解直角三角形在中考数学中的分析
- 格式:doc
- 大小:274.00 KB
- 文档页数:7
解直角三角形一个三角形1.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A .12秒.B .16秒.C .20秒.D .24秒.2.如图,某航天飞船在地球表面P 点的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP=α,地球半径为R ,则航天飞船距离地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( )A. sin R α,180R παB. sin R R α-,()90180R απ- C.sin R R α-,()90180R απ+ D. cos RR α-,()90180R απ- 3.图(十六)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10公分。
如图(十七),若此钟面显示3点45分时,A 点距桌面的高度为16公分,则钟面显示3点50分时,A 点距桌面的高度为多少公分?A .3322-B .π+16C .18D .194.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是( )同学 甲 乙 丙 丁 放出风筝线长 140m 100m 95m 90m 线与地面夹角30°45°45°60°A.甲B.乙C.丙D.丁5.如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .6.如图,孔明同学背着一桶水,从山脚A 出发,沿与地面成30°角的山坡向上走,送水到山上因今年春季受旱缺水的王奶奶家(B 处),AB=80米,则孔明从A 到B 上升的高度BC 是 米.7.右图是市民广场到解百地下通道的手扶电梯示意图.其中AB 、CD 分别表示地下通道、市民广场电梯口处地面的水平线,∠ABC =135°,BC 的长约是25m ,则乘电梯从点B 到点C 上升的高度h 是 m .8.如图,在高出海平面100米的悬崖顶A 处,观测海平面上一艘小船B ,并测得它的俯角为45°,则船与观测者之间的水平距离BC = 米.135° ABChACD · ·α(第15题)9.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工速度,需要在小山的另一边同时施工.从AC 上的一点B 取∠ABD =140°,BD =1000m ,∠D =50°.为了使开挖点E 在直线AC 上,那么DE = m.(供选用的三角函数值:sin 50°=,cos 50°=,tan 50°=)10.如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B 处时,发现灯塔A 在我军舰的正北方向500米处;当该军舰从B 处向正西方向行驶至达C 处时,发现灯塔A 在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)北东600BCA11.生活经验表明,靠墙摆放的梯子,当50°≤α≤70°(α为梯子与地面所成的角),能够使人安全攀爬,现在有一长为6米的梯子AB ,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC .(结果保留两个有效数字,,,,cos50°≈0.64)12.生活经验表明,靠墙摆放的梯子,当50°≤α≤70°(α为梯子与地面所成的角),能够使人安全攀爬,现在有一长为6米的梯子AB ,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC .(结果保留两个有效数字,,,,)图3140°50°ED CB A两个三角形并排1.五一期间,小红到美丽的世界地质公园光岩参加社会实践活动,在景点P处测得景点B位于南偏东45︒方向,然后沿北偏东60︒方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A 与景点B之间的距离.(结果精确到米)2.某过街天桥的设计图是梯形ABCD(如图所示),桥面DC与地面AB平行,DC=62米,AB=88米.左斜面AD与地面AB的夹角为23°,右斜面BC与地面AB的夹角为30°,立柱DE⊥AB于E,立柱CF⊥AB于F,求桥面DC与地面AB之间的距离.(精确到米)(第20题图)3.题23-1图为平地上一幢建筑物与铁塔图,题23-2图为其示意图.建筑物AB与铁塔CD都垂直于底面,BD=30m,在A点测得D点的俯角为45°,测得C点的仰角为60°.求铁塔CD的高度.题23-1图 题23-2图4.日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场检测与海水采样,针对核泄漏在极端情况下对海洋的影响及时开展分析评估.如图上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观测到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)5.如图,自来水厂A 和村庄B 在小河l 的两侧,现要在A ,B 间铺设一条输水答道.为了搞好工程预算,需测算出A ,B 间的距离.一小船在点P 处测得A 在正北方向,B 位于南偏东方向,前行1200m,到达点Q 处,测得A 位于北偏西49º方向,B 位于南偏西41º方向. (1)线段BQ 与PQ 是否相等?请说明理由; (2)求A ,B 间的距离. (参考数据:)67.5°36.9°ACB P第18题6.如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°. 使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到,参考数据:3)7.如图8,AE 是位于公路边的电线杆,为了使拉线CDE 不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD ,用于撑起拉线.已知公路的宽AB 为8米,电线杆AE 的高为12米,水泥撑杆BD 高为6米,拉线CD 与水平线AC 的夹角为67.4°.求拉线CDE 的总长L (A 、B 、C 三点在同一直线上,电线杆、水泥杆的大小忽略不计). (参考数据:12sin 67.413≈,5cos 67.413≈,12tan67.45=)8.如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB 与支架CD 所在直线相交于水箱横断面⊙O 的圆心,支架CD 与水平面AE 垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD 的长度。
中考数学专题复习:解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【名师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:【名师提醒:1、三个特殊角的三角函数值都是根据定义应用直角三角形性质算出来的,要在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而sin A3、几个特殊关系:⑴sinA+cos2A= ,tanA=⑵若∠A+∠B=900,则sinA= cosA.tanB= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【名师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=hl=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【名师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念例1 (•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.12B.55C.1010D.255思路分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO=2211+=2;AC=2213+=10;则sinA=OCAC=25510=.故选B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.对应训练1.(•贵港)在平面直角坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.121.A考点:锐角三角函数的定义;坐标与图形性质;勾股定理.专题:计算题.分析:过A作AC⊥x轴于C,利用A点坐标为(2,1)可得到OC=2,AC=1,利用勾股定理可计算出OA,然后根据正弦的定义即可得到sin∠AOB的值.解答:解:如图过A作AC⊥x轴于C,∵A点坐标为(2,1),∴OC=2,AC=1,∴OA=22OC AC+=5,∴sin∠AOB=1555ACOA==.故选A.点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值例2 (•孝感)计算:cos245°+tan30°•sin60°= .思路分析:将cos45°=22,tan30°=33,sin60°=32代入即可得出答案.解:cos245°+tan30°•sin60°=12+33×32=12+12=1.故答案为:1.点评:此题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是解答本题的关键.对应训练(•南昌)计算:sin30°+cos30°•tan60°.思路分析:分别把各特殊角的三角函数代入,再根据二次根式混合运算的法则进行计算即可.解:原式=13322+⨯=1322+=2.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.考点三:化斜三角形为直角三角形例3 (•安徽)如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.6.思路分析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,根据含30度角的直角三角形求出CD,根据勾股定理求出AD,相加即可求出答案.解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=23,∴CD=3,∴BD=CD=3,由勾股定理得:AD=22=3,AC CD∴AB=AD+BD=3+3,答:AB的长是3+3.点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.对应训练3.(•重庆)如图,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形.若AB=2,求△ABC的周长.(结果保留根号)3.考点:解直角三角形;三角形内角和定理;等边三角形的性质;勾股定理.专题:计算题.分析:根据等边三角形性质求出∠B=60°,求出∠C=30°,求出BC=4,根据勾股定理求出AC,相加即可求出答案.解答:解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°-90°-60°=30°,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC=2222BC AB-=-=,4223∴△ABC的周长是AC+BC+AB=23+4+2=6+23.答:△ABC的周长是6+23.点评:本题考查了勾股定理,含30度角的直角三角形,等边三角形性质,三角形的内角和定理等知识点的应用,主要培养学生运用性质进行推理和计算的能力,此题综合性比较强,是一道比较好的题目.考点四:解直角三角形的应用例4 (•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,2≈1.41436≈2.45)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC ,根据AB =BC =15千米,∠B =90°得到∠BAC =∠ACB =45° AC =152千米,再根据∠D =90°利用勾股定理求得AD 的长后即可求周长和面积; (2)直接利用余弦的定义求解即可. 解:(1)连接AC∵AB =BC =15千米,∠B =90°∴∠BAC =∠ACB =45° AC =152千米 又∵∠D =90°∴AD =22 -AC CD =22(152)(32)123-=(千米)∴周长=AB +BC +CD +DA =30+32+123=30+4.242+20.784≈55(千米) 面积=S △ABC +18 6 ≈157(平方千米) (2)cos ∠ACD =CD 321==AC 5152点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练6.(•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC =75°. (1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒)考点:解直角三角形的应用.专题:计算题.分析:(1)由于A到BC的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可.解答:解:(1)法一:在Rt△ABC中,∠ACB=90°,∠BAC=75°,AC=30,∴BC=AC•tan∠BAC=30×tan75°≈30×3.732≈112(米).法二:在BC上取一点D,连接AD,使∠DAB=∠B,则AD=BD,∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°,在Rt△ACD中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,CD=303,BC=60+303≈112(米)(2)∵此车速度=112÷8=14(米/秒)<16.7 (米/秒)=60(千米/小时)∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键.【聚焦山东中考】1.(•济南)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.31.A考点:锐角三角函数的定义.A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定3考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.分析:首先根据绝对值与偶次幂具有非负性可知cosA-12=0,sinB-22=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.解答:解:∵|cosA-12|+(sinB-22)2=0,∴cosA-12=0,sinB-22=0,∴cosA=12,sinB=22,∴∠A=60°,∠B=45°,则∠C=180°-∠A-∠B=180°-60°-45°=75°,故答案为:75°.点评:此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.5.(•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD==21 3tan303=36.33,在Rt△BDC中,BD=CD==7 3tan303=12.11,则AB=AD-BD=36.33-12.11=24.22≈24.2(米)。
解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。
知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。
详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。
(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
解直角三角形及其应用教学设计【导学目标】1、理解锐角三角函数的概念,并准确记忆30°,45°,60°角的三角函数值。
2、运用三角函数解决与直角三角形有关的简单实际问题。
【导学过程】 一、知识梳理1、锐角三角函数的定义:在Rt △ABC 中,若∠A 、∠B 、∠C 的对边分别为a 、b 、c ,且∠C=90°,∠A 的正弦sinA=c a=∠斜边的对边A ;∠A 的余弦cosA==)()(________; ∠A 的正切tanA==)()(________. 2、特殊的三角函数值:α sinα cosα tanα 300 450 600(1)含30°角的直角三角形中三边之比_________________. (2)含45°角的直角三角形中三边之比___________________. 3、解直角三角形应用中的有关概念: ⑴仰角和俯角:如图:在图上标上仰角和俯角铅直水平线视线⑵坡度坡角:如图,斜坡AB 的垂直度h 和水平宽度l 的比叫做坡度,用i 表示,即i=坡面与水平面得夹角为用字母α表示,则i=tanα=hl。
【设计目的】:1.做好知识铺垫,为夯实基础。
2. 抓好关键概念学习。
3. 培养数形结合思想二、典例分析考点一 锐角三角函数的概念典例1、正方形网格中,AOB ∠如图放置,则sin AOB ∠=( ) 对应训练1.如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则tanα等于( )A .513B .1213C .512D .1252.如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( ) A .23B .32C .21313D .31313【设计目的】:利用坐标、网格渗透数形结合思想,培养添加辅助线的意识。
考点二 特殊角的三角函数值 典例2、 0033sin 602cos 458-+对应训练AB O1.计算6tan45°-2cos60°的结果是( )A .43B .4C .53 D .52.在△ABC 中,若|sinA-12|+(cosB-12)2=0,则∠C 的度数是( )A .30°B.45°C.60°D.90°【设计目的】:抓好三角函数计算,将三角函数值与角度有机结合。
卜人入州八九几市潮王学校无棣县埕口中考数学专题复习生活中的解直角三角形问题赏析例1、〔〕图1是小明在健身器材上进展仰卧起坐锻炼时情景.图2是小明锻炼时上半身由位置运动到与地面垂直的位置时的示意图.米,米,米.〔1〕求的倾斜角的度数〔准确到〕;〔2〕假设测得米,试计算小明头顶由点运动到点的途径弧的长度〔准确到〕 作,分别交延长线于.从而把问题转化为在中,,求即倾斜角.求得后易求度数,从而求得弧的长度. 解:〔1〕过作,分别交延长线于.,,.四边形为矩形..在中,,.即的倾斜角度数约为.〔2〕,..∴弧的长〔米〕.答:小明头顶运动的途径弧的长约为. 图1 BC EDA M NF H 图2例2、()某商场门前的台阶截面如图3所示.每级台阶的宽度(如CD)均为30cm ,高度(如BE)均为20cm .为了方便残疾人行走,商场决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角为9°.请计算从斜坡起点A 到台阶前的点B 的程度间隔.(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)线于点,由条件易知的值,由的正切函数可求的值,从而求得的值. 解:过作,交的延长线于点.由条件,得,.在中,..〔cm 〕.答:从斜坡起点到台阶前点的间隔为410cm . 例3、〔〕如图4,一枚运载HY 从地面处发射,当HY 到达点时,从地面处的雷达站测得的间隔是,仰角是.后,HY 到达点,此时测得的间隔是,仰角为,解答以下问题:〔1〕HY 到达点时间隔发射点有多远〔准确到〕?〔2〕HY 从点到点的平均速度是多少〔准确到/s 〕?解析:〔1〕在中,〔km 〕∴HY 到达点时距发射点约.〔2〕在中,A B图3F图4答:HY从点到点的平均速度约为.由以上例题的解析可知,同学们应进一步增强应用意识,联络实际,综合运用知识,抽象概括,构建数学模型,使之转化为解直角三角形问题,从而到达解决实际问题的目的.。
1 / 3AD图1E解直角三角形中的数学思想数学思想方法反映了数学的本质特征,是分析和处理数学问题的指导思想,数学思想方法是具体数学知识技能转化为能力的纽带,是知识与技能的升华.下面以解直角三角形为例,谈谈是如何运用数学思想解决问题的.一、转化思想例1 如图1,一游人由山脚A 沿坡角为30的山坡AB 行走600m ,到达一个景点B ,再由B 沿山坡BC 行走200m 到达山顶C ,若在山顶C 处观测到景点B 的俯角为45,则山高CD 等于 (结果用根号表示)分析:考查作辅助线解非直角三角形的能力.由于涉及的几何图形是非直角三角形可,所以需要作辅助线转化为直角三角形求解.解:过B 点作BF ⊥CD,BE ⊥AD,则四边形BEDF 在Rt △ABE 中,BE=AB sin30°=600×21在Rt △CBF 中, 由于∠C BF =45°,所以CF=BC sin45°=200×22=2100(m), 所以山高CD=DF+CF=BE+CF=(300+2100)(m),评注:非直角三角形通常都要通过作辅助线转化为直角三角形后求解. 二、分类讨论的思想例2 在平面直角坐标系xOy 中,已知一次函图22 / 3图 360数y=kx+b(k ≠0)的图象过点A(1,1),与x 轴交于点B,且tan ∠ABO=31,那么B 点的坐标是_______.分析:本题需要在直角坐标系中画出函数图象,利用平面内点的坐标的几何意义和解直角三角形的知识求解.因为B 点有可能在x 轴正半轴,也有可能在x 轴负半轴,所以画出如图2的函数图象,过点A 作AC ⊥x 轴.由点A 的坐标为(1,1),则AC=1,OC=1. 第一种情况:在Rt △ABC 中,由tan ∠ABO=,31=BC AC 得BC=3,所以OB=OC+BC=1+3=4,即点B 的坐标为(4,0);第二种情况:在Rt △O B A '中,由tan ∠O B A '=,31='C B AC 得C B '=3, 所以B O '=C B '-OC=3-1=2,即点B '的坐标为(-2,0). 评注:本题存在两种情况,需分类讨论,千万不要漏解. 三、数形结合思想例3 如图3,A B ,两镇相距60km ,小山C 在A 镇的北偏东60方向,在B 镇的北偏西30方向.经探测,发现小山C 周围20km 的圆形区域内储有大量煤炭,有关部门规定,该区域内禁止建房修路.现计划修筑连接A B ,两镇的一条笔直的公路,试分析这条公路是否会经过该区域?分析: 要判断这条公路是否会经过该区域,实际就是计算C 点到直线AB 的距离与20km 进行比较,所以需要作高,求高即可.解:作CD AB ⊥于D ,3 / 3由题意知:30CAB =∠60CBA =∠ 90ACB =∠30DCB ∴=∠ ∴在Rt ABC △中,1302BC AB == 在Rt DBC △中,cos30CD BC=302=⨯20=> 答:这条公路不经过该区域.评注: 解答本题首先结合图形弄清题意,将实际问题转化为解直角三角形的问题来解决,数形结合是顺利解决问题的关键.。
【文库独家】解直角三角形(三角函数应用)1、(绵阳市)如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60º,又从A 点测得D 点的俯角β为30º,若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( A )A .20米B .米C .米D .米[解析]GE//AB//CD ,BC=2GC ,GE=15米,AB=2GE=30米,AF=BC=AB•cot ∠ACB=30×cot60º=10 3 米,DF=AF •tan30º=10 3 ×33=10米,CD=AB-DF=30-10=20米。
2、(杭州)在Rt△ABC 中,∠C=90°,若AB=4,sinA=,则斜边上的高等于( )A .B .C .D .考点:解直角三角形.专题:计算题.分析:在直角三角形ABC 中,由AB 与sinA 的值,求出BC 的长,根据勾股定理求出AC 的长,根据面积法求出CD 的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC 中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S △ABC =AC•BC=AB•CD, ∴CD==. 故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.3、(•绥化)如图,在△ABC 中,AD⊥BC 于点D ,AB=8,∠ABD=30°,∠CAD=45°,求BC 的长.∴AD=AD=4.+44、(•鄂州)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.∴OP=5、(安顺)在Rt△ABC中,∠C=90°,,BC=8,则△ABC的面积为.考点:解直角三角形.专题:计算题.分析:根据tanA的值及BC的长度可求出AC的长度,然后利用三角形的面积公式进行计算即可.解答:解:∵tanA==,∴AC=6,∴△ABC的面积为×6×8=24.故答案为:24.点评:本题考查解直角三角形的知识,比较简单,关键是掌握在直角三角形中正切的表示形式,从而得出三角形的两条直角边,进而得出三角形的面积.6、(11-4解直角三角形的实际应用·东营中考)某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60︒,在教学楼三楼D处测得旗杆顶部的仰角为30︒,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为米.15. 9.解析:过B 作BE ⊥CD 于点E ,设旗杆AB 的高度为x ,在Rt ABC ∆中,tan AB ACB AC ∠=,所以tan tan 60AB x AC x ACB ====∠︒,在Rt BDE ∆中,BE AC x ==,60BOE ∠=︒,tan BE BDE DE ∠=,所以1tan 3BE DE x BDE===∠,因为CE=AB=x ,所以163DC CE DE x x =-=-=,所以x=9,故旗杆的高度为9米. 7、(•常德)如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sinB=,AD=1.(1)求BC 的长;(2)求tan∠DAE 的值.BD=2sinB=,∴AB==3∴BD==2∴BC=BD+DC=2∴CE=BC=+,CD=﹣∴tan∠DAE==﹣8、(13年山东青岛、20)如图,马路的两边CF 、DE 互相平行,线段CD 为人行横道,马路两侧的A 、B 两点分别表示车站和超市。
解直角三角形的实际应用,“盘它”解直角三角形的实际应用是历年中考的热点,其中大多会利用直角三角形解决和高度(或宽度)、航行、坡度及实物情景有关的问题,考查数学抽象、数学建模,落地核心素养.小伙伴们只要掌握了其中解题的技巧,这个分,咱们拿定了!“七嘴八舌”说考情陕西:我们10年考了4次,都是在第20题解答题,考锐角三角函数的实际应用,涉及方位角、俯仰角,均为一个特殊角、一个非特殊角,结果要精确.2019年根据中考说明变化,会考查两个特殊角,结果保留根号.河南:我们近10年仅2010年未考查,均在解答题的19题或20题考查,考查的模型有:背对背型,母子型,涉及的角度为一个特殊角和一个非特殊角,两个角都为特殊角和非特殊角,一个非特殊角.云南:我们是昆明必考题型,省卷近3年未考查,题型为解答题,背景涉及仰俯角、方向角、坡度坡角,设问为1问,多是求高度,长度,宽度,距离,涉及的角度有:两个特殊角,一个特殊角和一个非特殊角.安徽:我们是必考题型,题型为解答题,背景涉及仰俯角、夹角、坡角,设问为1问,多是求高度,长度,距离等,涉及的角度有:两个特殊角,一个特殊角和一个非特殊角.山西:我们在选填中考查了3次,解题时均需构造一个直角三角形来解决问题,解答题中需作一条或两条高线,构造出三个三角形或两个三角形和一个矩形,求得线段长,再利用线段和差进行求解.江西:我们把这类题叫做几何应用题,是江西近10年的必考题型,考查背景均与生活实际紧密相关,以从实物中抽象几何模型为主,涉及到的几何图形背景有直角三角形、特殊平行四边形、圆等,解题过程除用到锐角三角函数知识外,2012、2016年均可用相似知识解题,2010年考查的为相似的实际应用.说来说去还得练聚焦类型一利用直角三角形解决高度问题(建筑物或树高等)1.如图,在一个坡角为20°的斜坡上有一棵树,高为AB,当太阳光线与水平线成52°角时,测得该树在斜坡上的树影BC的长为10m,求树高AB(精确到0.1m).(已知:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364,sin52°≈0.788,cos52°≈0.616,tan52°≈1.280)第1题图解:如解图,过点C作CD⊥AB,交AB的延长线于点D,在Rt△BCD中,BC=10m,∠BCD=20°,∴CD=BC•cos20°≈10×0.940=9.40m,BD=BC•sin20°≈10×0.342=3.42m;在Rt△ACD中,CD≈9.40m,∠ACD=52°,∴AD=CD•tan52°≈9.40×1.280=12.032m,∴AB=AD-BD=12.032-3.42≈8.6m,答:树高约8.6米.第1题解图2.如图,亮亮在教学楼距水平地面5米高的窗口C处测得正前方旗杆顶部A点的仰角为45°,旗杆底部B点的俯角为30°,升旗时国旗上端悬挂在距地面2米处,若国旗随国歌冉冉升起,并在国歌播放45秒结束时到达旗杆顶端.(1)求旗杆AB的高度;(参考数据:2≈1.41,3≈1.73,精确到0.1米)(2)国旗应以多少米/秒的速度匀速上升?第2题图确作辅助线,构造直角三角形来进行求解.这就是典型的“背靠背型”.解:(1)如解图,过点C作CH⊥AB于点H.第2题解图在Rt △BCH 中,∵∠BCH =30°,BH =5米,∴CH =3BH =53(米),在Rt △ACH 中,∵∠ACH =45°,∴AH =HC =53(米),∴AB =AH +BH =5+53≈13.7(米).答:旗杆AB 的高度约为13.7米;(2)国旗上升的速度=452-7.13≈0.26(米/秒).答:国旗应以0.26米/秒的速度匀速上升.3.如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5米;上面五层居住.每层高度相等.测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为60°,在B 处测得四楼顶部点E 的仰角为30°,AB =14米.求居民楼的高度(精确到0.1米.参考数据:3≈1.73).第3题图解:设每层楼高为x 米,由题意得:MC ′=MC -CC ′=2.5-1.5=1米,∴DC ′=5x +1,EC ′=4x +1,在Rt △DC ′A ′中,∠DA′C ′=60°,这个图形,我们可以看出两个直角三角形中,两条直角边有公共部分,据此我们通过线段之间的和差关系解决问题.这就是典型的“拥抱型”.在Rt△EC′B′中,∠EB′C′=30°,∴C′B′='tan30EC°=3(4x+1),∵A′B′=C′B′-C′A′=AB,∴3(4x+1)-33(5x+1)=14,解得x≈3.18,则居民楼高约为5×3.18+2.5=18.4米.∴居民楼高度约为18.4米.4.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD =60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)第4题图解:如解图,过点D作DF⊥BC于点F,延长DE交AC于点G,则GC=DF,DG=FC,在Rt△BDF中,DF=BD·sinα=BD·sin32°≈60×0.53=31.8(米),BF=BD·cosα=BD·cos32°≈60×0.85=51(米),∴FC=BC-BF≈110-51=59(米),EG=DG-DE=FC-DE≈59-9=50(米).在Rt△AEG中,AG=EG·tanβ=EG·tan68°≈50×2.48=124(米),∴AC=AG+GC=AG+DF≈124+31.8=155.8(米).答:AC 的高度约为155.8米.第4题解图聚焦类型二利用直角三角形解决航行问题5.如图所示,某船向正东航行,在B 处望见某岛A 在北偏东60°,前进6海里到达C 处,测得该岛在北偏东30°.已知在该岛周围6海里内有暗礁,问该船继续向东航行,有无触礁的危险?请说明理由.第5题图解:如解图,过点A 作AD ⊥BC ,交BC 的延长线于点D .在Rt △ACD 中,CD =AD ·tan30°=33AD ,在Rt △ABD 中,BD =AD ·tan60°=3AD ,∵BD -CD =6海里,∴3AD -33AD =6,解得AD =33海里.∵33<6,在该船沿BC 向正东航行过程中,离点A 的最近距离是否大于6海里是解题关键,所以需要正确作出辅助线.这就是典型的“母子型”.∴该船继续向东航行有触礁的危险.第5题解图6.为了保证端午龙舟赛在某市一段水域顺利举办,某部门工作人员乘快艇到该水域考察水情,以每秒10米的速度沿平行于岸边的赛道AB 由西向东行驶.在A 处测得岸边一建筑物P 在北偏东30°方向上,继续行驶40秒到达B 处时,测得建筑物P 在北偏西60°方向上,如图所示,求建筑物P 到赛道AB 的距离(结果保留根号).第6题图解:如解图,过点P 作PC ⊥AB 于点C ,由题意知∠PAC =60°,∠PBC =30°.在Rt △PAC 中,AC =33PC .在Rt △PBC 中,BC =3PC .∴AB =AC +BC =33PC +3PC =10×40=400,∴PC =1003,∴建筑物P 到赛道AB 的距离为1003米.要求点P 到赛道AB 的距离,即过点P 作垂线,其中已知线段AB 是关键.这就是典型的“背靠背型”.第6题解图聚焦类型三利用直角三角形解决坡度问题7.如图,水库大坝的横断面是梯形ABCD,其中AB∥CD,坝高20米,坡角α=45°,汛期来临前对其进行了加固,改造后的背水面坡度为1∶3,坝顶面加宽1米,求加固后坝底增加的宽度AF的长.(3≈1.732)第7题图解:如解图,过点D作DG⊥AB于G,过点E作EH⊥AB于H,在Rt△ADG中,∠DAG=45°,DG=20,∴AG=20,∵背水面EF的坡度为1∶3,EH=20,∴FH=203,∴AF=FH+HG-AG=203+1-20≈15.64,∴加固后坝底增加的宽度AF的长约为15.64米.第7题解图聚焦类型四利用直角三角形解决实物情景题8.在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板,AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B旋转.已知连接杆BC的长度为20cm,BD=43cm,压柄与托板的长度相等.(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE的长度;(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)第8题图解:(1)如解图,过点D作DH⊥BE于点H.在Rt△BDH中,∵∠DHB=90°,BD=43cm,∠ABC=30°,1BD=23cm,BH=3DH=6cm,∴DH=2∵AB=CB=20cm,AE=2cm,∴EH=20-2-6=12cm,∴在Rt△DEH中,由勾股定理得DE=239cm.第8题解图(2)在Rt △BDE 中,∵DE =239,BD =43,∠DBE =90°,∴BE =217cm ,∴这个过程中,点E 滑动的距离为(18-23)cm .专家密招赶紧看1.解题依据如图,在Rt △ABC 中,三边之间的关系:a 2+b 2=c 2(勾股定理)锐角之间的关系:∠A +∠B =90°边角之间的关系(锐角三角函数):sin A =c a ,cos A =c b ,tan A =b a2.基本图形(1)母子型图形分析:已知三角形中的两角(∠1和∠2)及其中一边,在三角形外作高BC ,构造两个直角三角形求解,公共边BC 是解题的关键.(2)背靠背型在基本图形的基础上,通过恰当地作高,构造直角三角形,而一个三角形有三条高,所以基本图形大都是直角三角形或直角三角形结合特殊四边形.图形分析:已知三角形中的两角(∠A 和∠B )及一边(AC 或BC ),在三角形内作高CD ,构造两个直角三角形求解,公共边CD是解题的关键.(3)拥抱型图形分析:单独解每个三角形,再利用线段的和差.(4)三角形+矩形模型图形分析:过较短的底AB作直角梯形的高BE ,构造矩形和直角三角形,先解直角三角形再利用线段和差求解.图形分析:过较短的底AD 作梯形的两条高AE 和DF ,构造一个矩形和两个直角三角形,先分别解两个直角三角形再利用线段和差求解.(5)实物情景模型此类问题需要构造直角三角形模型(特点类似前面几个类型),结合相关的几何知识进行求解.小编说:这些基本图形的都有一个共同之处,小伙伴发现了没?3.解题一般步骤注:解题完毕后,可能会存在一些较为特殊的数据,例如含有复杂的小数等,因此,要特别注意所求数据是否符合实际意义,同时还要注意题目中对结果的精确度有无要求.4.解题小贴士小编解析一下咯:当已知或求解中有斜边时,就用正弦或余弦,无斜边时,就用正切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可以由已知数据又可用由中间数据求解时,则用已知数据,尽量避免用中间数据.角的关系有互余,边的关系有勾股;有斜边用正余弦,没有斜边用正切;选用乘法毋用除,采取原始避中间.。
解直角三角形中考题在平面几何中,解直角三角形是中考必考知识点之一,也是初中数学的重点内容之一。
下面从以下几个方面来探讨解直角三角形在中考中的常见题型和解法。
一、锐角三角函数锐角三角函数是解直角三角形的基础知识,主要考查学生对三角函数的掌握程度。
一般题型为:已知一个锐角,求其它锐角的三角函数值。
例题:在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA=____,cosA=____,tanA=____。
解析:根据勾股定理可求得AB=5,再根据锐角三角函数的定义可求得答案。
二、解直角三角形解直角三角形是解直角三角形中最重要的题型,主要考查学生对勾股定理、锐角三角函数的掌握以及应用能力。
一般题型为:已知一直角三角形中的两个边长或一个边长和另一个角的三角函数值,求未知边的长度。
例题:在Rt△ABC中,∠C=90°,BC=3,sinA=0.6,求AC的长。
解析:根据已知条件可求得∠B的三角函数值,再利用勾股定理可求得AC的长。
三、应用题应用题是将解直角三角形与实际生活相结合的题型,主要考查学生的综合应用能力。
一般题型为:以实际问题为背景,通过解直角三角形来解决实际问题。
例题:某小区有一个矩形花坛,长为6米,宽为4米。
现在要在这个花坛的基础上修建一个尽可能大的圆形花坛,这个圆形花坛的半径是多少米?解析:根据题意可知,这个圆形花坛是以矩形花坛的对角线为直径的圆,通过勾股定理可求得对角线的长度,从而可求得半径的长度。
总之,解直角三角形是中考数学的重要知识点之一,需要学生掌握勾股定理、锐角三角函数的定义以及应用等基础知识,并能够灵活运用这些知识来解决实际问题。
也需要学生平时多加练习,提高自己的解题能力和思维水平。
中考数学解直角三角形一、定义:在一个直角三角形中,斜边上的高分两个直角三角形,其中一个与原三角形相似,另一个与原三角形轴对称。
二、解直角三角形的步骤:1、判断三角形的形状:在一个三角形中,最大的角是90°,所以只要有一个角是90°的三角形就是直角三角形。
2021 解直角三角形的运用解答题 178〔二〕考点剖析知识点1:锐角三角函数在ABC Rt ∆中,C ∠是直角,那么AAB BC A =sin ,AB AC A =cos ,ACBCA =tanC B【例1】在ABC Rt ∆中, 90=∠C ,假定AB=5,AC=4,那么=B sin ________.【例2】在ABC Rt ∆中, 90=∠C ,AB=13,BC=12,那么=B sin _________.【例3】如图,ABC ∆的顶点都是正方形网格中的格点,那么ABC san ∠等于〔 〕5.A 552.B 55.C 32.D知识点2:特殊角的三角函数值三角函数︒0 ︒30 ︒45 ︒60 ︒90(2)事先 45=∠A ,=A sin _______,=B cos __________; (3)事先 60=∠A ,=A sin _______,=B cos __________。
知识点4:解直角三角形的复杂实践运用1、仰角:在视野与水平线所成的角中,视野在水平线上方的角叫仰角。
2、俯角:在视野与水平线所成的角中,视野在水平线下方的角叫俯角。
3、坡度:坡面的铅锤高度〔h 〕和水平长度〔l 〕的比叫做坡度〔坡比〕,记作i ,即l h i =.4、坡角:坡面与水平面的夹角叫坡角,记作α,有αtan ==lhi 。
【例6】如图,防洪大堤的横断面是梯形ABCD ,其中AD ∥BC ,坡角α=600,汛期来临前对其停止了加固,改造后的背水面坡角β=45°,假定原坡长AB=20m ,求改造后的坡长AE 〔结果保管根号〕(三)真题剖析〔2021安徽中考〕17.如图,游客在点A 处动身,沿A-B-D 的路途可至山顶D 处,假定AB 和BD 都是直线段,且AB=BD=600m, 45,75==βα,求DE 的长。
〔参考数据:41.12,26.075cos ,97.075sin ≈≈≈ )解:如下图,在BDF Rt ∆中,45sin =BDDF, )(423230045sin m BD DF ≈=⋅=∴ , 在ABC Rt ∆中,75cos =ABBC, )(15675cos m AB BC ≈⋅=∴)(156m BC EF ==∴)(579156423m EF DF DE =+=+=∴答:DE 长579米。
2023年中考数学高频考点突破——解直角三角形的实际应用1.在修建某高速公路的线路中需要经过一座小山.如图,施工方计划从小山的一侧C处沿AC方向开挖隧道到小山的另一侧D(A,C,D三点在同一直线上)处.为了计算隧道CD的长,现另取一点B,测得∠CAB=30°,∠ABD=105°,AC=1km,AB=4km.求隧道CD的长.2.如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=50m.请你帮小明计算他家到公路l的距离AD的长度?(精确到0.1m;参考数据tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).3.如图为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=24m,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?4.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3米.求点B到地面的垂直距离BC.5.如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高大约高多少米?(结果精确到0.1m,其中小丽眼睛距离地面高度近似为身高)6.如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,≈1.414,≈1.732).7.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.求旗杆AB 的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)8.给窗户装遮阳棚,其目的为最大限度的遮挡夏天炎热的阳光,又能最大限度的使冬天温暖的阳光射入室内,现请你为我校新建成的高中部教学楼朝南的窗户设计一个直角形遮阳篷BCD,如图,已知窗户AB高度为h=2米,本地冬至日正午时刻太阳光与地面的最小夹角α=32°,夏至日正午时刻太阳光与地面的最大夹角β=79°,请分别计算直角形遮阳篷BCD中BC、CD的长(结果精确到0.1米,tan32°≈0.62,tan79°≈5.14)9.如图,秋千链子AB的长度为3m,静止时的秋千踏板(厚度忽略不计)距地面DE为0.5m,秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为53°,求秋千踏板与地面的最大距离.(sin53°≈0.80,cos53°≈0.60)10.如图分别是某型号跑步机的实物图和示意图,已知踏板CD长为2米,支架AC长为0.8米,CD与地面的夹角为12°,∠ACD=80°,(AB∥ED),求手柄的一端A离地的高度h.(精确到0.1米,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)11.如图,厂房屋顶人字架的跨度BC=10m.D为BC的中点,上弦AB=AC,∠B=36°,求中柱AD和上弦AB的长(结果保留小数点后一位).参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73.12.如图,一条河的两岸l1,l2互相平行,在一次综合实践活动中,小颖去测量这条河的宽度,先在对岸l1上选取一个点,然后在河岸l2时选择点B,使得AB与河岸垂直,接着沿河岸l2走到点C处,测得BC=60米,∠BCA=62°,请你帮小颖算出河宽AB (结果精确到1米).(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)13.为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)14.2015年4月25日14时11分,尼泊尔发生8.1级地震,震源深度20千米.中国救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)15CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米)(参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)16.如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4米,AB=6米,中间平台宽度DE=1米,EN、DM、CB为三根垂直于AB的支柱,垂足分别为N、M、B,∠EAB=31°,DF⊥BC于F,∠CDF=45°.求DM和BC的水平距离BM的长度.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)17.如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,∠CDE=60°.且根据我市的地理位置设定太阳能板AB的倾斜角为43°.AB=1.5米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,结果保留两位小数)18.北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)19.如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)20.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)参考答案与试题解析1.【解答】解:过点B作BE⊥AD于点E,如图所示:在Rt△ABE中,AB=4km,∠CAB=30°,∠AEB=90°,∴BE=AB=2km,AE===2km,∠ABE=180°﹣30°﹣90°=60°,∴∠DBE=∠ABD﹣∠ABE=105°﹣60°=45°.在Rt△BDE中,∠BED=90°,∠DBE=45°,∴DE=BE=2km,∴AD=AE+DE=(2+2)km,∴CD=AD﹣AC=2+2﹣1=(2+1)km.答:隧道CD的长为(2+1)km.2.【解答】解:∵∠2=45°∠3=90°∴∠4=45°∴∠2=∠4即BD=AD设BD=AD=xm,∵AC=50m∴CD=(x+50)m,在Pt△ACD中tan C=,10x=6x+3004x=300x≈75.0.答:AD的长度为75.0m.3.【解答】解:过点B作BF交CD于F,过点F作FE⊥AB于点E,∵太阳光与水平线的夹角为30°,∴∠BFE=30°,∵AC=EF=24m,∴BE=EF•tan30°=24×=8(m),∴CD﹣BE=(30﹣8)m.答:甲楼的影子在乙楼上的高度约为(30﹣8)m.4.【解答】解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,AE=DE=3.∴AD2=AE2+DE2=(3)2+(3)2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=AB=3,∴BC2=AB2﹣AC2=62﹣32=27,∴BC==3m,∴点B到地面的垂直距离BC=3m.5.【解答】解:由题意得:AD=6m,在Rt△ACD中,tan A==∴CD=2(m),又AB=1.6m∴CE=CD+DE=CD+AB=2+1.6≈5.1(m).答:树的高度约为5.1米.6.【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+60解之得:x=30+30≈81.96.答:河宽约为81.96米.7.【解答】解:设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=x•cos45°﹣x•cos60°=10×﹣10×≈2.1(m)答:旗杆AB的高度为8.7m,小明后退的距离为2.1m.8.【解答】解:根据内错角相等可知,∠BDC=α,∠ADC=β.在Rt△BCD中,tanα=.①在Rt△ADC中,tanβ=.②由①、②可得:.把h=2,tan32°≈0.62,tan79°≈5.14代入上式,得BC≈0.3(米),CD≈0.4(米).所以直角遮阳篷BCD中BC与CD的长分别是0.3米和0.4米.9.【解答】解:设秋千链子的上端固定于A处,秋千踏板摆动到最高位置时踏板位于B 处.过点A,B的铅垂线分别为AD,BE,点D,E在地面上,过B作BC⊥AD于点C.在Rt△ABC中,AB=3,∠CAB=53°,∵cos53°=,∴AC=3cos53°≈3×0.6=1.8(),∴CD≈3+0.5﹣1.8=1.7(m),∴BE=CD≈1.7(m),答:秋千摆动时踏板与地面的最大距离约为1.7m.10.【解答】解:过C点作FG⊥AB于F,交DE于G.∵CD与地面DE的夹角∠CDE为12°,∠ACD为80°,∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+12°﹣80°=22°,∴∠CAF=68°,在Rt△ACF中,CF=AC•sin∠CAF≈0.744m,在Rt△CDG中,CG=CD•sin∠CDE≈0.42m,∴h=0.42+0.74=1.156≈1.2(米),答:手柄的一端A离地的高度h约为1.2m.11.【解答】解:∵AB=AC,D为BC的中点,BC=10米,∴DC=BD=5米,∵AB=AC,D为BC的中点,∴AD⊥BC.在Rt△ADB中,∠B=36°,∴tan36°=,即AD=BD•tan36°≈3.7(米).cos36°=,即AB=≈6.2(米).答:中柱AD(D为底边BC的中点)为3.7米和上弦AB的长为6.2米.12.【解答】解:在Rt△ABC中,BC=60米,∠BCA=62°,可得tan∠BCA=,即AB=BC•tan∠BCA=60×1.88≈113(米),则河宽AB为113米.13.【解答】解:如图,过点C作CD⊥AB于点D,设CD=x米.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=10.解得x=13.答:河的宽度的13米.14.【解答】解:过C作CD⊥,设CD=x米,∵∠ABE=45°,∴∠CBD=45°,∴DB=CD=x米,∵∠CAD=30°,∴AD=CD=x米,∵AB相距2米,∴x﹣x=2,解得:x=+1≈2.73,答:命所在点C与探测面的距离2.73米.15.【解答】解:由题可知:如图,BH⊥HE,AE⊥HE,CD=2米,BC=4米,∠BCH=30°,∠ABC=80°,∠ACE=70°∵∠BCH+∠ACB+∠ACE=180°∴∠ACB=80°∵∠ABC=80°∴∠ABC=∠ACB∴AB=AC过点A作AM⊥BC于M,∴CM=BM=2(米),∵在Rt△ACM中,CM=2米,∠ACB=80°∴∠ACB=cos80°≈0.17∴AC==(米),∵在Rt△ACE中,AC=米,∠ACE=70°∴∠ACE=sin70°≈0.94∴AE=×0.94=≈11.1(米),∴AE+CD=13.1(米),故可得点A到地面的距离为13.1米.16.【解答】解:设BM=x米.∵∠CDF=45°,∠CFD=90°,∴CF=DF=x米,∴BF=BC﹣CF=(4﹣x)米.∴EN=DM=BF=(4﹣x)米.∵AB=6米,DE=1米,BM=DF=x米,∴AN=AB﹣MN﹣BM=(5﹣x)米.在△AEN中,∠ANE=90°,∠EAN=31°,∴EN=AN•tan31°.即4﹣x=(5﹣x)×0.6,∴x=2.5,答:DM和BC的水平距离BM的长度为2.5米.17.【解答】解:过E作EG⊥地面于G,过D作DH⊥EG于H,∴DF=HG,在R t△ABC中,AC=AB•sin∠B=1.5×sin43°=1.5×0.682≈1.023米,∵∠CDE=60°,∴∠EDH=30°,∴EH=DE=0.9米,∴DF=GH=EG﹣EH=6﹣0.9=5.1米,∴OF=OA+AC+CD+DF=1.5+1.023+1+5.1=8.623m.答:灯杆OF至少要8.63m.18.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan60°==,解得:x≈3.所以生命迹象所在位置C的深度约为3米.19.【解答】解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+50解之得:x=25+25≈68.10.答:河宽为68.30米.20.【解答】解:如图,根据题意OA=OA′=80cm,∠AOA′=35°,作A′B⊥AO于B,∴OB=OA′•cos35°=80×0.82≈65.6cm,∴AB=OA﹣OB=80﹣65.6=14.4cm.答:调整后点A′比调整前点A的高度降低了14厘米.。
第5讲解直角三角形专题【考点透视】一、锐角三角函数与解直角三角形:1.锐角三角函数的槪念,通过画图找出直角三角形中边角关系:2.准确经历30°、45。
、60°的三角函数值并进行讣算:已知三角函数值求相应锐角:3.三角函数与直角三角形的相关应用.二、几何直线型:一、利用有关三角形、平行四边形、特殊平行四边形(矩形、菱形、正方形)、梯形等的性质、判定及其相关结论进行相关计算推理;二、解决几何图形的三大变换问题。
【思想方式】一、本专题所研究的锐角三角函数,所涉及的角都是锐角,研究如此的角,能够与直角三角形直接联系起来。
利用直角三角形的边角关系求图形中的某些边或角时,都是通过数值讣算,这是数形结合的一种方式。
因此在分析问题时,最好画出它的平面或截而示用意,依照图中边角关系去进行il•算, 便于解答、避免犯错。
有些图形尽管不是直角三角形,但可添加适当的辅助线耙它们分割成一些直角三角形和矩形,如等腰三角形、梯形等问题。
从而能够运用直角三角形的有关知识去解决这些图形中求边角的问题。
二、“一招制胜”一一分离图形法【出色知识】考点1:有关三角函数的重要概念【例1】(1)如下图正方形网格中,每一个小正方形的边长都相等,点A. B. G Q都在这些小正方形的极点上,线段M与Q相交于P、那么tanZBPD的值为________________ 。
(2)已知△磁中,ZA. Z万是锐角,且sinJ=tan5=2, AB二29cm,那么- _______ 变式训练^1.(泰安市)直角三角形纸片的两直角边长别离为6, 8,现将△ A3C如图那样折叠,使点A与点B重合, 折痕为DE,那么tan ZCBE的值是()242.如图,已知△MG AB=AC=1. ZA=36° , ZABC的平分线別交M于点D,那么肋的长是,cosA的值是・(结果保留根号)值。
考点2:有关三角函数的计算【例2】已知“是锐角,且sin( a +15J- *计算爲-4cosa-(兀-3.14)° + tan a+ [£ j的变式训练:计算:(-1)2OH -(If3 + (cos68 +-)°+|3>/3-8sin602 n I考点3:锐角三角函数之间的关系及三角函数增减性【例3】若0° <"<45°,且sin "cos"二仝匕,那么sin"的值为_________________16 变式训练:1.已知为锐角,以下结论:< 1 > sina + cosa = 1 〈2>若是a >45。
初中数学_2.5解直⾓三⾓形的应⽤教学设计学情分析教材分析课后反思《解直⾓三⾓形》复习学案复习⽬标:1、加深对锐⾓三函数定义的理解2、运⽤解直⾓三⾓形的⽅法解决实际问题课前延伸案:1、解直⾓三⾓形的依据:三边关系:_________________________锐⾓之间的关系:___________________________边⾓之间的关系(锐⾓三⾓函数)sinA =__________________cosA=__________________tanA=__________________2、特殊⾓的三⾓函数值3、(1)仰⾓与俯⾓:(2) 坡度:tanα=__________l⽔平线课内探究案⼀、巩固基础:1、在Rt△ABC中,若∠C=90°(1)已知BC=1 ,AC= ,解此直⾓三⾓形。
(2)已知c= ,∠A=60°,解此直⾓三⾓形。
2、已知:在△ABC中∠A=45°,∠B=30°,BC=20,求AB(结果保留根号).3、已知:在△ABC中∠A=30°,∠B=135°,AC=20,求AB(结果保留根号).38ACB⼆、提⾼能⼒:1.将2中“BC=20”改为“AB=20”求BC的长度?{已知:在△ABC中∠A=45°,∠B=30°,AB=20,求BC(结果保留根号).} 2.将3中“AC=20”改为“AB=20”求AC的长度?{已知:在△ABC中∠A=30°,∠B=135°,AB=20,求AC(结果保留根号)}三、实际应⽤:⼩明⼩亮到欢乐海旅游,两⼈分别在相距20⽶C 、B两处测得瞭望塔的仰⾓分别为45°和30°,⼆⼈⾝⾼都是1.5m,且B 、 C 、D在⼀条直线上,求:瞭望塔的⾼度(保留根号).ADCBC四、课堂检测:1、如图,某拦河坝横截⾯的原设计⽅案为AH ∥BC ,坝⾓∠ABC=60°, 坝顶到坝脚的距离AB=6m ,为了提⾼拦河坝的牢固程度,现将坝⾓改为45°,由此A 点需向右平移⾄D 点,求AD 的长。
在ABC Rt ∆中,C ∠是直角,则
A
AB BC A =
sin ,AB AC A =cos ,AC
BC
A =tan
C B
【例1】在ABC Rt ∆中, 90=∠C ,若AB=5,AC=4,则=B sin ________.
【例2】在ABC Rt ∆中, 90=∠C ,AB=13,BC=12,则=B sin _________.
【例3】如图,ABC ∆的顶点都是正方形网格中的格点,则ABC san ∠等于( )
5.A 552.
B 55.
C 3
2
.D
知识点2:特殊角的三角函数值
三角函数
︒0
︒30
︒45
︒60
︒90
αsin
2
1
22
2
3 1
αcos
1
2
3 2
2
2
1 0
αtan
3
3 1
3
不存在
1、仰角:在视线与水平线所成的角中,视线在水平线上方的角叫仰角。
2、俯角:在视线与水平线所成的角中,视线在水平线下方的角叫俯角。
3、坡度:坡面的铅锤高度(h )和水平长度(l )的比叫做坡度(坡比),记作i ,
即l h i =.
4、坡角:坡面与水平面的夹角叫坡角,记作α,有αtan ==
l
h
i 。
【例6】如图,防洪大堤的横断面是梯形ABCD ,其中AD ∥BC ,坡角α=600,汛期来临前对其进行了加固,改造后的背水面坡角β=45°,若原坡长AB=20m ,求改造后的坡长AE (结果保留根号)
(三)真题分析
(2017安徽中考)17.如图,游客在点A 处出发,沿A-B-D 的路线可至山顶D 处,假设AB 和BD 都是直线段,且AB=BD=600m, 45,75==βα,求DE 的长。
(参考数据:
41.12,26.075cos ,97.075sin ≈≈≈ )
米。
是矩形。
四边形
30
//
.
//
,
90
,
=
+
=
=
∴
∴
∴
=
∠
∴
⊥
EF
AE
AF
CD
ACDF
CD
AF
DF
AC
DFB
AF
DF
(2015安徽中考)18.如图,平台AB高12米,在B处测得楼房CD的顶部D点的仰角为45°,底部C点的俯角为30°,求楼房CD的高度。
(参考数据:7.1
3≈)解:过B点作CD
BE⊥交CD于点E,
米
12
,
30
,
45=
=
=
∠
=
∠CE
AB
CBE
DBE
米
米3
12
,
3
12
3
3
12
30
tan
=
=
=
=
=
∴BE
DE
CE
BE
米
4.
32
3
12
12≈
+
=
+
=
∴DE
CE
CD
答:楼房CD高32.4米。
拓展提升训练
1、如图,为了测量河两岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,
∠ACB=α,那么AB等于()
A.a•sinα B.a•cosα C.a•tanα D.a•cotα
2、某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度比为.
3、如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30°,求楼CD的高度(结果保留根号)。