数电实验第二次实验报告
- 格式:docx
- 大小:257.44 KB
- 文档页数:4
数电实验报告实验二利用MSI设计组合逻辑电路姓名:学号:班级:院系:指导老师:2016年目录实验目的: .............................................................. 错误!未定义书签。
实验器件与仪器: .................................................. 错误!未定义书签。
实验原理: .............................................................. 错误!未定义书签。
实验内容: .............................................................. 错误!未定义书签。
实验过程: .............................................................. 错误!未定义书签。
实验总结: .............................................................. 错误!未定义书签。
实验:实验目的:1.熟悉编码器、译码器、数据选择器等组合逻辑功能模块的功能与使用方法。
2.掌握用MSI设计的组合逻辑电路的方法。
实验器件与仪器:1.数字电路实验箱、数字万用表、示波器。
2.虚拟器件:74LS00,74LS197,74LS138,74LS151实验原理:中规模的器件,如译码器、数据选择器等,它们本身是为实现某种逻辑功能而设计的,但由于它们的一些特点,我们也可以用它们来实现任意逻辑函数。
1.用译码器实现组合逻辑电路译码器是将每个输入的二进制代码译成对应的输出高、低电平信号。
如3线-8线译码器。
当附加控制门Gs的输入为高电平(S = 1)的时候,可由逻辑图写出。
从上式可看出。
-同时又是S2、S1、S0这三个变量的全部最小项的译码输出。
深圳大学实验报告课程名称:数字电子技术实验项目名称:TTL、HC和HCT器件的参数测试学院:光电工程专业:光电信息指导教师:报告人:刘恩源学号:2012170042 班级:2 实验时间:实验报告提交时间:一、实验目的与要求:1、掌握TTL、HCT和HCT器件的传输特性。
2、熟悉万用表的使用方法。
二、实验仪器:1、六反相器74LS04 1片2、六反相器74HC04 1片3、六反相器74HCT04 1片4、万用表三、实验原理:非门的输出电压V O与输入电压V I的关系V O=f(V I)叫做电压传输特性,也叫做电压转移特性。
它可以用一条曲线表示,叫做电压传输特性曲线。
从传输特性曲线可以求出非门的下列参数:1、输出高电平(V OH)。
2、输出低电平(V OL)。
3、输入高电平(V IH)。
4、输入低电平(V IL)。
5、门槛电平(V T)。
四、实验内容与步骤:1、测试TTL器件74LS04一个非门的传输特性。
2、测试HC器件74HC04一个非门的传输特性。
3、测试HCT器件74HC04一个非门的传输特性。
注意:1、注意被测器件的引脚7和引脚14分别接地和接+5V。
2、将实验箱上直流信号源的输出端作为被测非门的输入电压。
旋转电位器改变非门的输入电压值。
1、3、按步长0.2V调整率改变非门的输入电压。
首先用万用表监视非门输入电压,调好输入电压后,再用万用表测试测量非门的输出电压,并记录下来。
实验接线图由于74LS04、74HC04和74HCT04的逻辑功能相同,因此三个实验的接线图是一样的。
下面以第一个逻辑门为例,画出实验接线图(V I表示非门输入电压,电压表表示电压测试点)如下:图2.1 实验接线图2、输出无负载时74LS04、74HC04、74HCT04电压传输特性测试数据3、输出无负载时74LS04、74HC04和74HCT04电压传输特性曲线。
(请根据实验数据绘制3条曲线)4、比较三条电压传输特性曲线,说明各自的特性。
实验二门电路逻辑变换一.实验目的1 学会门电路逻辑变换的基本方法。
2 掌握虚拟实验逻辑转换器的使用方法。
二.实验设备安装有Multsim10软件的个人电脑。
三.实验原理图2 1是门电路逻辑变换实验原理图。
3个与非门和1个与门按图中的连接,表达为同或门的逻辑功能。
图2—1四.实验步骤1 打开电脑Multsim10操作平台。
从元件库中取出与非门3个、与门1个,以及双刀开关两个、电阻器、电源等,连接组成图2 -2的实验电路。
2 打开工作开关,电路工作正常后,依次拨动开关J1与J2,观察探针的变化。
开关J1与J2转接电源端为H_接地端为L;探针发亮为H_熄灭为L,将观察结果填入表2- 1。
表2-1J1 J2 探针L L HL H LH L LH H H图2—21)J1接电源,J2接地2)J1接地,J2接电源3)J1接地,J2接地4)J1接电源,J2接电源3将表2- 1变换为如下表2-2的真值表。
开关J1为A,J2为B,H为“1”,L为“0”;探针x1为F发亮为“1”,熄灭为“0”。
表2-2A B F0 0 10 1 01 0 01 1 14 按上述图2-2写出逻辑表达式为BAF,根据真值表及=BA∙+∙逻辑表达式判断,它是一个同或门电路。
5 逻辑转换器的使用重新设置Multisim仿真工作界面,运用逻辑转换器,转换出逻辑表达式为BF+=的门电路逻辑图,然后配置开关、探针等,并将电ABA路仿真运转验证,列出实验验证结果(例如上述表2-1)。
应注意,在逻辑转换器中,逻辑表达式有不同,要用“’”表示求反,例如用A’来表示A的求反即A,其它类似。
1)点击simulate-----instruments------logic converter,打开逻辑转换仪。
2)设计出逻辑函数表达式为:B=,如图1所示。
F+ABA3)点击右边第五个图标,把逻辑表达式转换为与,或非门电路,如图2所示。
4)点击右边第六个图标,把逻辑表达式转换为与非门电路,如图3所示。
数电仿真Multisim实验报告班级:学号:姓名:学院:实验一组合逻辑电路设计与分析一、实验目的1、掌握组合逻辑电路的特点2、利用逻辑转换仪对组合逻辑电路进行分析与设计二、实验原理组合逻辑电路是一种重要的数字逻辑电路:特点是任何时候的输出仅仅取决于同一时刻的输入信号的取值组合。
根据电路确定功能,是分析组合逻辑电路的过程,其步骤如下:组合逻辑电路→推导→逻辑表达式→化简→最简表达式→列表→真值表→分析→确定电路功能。
根据要求求解电路,是设计组合逻辑电路的过程,其步骤如下:问题提出→分析→真值表→归纳→逻辑表达式→化简变换→逻辑图。
逻辑转换仪是Multisim中常用的数字逻辑电路分析和设计仪器。
三、仿真例题1、利用逻辑转换仪对已知逻辑电路进行分析电路图如下:图1.1 待分析逻辑电路分析结果如下:图1.2 逻辑分析仪输出结果2、根据要求利用逻辑转换仪进行逻辑电路设计问题:有一火灾报警系统,设有烟感、温感和紫外线三种类型的火灾探测器。
为了防止误报警,只有当其中的两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警控制信号,试设计报警控制信号的电路。
利用逻辑分析仪分析:图1.3 经分析得到的真值表和表达式则可以得到如下电路图:A B C141310912118图1.4 最终得到的逻辑电路图四、思考题1、设计一个四人表决电路,即如果3人或3人以上同意,则通过;否则被否决。
用与非门实现。
解:用ABCD 分别表示四人的表决结果,1表示同意,0表示不同意。
则利用逻辑分析仪可以输入如下真值表,并得到如下表达式:L=ACD+ABD+ABC+BCD图1.5 逻辑分析仪得到的真值表和表达式得到如下电路图:A B C1411131123210968754图1.6 利用逻辑分析仪得到的与非门设计的表决电路2、利用逻辑转换仪对下图所示电路进行分析。
XLC1A BU1A74LS04DU1B 74LS04DU1C 74LS04DU2A 74LS00DU2B74LS00D2U3A74LS10DU3B74LS10D1436578910图1.7 待分析的逻辑电路解:通过逻辑分析仪可以得到如下结果:图1.8 逻辑分析仪输出结果=++得到逻辑表达式为:L AC BC ABC实验二 编码器、译码器电路仿真实验一、实验目的1、掌握编码器、译码器的工作原理2、常见编码器、译码器的应用 二、实验原理数字信号既可以表示数,也可以用来表示指令和信息。
实验成绩实验日期指导教师批阅日期实验名称编码译码与显示1、实验目的掌握编码器、译码器与显示器的工作原理、测试方法以及应用。
2、实验原理编码器、译码器是数字系统中常用的逻辑部件,而且是一种组合逻辑电路。
1.编码器把状态或指令等转换为与其对应的二进制代码叫编码,例如可以用四位二进制所组成的编码表示十进制数0~9,把十进制数的0编成二进制数码0000,把十进制数的5编成二进制数码0101等。
完成编码工作的电路.通称为编码器。
2.译码器译码是编码的逆过程。
译码器的作用是将输入代码的原意“翻译”出来。
译码器的种类较多,如:最小项译码器(3线/8线、4线/16线译码器等)b、七段字形译码器等。
七段字形译码器,其作用是将输入的四位BCD码D、C、B、A翻译成与其对应的七段字形输出信号,用于显示字形。
常用的七段字形译码器有TTL的:T338(OC输出),74LS48、74LS248(内部带有上拉电阻)CMOS的:CD4511、MC14543、MC14547等。
3.显示器(1)发光二极管(LED)。
把电能转换成可见光(光能)的一种特殊半导体器件,其构造与普通PN 结二极管相同。
(2)LED显示器。
用LED构成数字显示器件时,需将若干个LED按照数字显示的要求集成- -个图案,就构成LED显示器(俗称“数码管”)。
3、实验步骤(1)按图连线,按表顺序给8线/3线优先编码器CD4532的信号输入端送入相应电平,将结果填入表中,与CD4532的功能表相对照,检查是否符合优先顺序以及编码结果是否正确。
注意:输入由逻辑开关给定。
输出连接逻辑电平指示。
(2)根据CD4532和CD4511的管脚图和功能表,自行设计连线,将编码器CD4532的输出端接到译码器CD4511的数据输入端,将CD4511的输出接七段显示数码管。
检查编码器与数字显示是否一致,若不一致,分析原因,检查故障并排除之,将结果填表。
(3)将十进制计数器/脉冲分配器CD4017接成八进制,用单次脉冲或1Hz脉冲信号检查CD4017的逻辑功能是否正常。
实验二 译码器及其应用一、 实验目的1、掌握译码器的测试方法。
2、了解中规模集成译码器的管脚分布,掌握其逻辑功能。
3、掌握用译码器构成组合电路的方法。
4、学习译码器的扩展。
二、 实验设备及器件1、数字逻辑电路实验板1块 2、74HC(LS)20(二四输入与非门) 1片 3、74HC(LS)138(3-8译码器)2片三、 实验原理74HC(LS)138是集成3线-8线译码器,在数字系统中应用比较广泛。
下图是其引脚排列,其中A 2、A 1、A 0为地址输入端,Y ̅0~Y ̅7为译码输出端,S 1、S ̅2、S ̅3为使能端。
下表为74HC(LS)138功能表。
74HC(LS)138工作原理为:当S 1=1,S ̅2+S ̅3=0时,电路完成译码功能,输出低电平有效。
其中:Y ̅0=A ̅2A ̅1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅4=A 2A ̅1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅1=A ̅2A ̅1A 0̅̅̅̅̅̅̅̅̅̅ Y ̅5=A 2A ̅1A 0̅̅̅̅̅̅̅̅̅̅ Y ̅2=A ̅2A 1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅6=A 2A 1A ̅0̅̅̅̅̅̅̅̅̅̅ Y ̅3=A ̅2A 1A 0̅̅̅̅̅̅̅̅̅̅Y ̅7=A 2A 1A 0̅̅̅̅̅̅̅̅̅̅因为74HC(LS)138的输出包括了三变量数字信号的全部八种组合,每一个输出端表示一个最小项(的非),因此可以利用八条输出线组合构成三变量的任意组合电路。
实验用器件管脚介绍:1、74HC(LS)20(二四输入与非门)管脚如下图所示。
2、74HC(LS)138(3-8译码器)管脚如下图所示。
四、实验内容与步骤(四学时)1、逻辑功能测试(基本命题)m。
验证74HC(LS)138的逻辑功能,说明其输出确为最小项i注:将Y̅0~Y̅7输出端接到LED指示灯上,因低电平有效,所以当输入为000时,Y̅0所接的LED指示灯亮,其他同理。
实验二半加器、半减器的实现
一、实验者
1.刘皎,RJ010901,2009303336
2.陈泫文,RJ010901,2009303340
二、实验目的
1.掌握双进位全加器74LS183和四位二进制超前进位全加器
74LS283的逻辑功能
2.熟悉集成加法器的使用方法
3.了解算术运算电路的结构
三、实验设备
1.数字电路实验箱
2.74LS86
3.74LS00
4.导线若干
四、实验原理
1.半加器、半减器真值表:M=0时为半加,M=1时为半减
2.半加器、半减器卡诺图:
五、实验电路
六、实验步骤
1.将M,A,B分别从0/1端输出。
2.将74LS86引脚14接电源,引脚7接地,引脚13接A,引脚12
接B,这样从引脚11输出的为A⊕B,即为S。
3.将74LS86引脚14接电源,引脚7接地,引脚10接A,引脚9
接M,这样从引脚8中输出的即为M⊕A。
4.将74LS00引脚14接电源,引脚7接地,引脚13接从引脚8中
输出的信号,引脚12接B,这样从引脚11中输出的为
(M⊕A)B的非。
5.再将从引脚11中输出的信号作为输入,连接到引脚1,引脚
2悬空,从引脚3中输出的即为(M⊕A)B,即为C0。
七、实验结果
通过S,C0灯的亮和灭判断出全加器和半加器连接的正确性。
数字电路实验二门电路电参数的测试实验报告姓名:胡晓鲁学号: 12074212班级: 12075312实验目的:1、学习数字万用表、双踪示波器、信号发生器、DJ-SD1数字电路实验箱的使用方法;2、掌握TTL的门电路的主要参数及其测试方法;(74LS00)3、了解集电极开路OC门(74LS07)、三态输出门TSL(74LS125)的主要特性和使用方法。
4、学会使用数字表逻辑档检测TTL门电路好坏的方法。
二、实验原理:1、TTL门电路在数字电路设计中,通常要用到一些门电路,而门电路的特性参数的好坏,在很大程度上影响整个电路工作的可靠性。
通常参数按时间特性分两种:静态参数和动态参数。
静态参数指电路处于稳定的逻辑状态下测得的参数,而动态参数则指逻辑状态转换过程中与时间有关的参数。
本实验中选用TTL 74LS00二输入端四与非门进行参数的实验测试,以掌握门电路的主要参数的意义和测试方法。
TTL 74LS00集成电路引脚排列图如图2-1所示。
图2-1 74LS00集成电路引脚排列图TTL与非门的主要参数有:(1)、空载导通功耗Pon和空载截止功耗Poff:空载导通功耗Pon是指输入端全为高电平、输出为低电平且不接负载时的功率损耗。
Pon=VCC·ICCL空载截止功耗Poff是指输入端至少有一个为低电平、输出为高电平且不接负载时的功率损耗。
Poff=VCC·ICCH以上两式中:VCC——电源电压(+5V);ICCL——空载导通电源电流;(输出为低电平且不接负载时的电源电流)ICCH——空载截止电源电流。
(输出为高电平且不接负载时的电源电流)空载导通功耗Pon和空载截止功耗Poff的测试电路如图2-2所示。
集成块74LS00的管脚号图2-2 空载导通功耗Pon和空载截止功耗Poff的测试电路(2)、输入短路电流IIS:输入短路电流IIS又称低电平输入电流IIL(IIS即IIL)是指一个输入端接地,其他输入端悬空时,流过该接地输入端的电流。
数字电路实验报告专业:电气工程与自动化实验一:组合逻辑电路分析一.实验目的1.熟悉大体逻辑电路的特点。
2.熟悉各类门的实物元件和元件的利用和线路连接。
3.学会分析电路功能.二.实验原理1.利用单刀双掷开关的双接点,别离连接高电平和低电平,开关的掷点不同,门电路输入的电平也不同。
2.门电路的输出端连接逻辑指示灯,灯亮则输出为高电平,灯灭则输出低电平。
3.依次通过门电路的输入电平与输出电平,分析门电路的逻辑关系和实现的逻辑功能。
三.实验元件1.74LS00D2.74LS20D四.实验内容(1)实验内容一:a.实验电路图:由上述实验电路图接线,在开关A B C D选择不同组合的高低电平时,通过对灯X1亮暗的观察,可得出上图的逻辑真值表。
b、逻辑电路真值表:实验分析:•=AB+CD ,一样,由真值表也能推出此由实验逻辑电路图可知:输出X1=AB CD方程,说明此逻辑电路具有与或功能。
(2)实验内容2:密码锁a.实验电路图:D 接着通过实验,改变A B C D 的电平,观察灯泡亮暗,得出真值表如下: b.真值表:实验分析:由真值表(表)可知:当ABCD为1001时,灯X1亮,灯X2灭;其他情况下,灯X1灭,灯X2亮。
由此可见,该密码锁的密码ABCD为1001.因此,可以取得:X1=ABCD,X2=1X。
五.实验体会:1. 这次实验应该说是比较简单,只用到了两种不同的与非门组成一些大体的逻辑电路。
2. 分析组合逻辑电路时,可以通过逻辑表达式,电路图和真值表之间的彼此转换已抵达实验所要求的目的结果。
3. 咱们组在这次实验进程中出现过连线正确但没出现相应的实验结果的情况。
后经分析发现由于实验器材利用的次数较多,有些器材有所损坏,如一些导线表面是好的,其实内部损坏,因此意识到了连接线路时一是要注意器材的选取,二是在接线前必然注意检查各元件的好坏。
实验二:组合逻辑实验(一)半加器和全加器一.实验目的:熟悉几种元器件所带的门电路,掌握用这些门电路设计一些简单的逻辑组合电路的方式。
东南大学电工电子实验中心实验报告课程名称:数字逻辑设计实践第 2 次实验实验名称:中小规模器件使用院(系):信息科学与工程学院专业:信息工程姓名:李正阳学号:04015414 实验室:实验组别:同组人员:实验时间:2016.11.24评定成绩:审阅教师:1 实验一1.1 题目设计带使能端的三位密码锁电路。
基础部分:基础部分:◦ 自行拟定一密码(如:101)。
三位密码输入;◦ 若密码输入正确,即输入为101,则发光二极管点亮 ◦ 若密码输入不正确,即输入不是101,则发光二极管不亮◦ 有清零使能端,低电平有效。
当清零端有效时,不论输入正确与否,输出为低电平◦ 使用共阴极接法驱动发光二极管提高部分:在以上基础上,添加原本密码设定功能。
1.2 解题过程三位密码锁,功能如下:设定三位密码(基础部分为自行拟定,提高部分为自由设定)。
当清零使能端有效,即输入低电平时,不管密码输入正确与否,输出均为低电平,发光二极管都不亮。
当清零使能端无效,即不输入低电平时,输入三位密码,当输入密码与设定密码相同时,密码输入正确,发光二极管亮;当输入密码与设定密码不相同时,密码输入不正确,发光二极管不亮。
假设清零使能端用0E 代表,0表示低电平,1代表高电平;三位设定密码分别用210、、A A A 代表,均可分别设定为0或1;三位输出密码分别用210、、B B B 代表,均可分别输出为0或1;判断的结果用F 表示,0表示密码输入不正确,发光二极管不亮,1表示密码输入正确,发光二极管亮。
接入2k Ω电阻限流,保护发光二极管。
根据以上分析,列出三位密码锁的功能表,如下所示:根据功能表,可以得到函数的逻辑表达式:221100()()()N F E A B A B A B =⋅⋅⋅根据下发的芯片,将函数的逻辑表达式化为:221100()()()N F E A B A B A B =⋅⊕⋅⊕⋅⊕根据函数的逻辑表达式,设计电路,如下图所示:其中,开关1S 代表N E ,开关打开表示0,开关闭合表示1;开关2、3、4S S S 分别代表210、、A A A ,设定密码时,开关打开表示0,开关闭合表示1;开关5、6、7S S S 分别代表210、、B B B ,输入密码时,开关打开表示0,开关闭合表示1;四输入双与非门7420HC 所输出的结果代表函数F 。
实验二 半加器、全加器
学号: 姓名: 日期:
一、实验目的:
(1)掌握全加器和半加器的逻辑功能。
(2)熟悉集成加法器的使用方法。
(3)了解算术运算电路的结构。
二、实验设备:
数字电路实验箱,74LS00,74LS86。
三、实验原理:
两个二进制数相加,叫做半加,实现半加操作的电路,称为半加器。
A 表示被加数,B 表示加数,S 表示半加和,以表示向高位的进位。
全加器能进行加数,被加数和低位来的信号相加,并根据求和的结果给出该位的进位信号。
四、实验内容:
1、 半加器,M=0时实现半加功能,当M=1时实现半减功能。
2、 全加器,M=0时实现全加功能,当M=1时实现全减功能。
五、实验结果:
1、 半加器:S=A ○+B ,CO=()B A M ⊕
2、 全加器:S= A ○+B ○+C ,CO= ()()BCI M A B C ∙⊕⊕
经验证,结果与理论相符。
实验二常用电子仪器的使用
一、实验目的
掌握常用的电子仪器(示波器、函数信号发生器、直流稳压电源、数字万用表等)的主要技术指标、性能及正确使用方法。
二、实验条件,设备,器材
示波器、函数信号发生器、直流稳压电源、数字万用表。
三、实验原理
输入的电信号通过一个ADC(通常采用8bits 或者256个量化电平)数字化,输出的数据存储在示波器的存储器中。
数字化速率和放大器频宽决定所能精确地取样和显示的最快信号。
四、实验内容
1、示波器探头校正
2、测量并记录实验箱5M、1M、500K、100K连续脉冲源;
3、使用信号发生器产生50M、1M、1K正弦波、方波等信号。
五、实验步骤及数据记录
1.示波器探头校正
将示波器探头接【Probe Comp】; 使用【Auto Scale】; 测量、记录相关数据并保存波形图像。
2.测量并记录实验箱连续脉冲源
测量、记录相关数据并保存波形图像。
3.使用信号发生器产生相关信号并测量
使用信号发生器产生50M、1M、10K、1K正弦波、方波等信号
六、实验分析,结论,体会
通过本次实验,初步掌握了常用的电子仪器(示波器、函数信号发生器、直流稳压电源、数字万用表等)的主要技术指标、性能及正确使用方法。
实验一 TTL与非门的参数测试一、实验目的·掌握TTL与非门参数的物理意义。
·掌握TTL与非门参数的测试方法。
·了解TTL与非门的逻辑功能。
二、实验原理7400是TTL型中速二输入四与非门。
下图为其内部电路原理图和管脚排列图。
TTL内部原理图管脚排列图1.与非门参数:(1)输入短路电流IIS与非门某输入端接地时,该输入端流入地的电流.(2)输入高电平电流:与非门某输入端接Vcc,其他输入端悬空活结Vcc时,流入该输入端的电流.(3)开门电平V ON:(4)使输出端维持V OT所需的最小输入高电平,通常以Vo=0.4V时的Vi定义。
(4)关门电平V oFF:使输出端维持V oH所允许的最大输入低电平,通常以Vo=0.9V时的Vi定义。
阈值电平V T:V T=(V oFF+V ON)/2。
(5)开门电阻R oN某输入端对地接入电阻,使输出端维持低电平所需的最小电阻值。
(6)关门电阻R OFF某输入端对地接入电阻,使输出端维持高电平所允许的最大电阻值。
TTL与非门输入端的电阻负载特性曲线:(7)输出低电平负载电流I OL:输出保持低电平V O=0.4V时所允许的最大灌流。
(8)输出高电平负载电流I OH:输出保持低电平V O=0.9V时所允许的最大拉流。
(9)平均传输延迟时间t pd:开通延迟时间t OFF:输入正跳变上升到1.5V相对输出负跳变下降到1.5V的时间间隔;关闭延迟时间t ON:输入负跳变下降到1.5V相对输出正跳变上升到1.5V的时间间隔;平均传输延迟时间:开通延迟时间与关闭延迟时间的算术平均值,t pd=(t OFF+t ON)。
2.与非门电压传输特性:3..TTL与非门的逻辑特性:表1A B Y0 X 1X 0 11 1 0三、实验仪器及器件示波器1台数字万用表1台多功能电路实验箱1台四、实验内容1.测量输入短路电流:测试方法:将与非门的每个输入端依次经过电流表接地,电。
数电实验报告2引言:数电实验是电子信息与控制工程专业的重要实践课程之一,通过实验,我们能够深入理解数字电路的原理和应用。
本次实验报告将对数电实验2进行详细论述,通过实验结果与分析,总结实验的目的、原理和方法,并提出改进措施和未来的研究方向。
实验目的:本次实验的目的是学习和掌握数电逻辑门的工作原理、电路搭建方法和信号波形分析技巧。
逻辑门是基础的数字电路元件,熟练运用逻辑门对于后续数字电路的设计和实现至关重要。
实验原理:逻辑门是用于实现布尔逻辑运算的硬件电路。
常见的逻辑门包括与门、或门、非门、异或门等。
这些逻辑门的输出结果根据输入信号的不同情况而变化,从而实现不同逻辑运算。
实验方法:本次实验选择了与门和或门进行实验。
首先,我们根据逻辑门的真值表,计算出与门和或门的输入、输出关系。
然后,根据计算结果,搭建与门和或门的电路图。
接下来,通过数字电路实验平台,将电路图转化为实际电路,并连接正确的信号源。
最后,使用示波器观察和分析实验结果。
实验过程:1. 搭建与门电路。
根据真值表,我们得知,当两个输入信号都为高电平时,与门输出为高电平。
因此,我们需要两个开关分别控制两个输入信号。
将开关与与门的输入端连接,将与门的输出端连接至示波器。
2. 搭建或门电路。
根据真值表,我们得知,当两个输入信号中至少有一个为高电平时,或门输出为高电平。
因此,我们需要两个开关分别控制两个输入信号。
将开关与或门的输入端连接,将或门的输出端连接至示波器。
3. 调节示波器并观察波形。
将示波器的纵坐标设为适当的刻度,以便观察波形的变化。
打开开关,使得输入信号发生变化,通过示波器观察输出信号的变化,并记录下相应的波形。
实验结果与分析:通过观察示波器上的波形,我们可以清楚地看到与门和或门的输出信号与输入信号的关系。
当输入信号满足与门的输入条件时,与门输出高电平信号;当输入信号满足或门的输入条件时,或门输出高电平信号。
这与逻辑门的原理是一致的。
改进措施:在本次实验中,我们可以进一步改进实验的方法和结果。
数电实验报告2数电实验报告2引言:本次实验旨在通过实际操作,加深对数字电路设计和逻辑门的理解。
通过实验,我们能够更好地掌握数字电路的原理和应用,提高我们的实践能力和问题解决能力。
一、实验目的本次实验的主要目的是掌握数字电路设计中的多路复用器和译码器的原理和应用。
通过实际搭建电路和观察结果,我们可以深入了解多路复用器和译码器在数字电路中的作用和功能。
二、实验原理1. 多路复用器多路复用器是一种能够将多个输入信号选择性地输出到一个输出端的数字电路。
它由一个数据输入端和多个控制输入端组成。
根据控制信号的不同,多路复用器可以将不同的输入信号输出到输出端。
多路复用器的主要应用场景是在数字系统中实现数据选择和信号传输。
2. 译码器译码器是一种将输入信号转换为特定输出信号的数字电路。
它通过对输入信号进行解码,将不同的输入信号映射到特定的输出端口。
译码器的主要作用是将数字信号转换为对应的控制信号,从而实现数字电路的控制和操作。
三、实验步骤1. 多路复用器实验首先,我们需要准备一个4:1的多路复用器芯片,以及相应的开关和LED灯。
根据电路图,将芯片与其他元件连接起来。
然后,将不同的输入信号通过开关输入到多路复用器的数据输入端,通过控制信号选择需要输出的信号。
最后,观察LED灯的亮灭情况,验证多路复用器的功能。
2. 译码器实验在译码器实验中,我们需要使用一个3-8译码器芯片,以及一些开关和LED灯。
将芯片与其他元件按照电路图连接起来。
然后,将不同的输入信号通过开关输入到译码器的输入端口,观察LED灯的亮灭情况。
通过观察结果,我们可以验证译码器的功能和正确性。
四、实验结果与分析通过实验,我们可以观察到多路复用器和译码器的输出情况。
在多路复用器实验中,我们可以通过控制信号选择不同的输入信号输出,从而实现数据选择的功能。
在译码器实验中,我们可以通过输入不同的信号,观察LED灯的亮灭情况,验证译码器的正确性。
五、实验总结通过本次实验,我们深入了解了多路复用器和译码器的原理和应用。
最新数字电路实验二实验报告实验目的:1. 理解并掌握数字电路的基本组成原理和工作原理。
2. 学习使用数字逻辑分析仪进行电路测试和故障诊断。
3. 通过实验加深对组合逻辑和时序逻辑电路设计的理解。
实验内容:1. 设计并搭建一个4位二进制加法器电路。
2. 实现一个简单的数字时钟电路,能够显示时、分、秒。
3. 使用数字逻辑分析仪检测电路的功能和时序。
实验设备:1. 数字逻辑分析仪2. 示波器3. 集成电路芯片(如74LS系列)4. 面包板5. 跳线实验步骤:1. 根据实验指导书,选择合适的逻辑门芯片,设计4位二进制加法器电路。
2. 在面包板上搭建电路,并使用跳线连接逻辑门。
3. 利用数字逻辑分析仪检查电路的输入输出情况,确保电路正确实现二进制加法功能。
4. 设计数字时钟电路,包括计数器、分频器和显示模块。
5. 同样在面包板上搭建数字时钟电路,并进行测试,调整电路以确保时间显示准确无误。
6. 再次使用数字逻辑分析仪,观察时钟电路的时序关系和稳定性。
实验结果:1. 成功搭建了4位二进制加法器电路,并通过测试,验证了其加法功能。
2. 数字时钟电路运行正常,能够准确显示时间,并通过逻辑分析仪确认了其稳定的时序关系。
实验分析:1. 在实验过程中,发现加法器电路在处理进位时存在延迟,通过优化电路布局和选择合适的逻辑门芯片,成功解决了问题。
2. 数字时钟电路的分频部分需要精确的电阻和电容值,实验中通过调整这些元件的参数,确保了时钟的准确性。
实验结论:通过本次实验,加深了对数字电路设计和测试的理解,特别是在组合逻辑和时序逻辑方面的应用。
同时,也提高了使用数字逻辑分析仪进行电路分析和问题诊断的能力。
数电实验2一.实验目的1.学习并掌握硬件描述语言(VHDL 或Verilog HDL);熟悉门电路的逻辑功能,并用硬件描述语言实现门电路的设计。
2.熟悉中规模器件译码器的逻辑功能,用硬件描述语言实现其设计。
3.熟悉时序电路计数器的逻辑功能,用硬件描述语言实现其设计。
4.熟悉分频电路的逻辑功能,并用硬件描述语言实现其设计。
二.实验设备1.Quartus开发环境2.ED0开发板三.实验内容要求1:编写一个异或门逻辑电路,编译程序如下。
1)用QuartusII 波形仿真验证;2)下载到DE0 开发板验证。
要求2:编写一个将二进制码转换成0-F 的七段码译码器。
1)用QuartusII 波形仿真验证;2)下载到DE0 开发板,利用开发板上的数码管验证。
要求3:编写一个计数器。
1)用QuartusII 波形仿真验证;2)下载到DE0 开发板验证。
要求4:编写一个能实现占空比50%的5M 和50M 分频器即两个输出,输出信号频率分别为10Hz 和1Hz。
1)下载到DE0 开发板验证。
(提示:利用DE0 板上已有的50M 晶振作为输入信号,通过开发板上两个的LED 灯观察输出信号)。
2)电路框图如下:扩展内容:利用已经实现的VHDL 模块文件,采用原理图方法,实现0-F 计数自动循环显示,频率10Hz。
(提示:如何将VHDL 模块文件在逻辑原理图中应用,参考参考内容5)四.实验原理1.实验1实现异或门逻辑电路,VHDL源代码如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY EXORGATE ISPORT(A,B:IN STD_LOGIC;C:OUT STD_LOGIC);END EXORGATE;ARCHITECTURE fwm OF EXORGATE ISBEGINC<=A XOR B;END;2.实验2实现一个将二进制码转换成0-F的七段译码器,VHDL源代码如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY sevendecoder ISPORT (data_in:IN STD_LOGIC_VECTOR(3 DOWNTO 0);dis_out:OUT STD_LOGIC_VECTOR(6 DOWNTO 0));END sevendecoder;ARCHITECTURE fwm OF sevendecoder ISBEGINPROCESS(data_in)BEGINCASE data_in ISWHEN"0000"=>dis_out<="1000000";--显示0 WHEN"0001"=>dis_out<="1111001";--显示1 WHEN"0010"=>dis_out<="0100100";--显示2 WHEN"0011"=>dis_out<="0110000";--显示3 WHEN"0100"=>dis_out<="0011001";--显示4 WHEN"0101"=>dis_out<="0010010";--显示5 WHEN"0110"=>dis_out<="0000010";--显示6WHEN"0111"=>dis_out<="1111000";--显示7 WHEN"1000"=>dis_out<="0000000";--显示8 WHEN"1001"=>dis_out<="0010000";--显示9 WHEN"1010"=>dis_out<="0001000";--显示A WHEN"1011"=>dis_out<="0000011";--显示b WHEN"1100"=>dis_out<="1000110";--显示C WHEN"1101"=>dis_out<="0100001";--显示d WHEN"1110"=>dis_out<="0000110";--显示E WHEN"1111"=>dis_out<="0001110";--显示FWHEN OTHERS=> dis_out<="1111111";--灭灯,不显示END CASE;END PROCESS;END fwm;3.实验3完成一个计数器,VHDL源代码如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY counter ISPORT ( clk,RST : IN STD_LOGIC;DOUT : OUT STD_LOGIC_VECTOR (3 DOWNTO 0); --四位计数COUT : OUT STD_LOGIC); --进位位END counter;ARCHITECTURE fwm OF counter ISSIGNAL Q1 : STD_LOGIC_VECTOR (3 DOWNTO 0);BEGINPROCESS(clk,RST)BEGINIF RST = '0' THEN Q1<=(OTHERS => '0'); COUT<= '0';ELSIF clk'EVENT AND clk='1' THENQ1<=Q1+1;COUT<= '0';IF Q1 >= "1001" THEN Q1<=(OTHERS => '0'); COUT<= '1';END IF;END IF;END PROCESS;DOUT<=Q1 ;END fwm;4.实验4编写一个能实现占空比50%的5M 和50M 分频器即两个输出,输出信号频率分别为10Hz 和1Hz,VHDL源代码如下:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY fpq ISPORT(clk:IN STD_LOGIC;clk_out,clk_out1:OUT STD_LOGIC);END fpq;ARCHITECTURE fwm OF fpq ISCONSTANT m : INTEGER:= 25000000; --50M 分频到1Hz 时=25000000。
实验二数据选择器应用
学号161271008
一、实验目的:
1.通过实验的方法学习数据选择器的电路结构和特点。
2.掌握数据选择器的逻辑功能和它的测试。
3.掌握数据选择器的基本应用。
二、实验仪器:
三、实验原理:
1.数据选择器
数据选择器(multiplexer)又称为多路开关,是一种重要的组合逻辑部件,它可以实现从多路数据传输中选择任何一路信号输出,选择的控制由专列的端口编码决定,称为地址码,数据选择器可以完成很多的逻辑功能,例如函数发生器、桶形移位器、并串转换器、波形产生器等。
本实验采用的逻辑器件为TTL 双极型数字集成逻辑电路74LS153,它有两个4 选1,外形为双列直插,引脚排列如图2-1 所示,逻辑符号如图2-2 所示。
其中D0、D1、D2、D3 为数据输入端,Q 为输出端,A0、A1 为数据选择器的控制端(地址码),同时控制两个选择器的数据输出,S 为工作状态控制端(使能端),74LS153 的功能表见表2-1。
数据选择器有一个特别重要的功能就是可以实现逻辑函数。
现设逻辑函数F(X,Y)=∑(1,2),则可用一个4 选1 完成,根据数据选择器的定义:Q (A1,A0)=A1A0D0+ A1A0D1+ A1A0D2+ A1A0D3,令A1=X,A0=Y,1S=0,1D0=1D3=0,1D1=1D2=1,那么输出Q=F。
如果逻辑函数的输入变量数超过了数据选择器的地址控制端位数,则必须进行逻辑函数
降维或者集成芯片扩展。
例如用一块74LS153 实现一个一位全加器,因为一位全加器的逻辑函数表达式是:
S1(A,B,CI)=∑(1,2,4,7)
CO(A,B,CI)=∑(3,5,6,7)
现设定A1=A,A0=B,CI 为图记变量,输出1Q=S1,2Q=CI,由卡诺图(见图2-3,图2-4)得到数据输入:
1D0=CI,1D1=CI,1D2=CI,1D3=CI,2D0=0,2D1=CI,2D1=CI,2D3=1,由此构成逻辑电路. 需要指出的是用数据选择器实现逻辑函数的方法不是唯一的,当逻辑函数的输入变量数较多时,可比较多种方法取其最优实现。
四、实验内容:
1.验证74LS153 的逻辑功能按表2-1 所列测试,特别注意所测芯A1、A0 哪一个是高位S 端是否低电平有效当芯片封锁时,出是什么电平。
记录:
2.实现一位全加器用一74LS15及门电路完成联接输入用3 个开关分别代表A、B、CI,输出用2个指示灯分别代表CO、S1。
要求写出逻辑设计过程。
改变开关状态,观察2 个指示灯的变化记录:
自行设计电路,电路包含四个输入端和一个输出端,其中输血者和受血者分别占用两个输入端,符合输血规则,则输出端为1,否则为0.
电路如图:
五、实验思考:
1.怎样用一块74LS153 构成一块8 选1?
答:设地址值由低到高为ABC,将C接有A1的半块芯片的使能端,也就是1号口,B接A1,A接A0,Q1、Q0或预算后输出。
电路如图:。