石油化工工艺过程模拟
- 格式:doc
- 大小:374.00 KB
- 文档页数:22
石油化工流程模拟技术应用及案例石油化工流程模拟技术是指利用计算机和数学模型来模拟和优化石油化工生产过程的技术。
通过模拟技术可以预测和分析石油化工流程中的各种条件和参数,帮助工程师更好地设计和运行生产设备。
下面将列举10个石油化工流程模拟技术应用及案例:1. 炼油厂装置动态模拟:利用动态模拟软件,对炼油厂不同装置进行模拟和优化,从而提高生产效率和降低能耗。
例如,通过模拟裂化装置的运行条件和操作参数,可以准确预测产品产率和质量,帮助优化装置设计和操作策略。
2. 脱硫装置模拟:石油中的硫化物是一种环境污染物,脱除硫化物是炼油厂的重要任务之一。
通过模拟脱硫装置的工艺参数和操作条件,可以优化脱硫效率和降低能耗。
例如,利用模拟技术可以预测不同脱硫剂的使用量和反应温度对脱硫效果的影响,帮助优化脱硫装置设计和操作策略。
3. 裂化装置模拟:裂化装置是炼油厂的主要装置之一,用于将重质石油馏分转化为高附加值的轻质石油产品。
通过模拟裂化装置的运行条件和操作参数,可以预测产品产率和质量,帮助优化装置设计和操作策略。
例如,利用模拟技术可以预测不同裂化温度和催化剂用量对产品产率和选择性的影响,帮助优化装置运行。
4. 催化裂化汽油模拟:催化裂化汽油是炼油厂的重要产品之一,其质量和组成对市场需求有重要影响。
通过模拟催化裂化装置和汽油处理装置的运行条件和操作参数,可以预测汽油的组成和性质,帮助优化装置设计和操作策略。
例如,利用模拟技术可以预测不同催化剂和操作温度对汽油组成和性质的影响,帮助优化装置运行。
5. 炼油厂热力系统模拟:炼油厂的热力系统是炼油过程中的重要环节,直接影响能耗和产品质量。
通过模拟炼油厂的热力系统,可以优化能量利用和热交换过程,帮助降低能耗和提高产品质量。
例如,利用模拟技术可以预测不同换热器和蒸馏塔的设计和操作参数对热力系统效果的影响,帮助优化热力系统设计和操作策略。
6. 炼油厂蒸馏塔模拟:蒸馏塔是炼油厂的核心设备之一,用于将原油分离为不同馏分。
石油化工行业中的分子模拟方法使用方法引言:石油化工行业作为全球化学工业的领域之一,扮演着关键的角色。
为了改进生产过程和提高产品性能,分子模拟方法被广泛应用于石油化工行业中。
本文将介绍石油化工行业中常用的分子模拟方法及其使用方法,以此提供一些有用的指导。
一、分子模拟方法介绍分子模拟是通过模拟和计算分子尺度上的物理和化学过程,来研究分子结构、性质和相互作用的一种方法。
在石油化工行业中,常用的分子模拟方法包括分子力场模拟、量子力学计算和Monte Carlo模拟。
1. 分子力场模拟分子力场模拟利用势函数描述原子或分子间的相互作用,并通过数值计算得到分子热力学性质和相行为。
这种方法适用于大分子系统和较长时间尺度的研究。
常用的分子力场模拟软件有GROMACS、AMBER和CHARMM等。
2. 量子力学计算量子力学计算基于薛定谔方程来描述分子的量子态和精细结构。
这种方法适用于研究分子结构和化学反应机理。
著名的量子力学计算软件包括Gaussian、GAMESS和VASP等。
3. Monte Carlo模拟Monte Carlo模拟通过随机采样的方法,模拟分子系统的热力学性质和相行为。
这种方法适用于固体、液体和气体系统的研究。
常用的Monte Carlo模拟软件有LAMMPS、DL_POLY和GROMACS等。
二、分子模拟方法的使用方法在石油化工行业中,分子模拟方法可以应用于多个方面,包括催化剂设计、反应动力学研究和材料性能预测等。
下面将介绍分子模拟方法在这些方面的具体使用方法。
1. 催化剂设计催化剂在石油化工过程中起着关键作用。
分子模拟方法可以帮助设计新型的催化剂或改进现有催化剂的性能。
通过分子力场模拟,可以研究催化剂表面吸附物分子的构型和动力学行为,从而优化催化剂的结构和活性位点。
此外,量子力学计算可以揭示催化反应的机理,为合成高性能催化剂提供理论指导。
2. 反应动力学研究了解石油化工反应的反应机理和动力学行为对优化生产过程至关重要。
石油化工流程模拟软件Chemcad在石油化工工艺课程中的应用仇汝臣2007.9.24摘要:介绍了化工流程模拟软件Chemcad的特点、作用,以精馏过程的工艺设计为实例说明其应用。
关键词:Chemcad软件,设计,应用化工工艺计算是学习化工工艺基础知识、培养学生化工工艺设计能力的重要教学环节。
计算机辅助化工工艺过程计算是化工工艺的基本手段,有效地利用化工模拟计算软件进行化工设计工作可以极大地提高工作效率。
将模拟软件用于过程设计或过程模拟,对于当代的化工过程工程师已是一件很普通的工作。
本文主要介绍该软件特点、模块功能作用,并以精馏过程的工艺设计实例较详细地对该软件的应用进行说明。
1.CHEMCAD软件概述:CHEMCAD系列软件是美国Chemstations公司开发的化工流程模拟软件。
使用它,可以在计算机上建立与现场装置吻合的数据模型,并通过运算模拟装置的稳态或动态运行,为工艺开发、工程设计、优化操作和技术改造提供理论指导。
1.1使用CHEMCAD可以做的工作主要有以下几项:A.设计更有效的新工艺和设备使效益最大化B.通过优化/脱瓶颈改造减少费用和资金消耗C.评估新建/旧装置对环境的影响D.通过维护物性和实验室数据的中心数据库支持公司信息系统1.2CHEMCAD中的单元操作:CHEMCAD提供了大量的操作单元供用户选择,使用这些操作单元,基本能够满足一般化工厂的需要。
对反应器和分离塔,提供了多种计算方法。
ChemCAD可以模拟以下单元操作:蒸馏、汽提、吸收、萃取、共沸、三相共沸、共沸蒸馏、三相蒸馏、电解质蒸馏、反应蒸馏、反应器、热交换器、压缩机、泵、加热炉、控制器、透平、膨胀机等50多个单元操作。
1.3热力学物性计算方法:CHEMCAD提供了大量的最新的热平衡和相平衡的计算方法,包含39种K 值计算方法,和13种焓计算方法。
K值方法主要分为活度系数法和状态方程法等四类,其中活度系数法包含有UNIFAC 、UPLM (UNIFAC for Polymers)、Wilson 、T. K. Wilson 、HRNM Modified Wilson 、Van Laar 、Non-Random Two Liquid (NRTL) 、Margules 、GMAC (Chien-Null) 、Scatchard-Hildebrand (Regular Solution)等。
工艺流程模拟的原理及应用工艺流程模拟是指将现实中的工艺流程进行建模,通过模拟来分析流程的合理性与优化方案。
而这种模拟方法已经被广泛运用于各行各业,如石油化工、金属冶炼、半导体制造等.一、工艺流程模拟的原理工艺流程模拟的理论基础主要来自于物理学、化学工程学以及计算机科学等领域,其中以物理学和化学工程学最为重要。
工艺流程模拟一般分为几个步骤,具体来说如下:1. 建模阶段模型是模拟的基础,因此建模是模拟的首要任务。
建模阶段需要确定模型的性质和组成成分,并为其设计初始参数和边界条件。
理论上,建模可以通过偏微分方程或者大量的实验数据进行。
但在实际工程应用中,参数和拟合数据是关键,因此建立良好的参数和拟合数据对于建模至关重要。
2. 模拟阶段建立了模型之后,就需要进行模拟了。
模拟一般使用计算机进行实现,并根据初始条件、边界条件和以时间为基础的算法进行计算。
此阶段的计算速度对于工艺流程的采样率和精度有着重要的影响;3. 评估阶段模拟结果需要与实际结果进行比较以评估其准确性。
评估方法的选择取决于所研究的物理性质与科学,但常常会采用统计学和数据科学的方法,例如方差分析和相关性分析。
评估阶段也是模拟方法得以进一步优化和改进的机会。
二、工艺流程模拟的应用工艺流程模拟被广泛应用于不同领域,包括物理性质、化学工程以及制造业。
1. 物理性质物理性质方面的模拟往往更加侧重于场论方面的模拟,其中包括电磁场模拟、热传递模拟和机械力传递模拟等。
物理模拟在计算机制作游戏和电影方面有很好的应用前景。
2. 化学工程化学工程的优化往往要建立在模拟的基础之上,其目的是为了找到成本最低的最优解,从而提高效率和产量。
化学工程方面的应用包括各类材料和化合物的反应、生产过程和逆向反应的研究。
3. 制造业制造业方面的模拟十分广泛,主要关注加工工艺和工具的性能以及设计,其目的是为了使加工过程更加精确和高效。
在这一方面,工艺流程模拟也可以用于预测机器使用寿命和维护成本,以提高制造过程的可持续性。
石油化工行业中的模拟仿真技术使用教程在石油化工行业中,模拟仿真技术被广泛应用于生产过程的优化、设备设计的改进以及安全性评估等方面。
本文将为您介绍石油化工行业中模拟仿真技术的使用教程,帮助您更好地利用这项技术提升工作效率和质量。
首先,让我们了解一下模拟仿真技术在石油化工行业中的应用领域。
它可以用于优化生产过程,通过建立精确的数学模型,模拟化工生产过程中的各种物理和化学现象,从而提高生产效率和产品质量。
此外,模拟仿真技术还可以用于改进设备设计和选型,通过模拟设备在运行过程中的各种工况,找出可能存在的问题并提出改进方案。
另外,模拟仿真技术还可用于评估生产过程的安全性,通过模拟事故情况,预测潜在风险并制定相应的应对措施。
在进行石油化工模拟仿真之前,我们首先需要收集所需的数据和参数。
这些数据可以包括原料性质、反应动力学参数、设备性能等。
通过准确的数据和参数,可以保证模拟化工过程的真实性和可靠性。
此外,还需要有相关的模型以及计算和建模软件的支持。
常用的模拟仿真软件包括HYSYS、Aspen Plus等,它们可以帮助我们建立模型、进行计算和分析结果。
一旦收集到所需的数据和软件,我们就可以开始进行模拟仿真了。
首先,我们需要建立模型,通过将化工过程抽象成一系列基本的数学方程,利用相关的物理和化学原理,建立起一个系统的数学模型。
在建立模型时,需要根据实际情况考虑各种因素的影响,例如温度、压力、反应速率等。
建立模型后,我们需要进行参数设置,将所收集的数据和参数输入到模型中,并进行合理的假设和近似。
在参数设置完成后,我们可以进行模拟计算了。
通过模拟计算,可以预测化工过程中的各种物理和化学变化,例如温度、压力、浓度等。
通过对这些变化的分析,可以优化工艺参数和操作条件,改进生产过程。
在进行模拟计算时,需要注意选择合适的计算方法和求解器,以保证模拟结果的准确性和可靠性。
在模拟计算完成后,我们需要对结果进行分析和评估。
通过对模拟结果的分析,可以了解到化工过程中可能存在的问题和改进的空间。
HYSYS原油稳定工艺模拟优化培训教程一、HYSYS软件概述HYSYS是由美国AspenTech公司开发的一种化工过程模拟软件,广泛应用于石油、化工、制药、食品等行业的流程设计和优化中。
它具有直观的操作界面、强大的模拟计算能力和多种工艺模型,能够对各种流程进行稳态和动态模拟,并进行优化。
二、HYSYS软件安装与界面介绍1.安装HYSYS软件并进行注册;2.启动HYSYS软件,进入主界面;3.了解主界面的各个功能区,如工程拓扑图、物流图、热力图等;4.创建新工程文件并添加物料流和热力参数。
三、基本操作与模拟1.了解物料流的基本概念,如密度、黏度、沸点等;2.创建物料流,并设置其流量、物料性质等参数;3.在工程拓扑图中添加装置单元,如加热炉、冷凝器等;4.通过连接装置单元和物料流,建立整个工艺流程;5.设置装置单元的操作参数,如温度、压力等;6.进行稳态模拟计算,并分析计算结果。
四、原油稳定工艺模拟与优化1.了解原油稳定工艺的基本流程和原理,如加热、冷凝、分馏等;2.创建原油物料流,并设置其物料性质和流量;3.添加加热炉和冷凝器等装置单元,并设置其操作参数;4.通过连接装置单元和物料流,建立原油稳定工艺流程;5.进行稳态模拟计算,分析各个装置单元的工艺参数,如温度、压力等;6.设置优化目标,如提高产品收率、降低能耗等;7.通过调整工艺参数,进行优化计算;8.分析优化结果,并进行后续调整和优化。
五、案例分析与实践操作1.选择一个实际的原油稳定工艺案例进行分析;2.根据案例中的工艺流程和参数要求,建立HYSYS模型;3.进行稳态模拟计算,并分析计算结果;4.设置优化目标和参数,并进行优化计算;5.分析优化结果,并提出优化建议;6.进行后续调整和优化,验证优化效果。
通过以上教程的学习和实践,可以掌握HYSYS软件的基本操作和原油稳定工艺模拟优化的方法,提高工程设计和优化能力。
同时,还可以进一步学习HYSYS软件的高级功能和应用,如动态模拟、控制策略优化等,实现更加全面的工艺优化效果。
化工流程模拟化工流程模拟是指利用计算机模拟软件对化工生产过程进行模拟和优化,以实现对化工流程的全面分析和改进。
通过化工流程模拟,可以有效地提高生产效率、降低生产成本,改善产品质量,减少对环境的影响,实现可持续发展。
首先,化工流程模拟需要建立准确的数学模型。
数学模型是对化工生产过程中各种物理、化学和动力学现象的数学描述,可以通过一系列的方程式来描述化工流程中的各种变化和相互作用。
这些方程式需要考虑到温度、压力、物质的流动速度、化学反应速率等因素,以全面准确地反映化工流程的特点。
其次,化工流程模拟需要进行计算机仿真。
计算机仿真是利用计算机软件对建立的数学模型进行求解和分析,以获取化工流程中各种变量的数值解。
通过计算机仿真,可以模拟化工生产过程中的各种操作,如物料的混合、分离、反应等,从而得到化工流程中各种关键参数的变化规律和相互影响。
在化工流程模拟过程中,需要考虑到各种不确定性因素的影响。
化工生产过程中存在着诸多不确定性因素,如原料的质量波动、设备的故障、环境的变化等,这些因素都会对化工流程的稳定性和可靠性产生影响。
因此,在化工流程模拟中需要进行不确定性分析,以评估不确定性因素对化工流程的影响,并采取相应的措施进行风险管理。
最后,化工流程模拟需要进行优化和改进。
通过对化工流程模拟结果的分析,可以找出化工生产过程中存在的问题和瓶颈,并进行优化和改进。
优化和改进可以包括工艺参数的调整、设备的更新换代、生产方案的调整等,以提高化工流程的经济性、安全性和环保性。
综上所述,化工流程模拟是化工生产过程中的重要工具,可以帮助化工工程师全面了解化工流程的特点和规律,实现对化工流程的精确控制和优化调整。
化工企业可以通过化工流程模拟,提高生产效率,降低生产成本,改善产品质量,实现可持续发展的目标。
因此,化工流程模拟在化工生产中具有重要的应用价值和推广前景。
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第7期·2724·化 工 进展惠州石化有限公司连续重整装置工艺流程模拟与优化孟凡辉,纪传佳,杨纪(中海油惠州石化有限公司,广东 惠州 516086)摘要:以惠州石化有限公司200×104t/a 连续重整装置为研究对象,采用英国先进技术公司KBC 的流程模拟软件Petro-SIM ,建立了预加氢部分、重整反应部分以及重整全流程模型,以期优化装置操作条件,改善装置的生产瓶颈。
应用该模型分别对重整加权平均反应入口温度以及重整装置的3条分馏塔进行了优化分析。
模拟结果得出,重整加权平均反应入口温度在520.7~521.7℃时,重整操作条件最优;预加氢产物汽提塔底温度在235℃、塔压在1.01MPa 、进料温度在171℃时达到最佳的分离效果;重整脱戊烷塔塔压在1.02MPa 、重整脱丁烷塔塔压在1.0MPa 时塔的操作最优。
通过实施优化措施,将重整加权平均反应入口温度由517.7℃提高至521℃,可增产芳烃2.7×104t/a ,氢气1.126×107m 3/a ;分别将汽提塔塔压、脱戊烷塔塔压以及脱丁烷塔塔压由1.1MPa 降至1.0MPa ,共节约燃料气3.528×106m 3,多回收C 6环烷烃2.306×104t/a 。
核算装置效益,全年可实现节能效益197.9万元,提升装置经济效益3128.8万元。
关键词:连续重整装置;模拟;模型;优化;节能中图分类号:TQ021.8 文献标志码:A 文章编号:1000–6613(2017)07–2724–06 DOI :10.16085/j.issn.1000-6613.2016-2078Process simulation and optimization for CNOOC Huizhou company’scontinuous reforming unitMENG Fanhui ,JI Chuanjia ,YANG Ji(CNOOC Huizhou Petrochemical Limited Company ,Huizhou 516086,Guangdong ,China )Abstract :Using the Petro-SIM software ,technicians established the pretreatment model ,the catalytic reforming reaction model and the complete continuous catalytic reforming (CCR )process model which reflecting the actual operating conditions of 200×104t/a reforming unit in Huizhou company of China national offshore oil corporation (CNOOC ).The results showed that the reforming conditions are optimal when the inlet temperature at 520.7—521.7℃. The hydrogenation product stripper’s bottom temperature at 235℃,the pressure at 1.01MPa and the feed temperature at 171℃. The best separation effect was obtained. The operation of the column is optimal when the reforming depentanizer’s pressure is at 1.02MPa and the reforming butane tower’s pressure at 1.0MPa. The models were applied to the analysis of reactor temperature and three fractionation columns ,such as increasing the average weighted temperature from 517.7℃ to 521℃,the aromatics increased by 2.7×104t/a and hydrogen increased by 1.126×107m 3/a. The pressures at the top of stripper tower ,depentanizer and the butane tower were reduced from 1.1MPa to 1.0MPa respectively. The flue gas was decreased by 3.528×106m 3 and C 6 naphthenic increased by 2.306×104t/a. Effective measures have been adopted to improve the operation of reforming unit ,energy savings for the unit totaled 1.979 million yuan and annual economic benefits totaled 31.288 million yuan. Key words :continuous reforming unit ;simulation ;model ;optimization ;energy saving 中海油惠州石化有限公司连续重整装置采用美国环球油品公司第三代超低压连续重整专利技收稿日期:2016-11-14;修改稿日期:2017-01-04。
PRO/II与石油化工工艺过程模拟计算一、PRO/II简介1.1、概述PRO/II软件是美国SIMSCI公司推出的微机版本石油化工工艺流程模拟软件,该软件具备有丰富的物性数据库和热力学方程供用户描述不同状态下的流体热力学过程,对多种炼油、化工工艺过程具有广泛的适应性。
该软件不仅可以作为新设计炼油、化工工艺装置的工艺流程模拟软件,同时作为装置标定计算、设备核算的软件。
PRO/II软件在我国的应用十分广泛,其中DOS系统的V3.3、V4.02版本和WINDOWS 操作系统的V4.13 WITH PROVISION V2.0以上版本是比较常用的。
PRO/II软件是很多炼油、化工等设计院进行工艺设计的首选工艺模拟软件之一,同时也是炼油、化工等生产单位进行装置标定计算、设备核算的首选工艺模拟软件之一。
在实际工作中,有很多时候会遇到解决装置“瓶径”的问题,而塔设备往往是需要进行标定或核算的重要设备之一,这时应用PRO/II软件提供的精馏、吸收、萃取等单元操作过程的严格计算方法进行单塔模拟计算或全流程模拟计算是非常方便的。
1.2、主要计算模块或计算单元简介二、PRO/II热力学方法的初步分析PRO/II提供多种用于流体的气液平衡常数、液液平衡常数、焓、熵、密度和其他传递性能参数等热力学计算方法,由于每种热力学方法有一定的适用范围,在应用PRO/II 解决具体问题时,选择合适的热力学方法是能否正确模拟工艺过程的关键。
以下分类讨论PRO/II提供的主要的热力学方法。
2.1、普遍化方法普遍化方法主要包括用于烃类物系计算的SRK方程、PR方程、BWRS方程、GS方程、IGS方程、BK10方程等,各方程的适用范围如下:2.2、液相活度系数方法液相活度系数方法主要包括用化工、石油化工物系气液、液液、气液液平衡及相关物性参数计算的NRTL(Non-Random Two Liquid)方程、UNIQUAC方程、WILSON方程、UNIFAC方程、VANLAAR方程、FLORY方程、MARGULES方程等,各方程的适用范围如下:2.3、专用数据包方法PRO/II专用数据包用于计算指定物系的气液、液液平衡及相关物性参数,主要包括GLYCOL数据包、SOUR WATER数据包、ALCOHOL数据包、AMINE数据包等,各专用数据包的适用范围如下:三、PRO/II在石油化工装置塔模拟采用的热力学方法石油化工装置种类繁多,以下将分类介绍PRO/II软件在部分装置塔模拟计算推荐采用的平衡常数的热力学计算方法和相应的数据包。
3.1、炼油装置常见炼油装置塔模拟计算推荐采用的平衡常数的热力学计算方法和相应的数据包如下。
3.2、石油化工装置常见石油化工装置塔模拟计算推荐采用的平衡常数的热力学计算方法和相应的数据包如下。
四、精馏研究室开发的精馏过程工艺包4.1、炼油装置4.1.1、燃料型和滑油型原油蒸馏装置全流程和单塔模拟计算工艺包。
常压塔、减压塔进料中的轻组分对于塔顶组分、组成、油品馏分等计算结果有明显影响,尤其对于全流程计算,需要充分利用SPLITTER和MIXER计算模块对物流进行修正。
减压塔的计算建议取常压渣油的D1160蒸馏数据单独计算。
与实际操作过程一样,初馏塔的计算是模拟计算的重点。
目前在国内流行的计算软件,如:ASPEN PLUS、PRO/II、HYSYS/HYSIM等均可以对常减压装置作出比较准确的描述。
PRO/II推荐应用GS和BK10方程。
原油蒸馏计算主要关注以下工艺参数和工艺变量的设置。
4.1.2、催化裂化装置分馏和吸收稳定部分全流程和单塔模拟计算工艺包。
分馏塔和解吸塔是模拟计算的重点。
分馏塔的计算直接关系到全塔取热、柴油质量能否满足工艺要求。
建议计算时规定油气进料以上塔板上的过汽化油流量(体积基)为进料流量的3%以下;对于吸收稳定四塔,解吸塔涉及到碳二、碳三组分的分离,提高解吸塔的分离效率对于干气、液化气质量是最为关键的。
稳定塔的分离则直接关系到稳定汽油的质量是否满足工艺要求。
PRO/II推荐应用BK10计算分馏塔;应用GS和SRK计算吸收稳定四塔。
分馏-吸收稳定计算主要关注以下工艺参数和工艺变量的设置。
4.1.3、延迟焦化装置主分馏塔模拟计算工艺包。
分馏塔是模拟计算的重点。
计算结果直接关系到全塔取热、柴油质量能否满足工艺要求。
建议计算时规定油气进料以上塔板上的过汽化油流量(体积基)为进料流量的3%以下;规定塔顶MIXER冷凝器的液相抽出量和馏程要求。
建议分馏塔(含柴油汽提塔)应用PRO/II计算。
PRO/II推荐应用BK10计算分馏塔(含柴油汽提塔)。
分馏塔计算主要涉及到以下工艺参数和工艺变量的设置。
4.1.4、催化重整装置芳烃抽提(环丁砜为溶剂)模拟计算工艺包。
汽提塔和溶剂回收塔是模拟计算的重点。
其中需要提供各组分与溶剂的二元交互作用参数,并规定回收塔塔底溶剂的含水量。
推荐应用已经获得相对准确二元交互作用参数的PRO/II计算芳烃抽提过程。
对于脱轻塔和脱重塔,推荐应用SRK和GS方程;对于抽提塔、非芳水洗塔、汽提塔、溶剂回收塔推荐应用NRTL方程和ALCOHOL数据包。
建议应用FLASH模块计算汽提塔顶的水分离问题。
溶剂回收塔塔底水含量推荐为0.5-0.7%。
芳烃抽提主要计算涉及到以下工艺参数和工艺变量的设置。
溶剂再生塔4.1.5、加氢裂化装置分馏部分模拟计算工艺包。
分馏塔是模拟计算的重点。
建议计算时规定油气进料以上塔板上的过汽化油流量(体积基)为进料流量的3%以下;规定塔顶MIXER冷凝器的液相抽出量和馏程要求。
应用PRO/II计算分馏塔(含柴油汽提塔)时推荐应用BK10方程。
应用PRO/II计算其他塔(脱乙烷塔、脱丁烷塔等)时推荐应用SRK或GS方程。
4.1.6、加氢精制装置分馏部分模拟计算工艺包。
脱硫化氢塔和分馏塔是模拟计算的重点。
HYSYS/HYSIM、ASPEN PLUS、PRO/II均能够比较准确地计算脱硫化氢塔和分馏塔。
其中分馏塔计算收敛的关键是规定塔顶汽油的馏程。
应用PRO/II计算分馏塔时推荐应用BK10和GS方程。
应用PRO/II计算脱硫化氢塔时推荐应用GS方程。
工艺计算主要关注以下工艺参数和工艺变量的设置。
4.1.7、炼厂干气、液化气脱硫装置模拟计算工艺包。
HYSIM/HYSYS(含胺包)和PRO/II均可以得到比较满意的结果。
计算的重点是溶剂再生塔。
对于干气和液化气脱硫过程,贫溶剂(再生后的溶剂)中的硫含量对脱硫效果的影响是第一位的。
全流程计算收敛的关键是在计算流程中加入计算器模块,使全流程中的溶剂(包括水组分)达到平衡。
推荐全装置应用AMINE热力学方程计算平衡常数和其他性能参数。
由于循环物流的存在,建议装置中任何设备计算均应以全流程计算结果为基础。
脱硫计算主要涉及到以下工艺参数和工艺变量的设置。
溶剂再生塔4.1.8、气体分馏装置五塔和三塔流程模拟计算工艺包HYSIM/HYSYS、PRO/II等多种软件均能够进行全流程模拟计算,但计算得到的回流比均较实际操作时的回流比高。
脱丙烷塔和丙烯塔是流程计算的重点。
推荐计算时液相密度应用COSTALD或LK方法。
西方流行的DESIGN II模拟软件对于轻烃体系的计算接近实际操作过程,推荐平衡常数按照API SOAVE方程计算。
应用PRO/II计算丙烯塔时,推荐加入丙烯-丙烷的PR平衡作用常数。
KVAL(VLE) PR 2,3,0.00663,0,0工艺计算主要涉及到以下工艺参数和工艺变量的设置。
4.1.9、酸性水汽提装置模拟计算工艺包推荐应用PRO/II和ASPEN PLUS软件进行模拟计算。
酸水汽提塔包括至少两股进料,并且装置的换热流程较多,塔的进料物流的换热终温对于塔的汽液负荷有比较大的影响,所以对于酸水汽提塔的工艺计算,建议采用全流程方式。
推荐应用SOUR专用数据包计算热力学平衡常数。
4.1.10、MTBE装置模拟计算工艺包MBTE装置计算主要涉及到以下工艺参数和工艺变量的设置。
4.2、其它装置模拟工艺包4.2.1、乙烯装置部分过程(急冷、碱洗、脱甲烷、碳二精制、碳三精制等)4.2.2、二氯乙烷装置(DEC)和氯乙烯单体装置(VCM)4.2.3、丙烯腈装置急冷塔和吸收塔是关键,二元交互作用参数由兰州设计院提供。
4.2.4、轻烃三甘醇脱水装置4.2.5、DMT(对苯二甲酸二甲酯)装置需要提供非库组份物性参数。
4.2.6、油田气脱硫醇装置4.2.7、油田伴生气分离正丁烷装置(为顺酐装置提供原料)4.2.8、丁辛醇装置4.2.9、环己酮装置4.2.10、合成氨装置脱碳、再生4.2.11、滑油糠醛抽提装置抽提塔4.2.12、醋酸乙烯装置4.2.13、聚乙烯醇装置4.2.14、偏三甲苯分离装置4.2.15、乙烯汽油加氢装置4.2.16、烷基苯装置4.2.17、橡胶溶剂油回收装置4.2.18、白油加轻装置4.2.19、苯酚-丙酮装置4.2.20、正戊烷装置(异戊烷、正戊烷、环戊烷三种目标产品)4.2.21、烯直接水合法生产异丙醇装置4.2.22、石脑油氧化生产醋酸装置4.2.23、甲苯加氢生产苯装置4.2.24、UOP生产PX装置4.2.25、甲苯歧化装置4.2.26、PO装置4.2.27、苯加氢生产环己烷装置4.2.28、三塔方法分离甲醇装置4.2.29、甲烷氯化法生产甲烷氯化物装置4.2.30、乙烯直接水合法生产乙醇装置4.2.31、丁烯-1和正丁醇装置4.2.32、乙腈抽提法生产异戊二烯装置五、部分计算模块讨论5.1、RECYCLE模块多数装置模拟需要采用RECYCLE进行工艺计算,在具有循环物流的计算中,正确的确定循环物流的初值、参考物流的温度或流量和循环加速对于模拟计算是必要的。
模拟中应用RECYCLE模块的装置很多。
例如:环丁砜抽提芳烃装置有六个循环物流;催化裂化的分馏—吸收稳定中有四个循环物流等。
5.2、CALCULATOR模块对于有多股物流的工艺过程,PRO/II提供的类似FORTRAN语言的CALCULATOR模块能够方便地计算各物流的组合工况或物流性质,灵活运用CALCULATOR模块对于完成全流程模拟计算是一个有效手段。
例如:丁二烯抽提、气体脱硫、甘醇脱水、MTBE等装置的模拟需要应用CALCULATOR 模块。
5.3、OPTIMIZER模块OPTIMIZER模块是进行全流程或单元优化计算的有效工具。
对于塔的模拟,可以进行进料位置、进料温度、塔顶压力、热负荷等工艺参数的优化。
OPTIMIZER模块几乎在全部塔的模拟中得到应用。
但在最终确定塔内流体负荷时,必须将OPTIMIZER模块从流程中删除。
5.4、CONTROLLERSCONTROLLERS模块广泛应用于需要精确控制过程参数的模拟计算,调节流程上游的控制变量,以实现工艺单元或工艺物流所期望的结果。