor即为对一周期内其输入电压与电流乘积之积分值,需注意的是Watt≠VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.为功率因素(Power Factor),通常电源供应器的功率因素在0.6~0.7左右,而大功率之电源供应器具备功率因素校正器者,其功率因素通常大于0.95,当输入电流波形与电压波形完全相同时,功率因素为1,并依其不相同之程度,其功率因素为1~0之间。
电源供应器的效率之定义为:ΣVout x loutTrue Power (watts)即为输出直流功率之总和与输入功率之比值。