河北省廊坊市高二数学上学期期末试卷 文(含解析)
- 格式:doc
- 大小:340.02 KB
- 文档页数:13
2020-2021学年河北省廊坊市高二上学期期末考试数学(文)试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.命题“若p 则q ”的逆否命题是( ) A .若p ⌝则q ⌝B .若q ⌝则p ⌝C .若p 则q ⌝D .若q 则p2.双曲线2214y x -=的离心率为( )A .2 B .2C D 3.已知命题:p x R ∀∈,220x x a +->.若p 为真命题,则实数a 的取值范围是( ) A .1a >-B .1a <-C .1a ≥-D .1a ≤-4.某学校有老师100 人,男学生600 人,女学生500 人,现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,已知女学生一共抽取了40 人,则n 的值是( ) A .96B .192C .95D .1905.设x ∈R ,则“|1|2x -<”是“2450x x --<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件6.设函数()()21g x x x =-,则()g x 在区间[]0,1上的最大值为( )A .-1B .0C .D 7.执行右面的程序框图,如果输入的N 是7,那么输出的p 是( )A .120B .720C .1440D .5040 8.方程()1xy x y +=所表示的曲线( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点对称D .关于直线y x=对称9.有一个容量为100 的样本,其频率分布直方图如图所示,已知样本数据落在区间[10,12)内的频数比样本数据落在区间[8,10)内的频数少12 ,则实数m 的值等于( )A .0.10B .0.11C .0.12D .0.1310.已知P 为抛物线24y x =上任意一点,抛物线的焦点为F ,点(2,1)A 是平面内一点,则||||PA PF +的最小值为( )A .1B C .2D .311.方程x 2+2x+n 2=0(n ∈[-1,2])有实根的概率为( )A .23 B .13 C .14D .3412.已知离心率e =2222:1(0,0)x y C a b a b -=>>的右焦点为F ,O 为坐标原点,以OF 为直径的圆与双曲线C 的一条渐近线相交于O A 、两点.若AOF ∆的面积为1,则实数a 的值为( )A .1BC .2D .4二、填空题13.(2)10101转化为十进制数是__________. 14.已知()2sin 1f x x =+,则'4f π⎛⎫=⎪⎝⎭_________. 15.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字至少有一个是偶数的概率为__________.(结果用数值表示)16.设F 为抛物线2:3C y x =的焦点,过F 作直线交抛物线C 于A B 、两点,O 为坐标原点,则AOB ∆面积的最小值为__________.三、解答题17.已知函数()321313f x x x x =--+. (1)求()y f x =在1x =处的切线方程; (2)求()y f x =的极值点.18.已知命题p:实数m 满足m 2−7am +12a 2<0(a >0),命题q:实数m 满足方程x 2m−1+y 22−m=1表示焦点在y 轴上的椭圆,若¬p 是¬q 的必要不充分条件,求实数a 的取值范围.19.小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x ;小李后掷一枚骰子,向上的点数记为y . (1)求x y +能被3 整除的概率.(2)规定:若10x y +≥,则小王赢;若4x y +≤,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由.20.某百货公司1~6月份的销售量x 与利润y 的统计数据如下表:(1)根据2至5月份的数据,画出散点图求出y 关于x 的回归直线方程ˆˆˆybx a =+. (2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?请说明理由.()()()1122211ˆˆˆn ni i nni i i xi x yi y xiyi nx ybay bx xi xx nx====---===---∑∑∑∑. 21.已知点(0,2)A -,椭圆2222:1(0)x y E a b a b +=>>F 是椭圆E 的右焦点,直线AF O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,问:是否存在直线l ,使以PQ 为直径的圆经过原点O ,若存在,求出对应直线l 的方程,若不存在,请说明理由. 22.已知函数()2112f x mx =+, ()()()2ln 211g x x m x m R =-+-∈,且()()()h x f x g x =+.(1)若函数()h x 在()()1,1f 和()()3,3f 处的切线互相平行,求实数m 的值; (2)求()h x 的单调区间.参考答案1.B 【解析】本题主要考查命题及其关系.逆否命题是将原命题的条件与结论否定,然后再将否定后的条件和结论互换,故命题“若p 则q ”的逆否命题是“若q ⌝,则p ⌝”.故选B 2.C【解析】本题考查了双曲线的离心率。
2021-2022学年河北省廊坊市第二中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 直线x﹣y+3=0的斜率是()A.B.C.﹣D.﹣参考答案:A考点:直线的斜率.专题:直线与圆.分析:化直线的一般式方程为斜截式,则直线的斜率可求.解答:解:由x﹣y+3=0,得,即.∴直线x﹣y+3=0的斜率是.故选:A.点评:本题考查了直线的斜率,考查了一般式化斜截式,是基础题.2. 已知集合A={x|x+2>0},B={x|x2+2x﹣3≤0},则A∩B=()A.[﹣3,﹣2)B.[﹣3,﹣1] C.(﹣2,1] D.[﹣2,1]参考答案:C【考点】交集及其运算.【分析】化简集合A、B,根据交集的定义写出A∩B.【解答】解:集合A={x|x+2>0}={x|x>﹣2},B={x|x2+2x﹣3≤0}={x|﹣3≤x≤1},则A∩B={x|﹣2<x≤1}=(﹣2,1].故选:C.3. 已知中心在原点,焦点在坐标轴上的双曲线与圆有公共点,且圆在点的切线与双曲线的渐近线平行,则双曲线的离心率为A. B. C.或 D.以上都不对参考答案:B4. 下列命题错误的是( )A. 命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B. 若命题p:存在x∈R,x2+x+1=0,则非p为:任意x∈R,x2+x+1≠0C. 若p且q为假命题,则p,q均为假命题D. “x>2”是“x2-3x+2≥0”的充分不必要条件参考答案:C5. 下表为某班5位同学身高(单位:cm)与体重(单位kg)的数据,若两个变量间的回归直线方程为,则的值为A.121.04B.123.2C.21D.45.12参考答案:A略6. 若函数,则(其中为自然对数的底数)()A.B.C. D.参考答案:C略7. “”是“”的A.必要不充分条件 B.充分不必要条件C.充分必要条件 D.既不充分也不必要条件参考答案:B略8. 在线性约束条件下,则目标函数的最大值为()A.26 B.24 C. 22 D.20参考答案:A9. 已知函数是定义在R上的可导函数,其导函数记为,若对于任意实数,有,且为奇函数,则不等式的解集为()A.B.C.D.参考答案:B10. 如图,是由一个圆、一个三角形和一个长方形构成的组合体,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为( )A. B. C. D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知向量,,,若是共面向量,则x= .参考答案:-2由于不共线,且和共面,根据平面向量的基本定理,有,即,即,解得.12. 执行如图所示的流程图,则输出的S=________.参考答案:750013. “若x≠1,则x2﹣1≠0”的逆否命题为命题.(填“真”或“假”)参考答案:假【考点】命题的真假判断与应用;四种命题.【分析】先判断原命题的真假,进而根据互为逆否的两个命题真假性相同,得到答案.【解答】解:若x=﹣1,则x2﹣1=0,故原命题“若x≠1,则x2﹣1≠0”为假命题,故其逆否命题也为假命题,故答案为:假.14. 已知点是椭圆上的在第一象限内的点,又、,是原点,则四边形的面积的最大值是参考答案:略15. 在正方体中,直线与平面所成角的大小为____________.参考答案:16. 已知复数满足是虚数单位),则_____________.参考答案:略17. 已知双曲线C:的开口比等轴双曲线的开口更开阔,则实数m的取值范围是________.参考答案:(4,+∞)略三、解答题:本大题共5小题,共72分。
河北省高二数学上学期期末模拟试题(含答案)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 从遂宁市中、小学生中抽取部分学生,进行肺活量调查.经了解,我市小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.某班有学生60人,现将所有学生按1,2, 3,…,60随机编号,若采用系统抽样的方法抽取一个容量为4的样本(等距抽样),已知编号为3, 33, 48号学生在样本中,则样本中另一个学生的编号为( )A .28B .23C .18D .133.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何? ”人们把此类题目称为“中国剩余定理”.若正整数N 除以正整数m 后的余数为n ,则记为()mod N n m =,例如()112mod3=.现将该问题以程序框图给出,执行该程序框图,则输出的n 等于( )A .21B .22C .23D .244.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为12,,,n x x x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ) A. 12,,,n x x x 的平均数 B. 12,,,n x x x 的标准差 C.12,,,n x x x 的最大值D. 12,,,n x x x 的中位数5.已知直线,m l ,平面,αβ,且,m l αβ⊥⊂,给出下列命题: ①若//αβ,则m l ⊥; ②若αβ⊥,则//m l ; ③若m l ⊥,则αβ⊥;④若//m l ,则αβ⊥.其中正确的命题是( ) A.①④B.③④C.①②D.②③6.供电部门对某社区1000位居民2017年12月份人均用电情况进行统计后,按人均用电量分为[)[)[)[)[]0,10,10,20,20,30,30,40,40,50五组,整理得到如下的频率分布直方图,则下列说法错误的是( )A.12月份人均用电量人数最多的一组有400人B.12月份人均用电量不低于20度的有500人C.12月份人均用电量为25度D.在这1000位居民中任选1位协助收费,选到的居民用电量在[)30,40—组的概率为1107.已知,x y 满足条件002x y y x ≤⎧⎪≥⎨⎪-≤⎩,则目标函数z x y =+从最小值连续变化到0时,所有满足条件的点(),x y 构成的平面区域的面积为( ) A .2 B .1 C .12 D .148.过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为( )A .30,4π⎡⎤⎢⎥⎣⎦B .30,,24πππ⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .3,4ππ⎡⎫⎪⎢⎣⎭D .324ππ⎛⎤ ⎥⎝⎦,9.已知定义在R 上的函数()f x 满足:()1y f x =-的图象关于()1,0点对称,且当0x ≥时恒有()()2f x f x +=,当[)0,2x ∈时,()1x f x e =-,则()()20162017f f +-=( )(其中e 为自然对数的底)A .1e -B .1e -C .1e --D .1e + 10.已知Rt ABC ∆,点D 为斜边BC 的中点,163,6,2AB AC AE ED ===,则AE EB ⋅等于( )A .14-B .9-C .9D .1411.如图,正方体1111ABCD A B C D -绕其体对角线1BD 旋转θ之后与其自身重合,则θ的值可以是( )A .23π B .34π C .56π D .35π 12.在直角坐标系内,已知()3,5A 是以点C 为圆心的圆上的一点,折叠该圆两次使点A 分别与圆上不相同的两点(异于点A )重合,两次的折痕方程分别为10x y -+=和70x y +-=,若圆上存在点P ,使得()0MP CP CN ⋅-=,其中点()(),0,0M m N m -、,则m 的最大值为( ) A .7 B .6 C .5 D .4第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如图所示,有,,,,,A B C D E 5组数据,去掉 组数据后,剩下的4组数据具有较强的线性相关关系.(请用A B C D E 、、、、作答)14.过抛物线214y x =的焦点F 作一条倾斜角为30︒的直线交抛物线于A B 、两点,则AB = .15.已知12F F 、为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B 、两点若2212F A F B +=,则AB = .16.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元, 该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨,那么该企业可获得最大利润是 万元.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知ABC ∆中,角A B C 、、的对边分别为,,a b c ,120C =︒. (1)若1c =,求ABC ∆面积的最大值; (2) 若2a b =,求 t tan A .18.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了 1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.(1)请根据2、3、4、5月的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:()()()1122211nnii i ii i nniii i xx y yx y nx yb xxxnx====---==--∑∑∑∑,a y bx =-)参考数据:1125132912268161092⨯+⨯+⨯+⨯=, 22221113128498+++=.19.如图,四面体ABCD 中,O E 、分别是BD BC 、的中点,2CA CB CD BD ====,2AB AD ==.(1)求证://OE 平面ACD ;(2)求直线OC 与平面ACD 所成角的正弦值. 20.遂宁市观音湖港口船舶停靠的方案是先到先停:(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2, 3, 4, 5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.(2)根据以往经验,甲船将于早上7:00〜8:00到达,乙船将于早上7:30〜8:30到达,请求出甲船先停靠的概率.21.如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(1)证明:1AC AB =; (2)若11,,3AC AB CBB AB BC π⊥∠==,求二面角111A A B C --的余弦值.22.已知椭圆()2222 0:1x y C a ba b =>>+的右焦点()1,0F ,过点F 且与坐标轴不垂直的直线与椭圆交于,P Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60︒. (1)求椭圆C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点()(),00T t t ≠,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由.试卷答案一、选择题1-5: CDCCA 6-10: CBBAD 11、12:AB二、填空题13. D 14.16315. 8 16. 27 三、解答题17. 解:设(1)由余弦定理得222cos1201a b ab +-︒=,22123a b ab ab ab ab ++=≥+=,当且仅当a b =时取等号;解得13ab ≤,故1sin 2ABC S ab C ∆==≤ABC ∆. (2)因为2a b =,由正弦定理得sin 2sin A B =,又120C =︒,故60A B +=︒,∴()sin 2sin 60sin A A A A =︒--,2sin A A =,∴tan A =18.(1)由数据求得11,24x y == 由公式求得187b =再由307a y bx =-=-所以y 关于x 的线性回归方程为183077y x =-(2)当10x =时,1507y =,1502227-<; 同样,当6x =时,787y =,781227-< 所以,该小组所得线性回归方程是理想的.19.(1)证明:连结OE ,∵O E 、分别是BD BC 、的中点.∴//OE CD , 又OE ⊄平面ACD ,CD ⊂平面ACD , ∴//OE 平面ACD(2)法一:连结OC ,∵,BO DO AB AD ==,∴AO BD ⊥. ∵,BO DO BC CD ==,∴CO BD ⊥. 在AOC ∆中,由已知可得1,3AO CO ==.而2AC =,∴222AO CO AC +=,∴AO OC ⊥. ∵BD OC O ⋂=,∴AO ⊥平面BCD .以OB OC OA 、、分别为x y z 、、轴,建立如图所示的直角坐标系 ()()()()0,0,1,1,0,0,0,3,0,1,0,0A B C D -设平面ACD 的法向量(),,x y z η=,由()()1,0,1,1,3,0DA DC ==则有30x z x y +=⎧⎪⎨+=⎪⎩,令1x =-,得31,,13η⎛⎫=- ⎪ ⎪⎝⎭ 又因为()0,3,0OC =,所以7sin 7OC OC ηαη⋅==故直线OC 与平面ACD 所成角的正弦值为:77.法二:设O 到平面ACD 的距离为d ,由A ODC O ADC V V --=,有 111111312432322d ⨯⨯=⨯-,得37d =故直线OC 与平面ACD 所成角的正弦值为:7d OC =. 20.(1)这种规则是不公平的设甲胜为事件A ,乙胜为事件B ,基本事件总数为5525⨯=种 . 则甲胜即两编号和为偶数所包含的基本事件数有13个:()()()()()()()()1,1,1,3,1,5,2,2,2,4,3,1,3,3,3,5, ()()()()()4,2,4,4,5,1,5,3,5,5,∴甲胜的概率()1325P A =乙胜的概率()()12125P B P A =-= ∴这种游戏规则不公平.(2)设甲船先停靠为事件C ,甲船到达的时刻为x ,乙船到达的时刻为y ,(),x y 可以看成是平面中的点,试验的全部结果构成的区域为(){},78,7.58.5x y x y Ω=≤≤≤≤,这是一个正方形区域,面积111S Ω=⨯=,事件C 所构成的区域为(){},,78,7.58.5A x y y x x y =>≤≤≤≤,111712228A S =-⨯⨯=,这是一个几何概型,所以()78A S P C S Ω==.21.(1) 连接1BC ,交1BC 于点O ,连接AO ,因为侧面11BB C C 为菱形, 所以11B C BC ⊥,且O 为1B C 及1BC 的中点,又11,AB B C AB BC B ⊥⋂= 所以1B C ⊥平面ABO .由于AO ⊂平面ABO , 故1B C AO ⊥.又1B O CO =,故1AC AB =. (2)因为1AC AB ⊥,且O 为1B C 的中点,. 所以AO CO =.又因为AB BC =, 所以BOA BOC ∆≅∆,故OA OB ⊥, 从而1,,OA OB OB 两两相互垂直,O 为坐标原点,OB 的方向为x 轴正方向,OB 为单位长,建立如图所示空间直角坐标系O xyz -因为13CBB π∠=,所以1CBB ∆为等边三角形,又AB BC =,则()1,1,0,0,,0,A B B C ⎛⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1AB ⎛= ⎝⎭,111,0,A B AB ⎛== ⎝⎭,111,B C BC ⎛⎫==- ⎪ ⎪⎝⎭.设(),,n x y z =是平面11AA B 的法向量,则11100n AB n A B ⎧⋅=⎪⎨⋅=⎪⎩,即33033303y z x z ⎧-=⎪⎪⎨⎪-=⎪⎩,所以可取()1,3,3n = 设m 是平面111A B C 的法向量,则11110m A B m B C ⎧⋅=⎪⎨⋅=⎪⎩,同理可取()1,3,3m =-1cos ,7n mn m n m ⋅== 所以二面角111A A B C --的余弦值为17.22.解:(1)由题意知1c =,又tan603bc=︒=23b =, 2224a b c =+=,所以椭圆的方程为:22143x y +=.(2)当0k =时,0t =,不合题意设直线PQ 的方程为:()()1,0y k x k =-≠,代入22143x y +=,得:()22223484120k x k x k +-+-=,故 0∆>,则,0k R k ∈≠ 设()()1122,,,P x y Q x y ,线段PQ 的中点为()00,R x y ,则()2120002243,123434x x k kx y k x k k +===-=-++, 由QP TP PQ TQ ⋅=⋅得: ()()20PQ TQ TP PQ TR ⋅+=⋅=, 所以直线TR 为直线PQ 的垂直平分线,直线TR 的方程为:2223143434k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,令0y =得:T 点的横坐标22213344k t k k ==++, 因为()20,k ∈+∞,所以()2344,k +∈+∞,所以10,4t ⎛⎫∈ ⎪⎝⎭.所以线段OF 上存在点(),0T t ,使得QP TP PQ TQ ⋅=⋅,其中10,4t ⎛⎫∈ ⎪⎝⎭.河北省高二数学上学期期末模拟试题(含答案)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“2x >”是“260x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.曲线32y x x =-在点(1,1)处的切线方程为( ) A .20x y +-= B .540x y --= C .540x y -+= D .320x y --=3.已知{}n a 为等比数列,且32a =,78a =,则5a =( ) A .22 B .22± C .4 D .4±4.双曲线2214y x -=的一个焦点到渐近线的距离为( )A .1B .2 C. 3 D .25.在正方体1111ABCD A B C D -中,,E F N 分别是11,CC BB 和AB 的中点,则异面直线1A E 与NF 所成角的余弦值为( )A .0B .2 C.3 D .26.已知,,,a b c d R ∈,且a b >,c d >,则下列不等式一定成立的是( )A .c d a b < B .22a b > C.ac bd > D .a d b c ->- 7.在ABC ∆中,三内角,,A B C 所对边的长分别为,,a b c ,已知4A π=,2a =,b =B =( )A .3πB .23π C.3π或23π D .6π或3π8.下列有关命题的说法正确的是( )A .命题“sin sin αβ>,则αβ>”的逆否命题是真命题B .命题“0x ∀≥,均有22x x ≥”的否定为“00x ∃≥,使得0202x x <”C.命题“p q ∧”的否定是“p q ⌝∧⌝”D .命题“若a b >,则33a b >”的否命题为“若a b >,则33a b ≤”9.在平面直角坐标系中,已知定点(0,2)A -,(0,2)B ,直线PA 与直线PB 的斜率之积为4,则动点P 的轨迹方程为( )A .221(0)4y x x +==≠ B .2214y x += C. 2214y x -= D .221(0)4y x x -=≠10.已知等差数列{}n a 的前n 项和为n S ,59a =,525S =,则数列11{}n n a a +的前n 项和为( )A .21n n -B .121n n -+ C. 21n n + D .221nn +11.已知1(,0)F c -,2(,0)F c 分别为双曲线22221(0,0)x y a b a b -=>>的左焦点和右焦点,抛物线24y cx =与双曲线在第一象限的交点为P ,若1||4PF a c =+,则双曲线的离心率为( )A .3 B12.已知函数1()(12)ln(1)f x a e x x =-+-+有两个零点,其中e 为自然对数的底数,则实数a 的取值范围是( )A .(0,)+∞B .1(,)e -∞- C. 1(,)(0,)e -∞-+∞ D .1(,)2e -∞- 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.若,x y 满足约束条件2214y y x x y ≤⎧⎪≥-⎨⎪+≥-⎩,则z x y =-的最大值为 .14.已知抛物线22(0)y px p =>,过其焦点的直线交抛物线于,A B 两点,若||6AB =,AB 的中点的横坐标为2,则此抛物线的方程为 .15.已知0x >,0y >,且3x y xy ++=,则x y +的最小值为 .16.已知数列1214218421{}:,,,,,,,,,1121241248n a 其中第一项是0022,接下来的两项是100122,22,再接下来的三项是210012222,,222,依此类推,则979899100a a a a +++= . 三、解答题:本大题共6小题,共70分.请将解答过程书写在答题卡上,并写出文字说明、证明过程或演算步骤.17.在锐角ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知2cos (cos cos )C a B b A c +=. (Ⅰ)求C 的大小;(Ⅱ)若22b a ==,求c 的值和ABC ∆的面积.18.已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,141n n n a a S +=-. (Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)令2na n nb a =,求数列{}n b 的前n 项和n T .19.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,且45DAB ∠=︒,PA AB =,12CD AB =,且//CD AB ,BC CD ⊥.(Ⅰ)求证:平面PBC ⊥平面PAB ; (Ⅱ)求二面角A PD C --的余弦值.20.某粮库拟建一个储粮仓如图所示,其下部是高为2的圆柱,上部是母线长为2的圆锥,现要设计其底面半径和上部圆锥的高,若设圆锥的高1AO 为x ,储粮仓的体积为y .(Ⅰ)求y 关于x 的函数关系式;(圆周率用π表示) (Ⅱ)求1AO 为何值时,储粮仓的体积最大.21.已知椭圆2222:1(0)x y C a b a b +=>>经过点3,离心率为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)直线l 与椭圆C 交于,A B 两点,线段AB 的垂直平分线交y 轴于点3(0,)2P ,且||5AB l 的方程.22.设函数()(1)ln f x a x x x =--. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若对任意的1x ≥,恒有()0f x ≤成立,求实数a 的取值范围.试卷答案一、选择题1-5:ABCBD 6-10:DCBDC 11、12:AC 二、填空题13.2 14. 24y x = 15.2 16. 858三、解答题17.解:(Ⅰ)由2cos (cos cos )C a B b A c +=,由正弦定理,得2cos (sin cos sin cos )sin C A B B A C +=,则2cos sin()sin C A B C +=. ∵A B C π++=,,,(0,)A B C π∈,∴sin()sin 0A B C +=>, ∴2cos 1C =,1cos 2C =,∵(0,)C π∈,∴3C π=. (Ⅱ)由22b a ==,得1,2a b ==.根据余弦定理,得2222cos c a b ab C =+-11421232=+-⨯⨯⨯=,∴c =∴11sin 122ABC S ab C ∆==⨯⨯2=18.解:(Ⅰ)由题设,得141n n n a a S +=-,12141n n n a a S +++=-,两式相减得121()4n n n n a a a a +++-=. ∵0n a ≠,∴24n n a a +-=.由题设11a =,12141a a S =-,可得23a =,由24n n a a +-=,知数列奇数项构成的数列{}21m a -是首项为1,公差为4的等差数列,2143m a m -=-. 令21n m =-,则12n m +=,∴()2121n a n n m =-=-. 数列偶数项构成的数列{}2m a 是首项为3,公差为4的等差数列,241m a m =-.令2n m =,则2nm =,∴21(2)n a n n m =-=.∴21()n a n n N *=-∈. (Ⅱ)令2112(21)()42n n n b n n -=-=-⨯.211(1)4(2)422n T =-⨯+-⨯1()42n n ++-⨯. ①214(1)42n T =-⨯31(2)42+-⨯+11()42n n ++-⨯. ②①-②,得123134442n T -=⨯++114()42n n n +++--⨯,即21114(14)34214n n T ---=⨯+-11()42n n +--⨯=1105()436n n +---, 1105()4363n n n T +---=-(1210)10499n n -=⨯+. 19.(Ⅰ)证明:∵PA ⊥平面ABCD ,∴PA BC ⊥.又CD AB ∥,BC CD ⊥, ∴BC AB ⊥.故BC ⊥平面PAB .又BC ⊂平面PBC ,∴平面PBC ⊥平面PAB .(Ⅱ)解:由(Ⅰ)知,AB BC ⊥,设BC 的方向为x 轴正方向,BA 的方向为y 轴正方向,过点B 作PA 的平行线为z 轴正方向,建立如图所示的空间直角坐标系B xyz -.不防设2PA AB ==,又∵45DAB ∠=︒,PA AB =,1//2CD AB , ∴1DC BC ==.连接BD ,又BC CD ⊥,∴2BD =∴BD AD ⊥,∴BD ⊥平面ADP . ∴(0,2,0),(1,0,0),(1,1,0),(0,2,2)A C D P ,(1,1,2)DP =-,(0,1,0)CD =,(1,1,0)BD =.设111(,,)n x y z =为平面PDC 的法向量,则00n CD n DP ⎧=⎪⎨=⎪⎩,即1111020y x y z =⎧⎨-++=⎩,可取(2,0,1)n =.∵()110BD =,,为平面PAD 的法向量,∴10cos ,5||||n BD n BD n BD ==. 又二面角A PD C --的平面角为钝角,∴二面角A PD C --的余弦值为105-. 20.解:(Ⅰ)∵圆锥和圆柱的底面半径24,02r x x =-<<, ∴22123y r r x ππ=⨯+.∴2212(4)(4)3y x x x ππ=-+-,即32142833y x x x ππππ=--++,02x <<.(Ⅱ)2443y x x πππ'=--+,令2443y x x πππ'=--+24(4)03x x π=-+-=,解得14323x =--,24323x =-+.又02x <<,∴14323x =--(舍去).当x 变化时,,y y '的变化情况如下表:故当1432AO =-时,储粮仓的体积最大. 21.解:(Ⅰ)由题意得2231314c a a b ⎧=⎪⎪⎨⎪+=⎪⎩,解得21a b =⎧⎨=⎩.故椭圆C 的方程是2214x y +=. (Ⅱ)当直线的斜率存在时,设直线l 的方程为y kx t =+,11(,)A x y ,22(,)B x y ,联立2214y kx tx y =+⎧⎪⎨+=⎪⎩,消去y ,得222(14)8440k x ktx t +++-=. 则有122814ktx x k -+=+,21224414t x x k-=+. 1212y y kx t kx t +=+++1222()214tk x x t k=++=+.设,A B 的中点为(,)D m n ,则1224214x x kt m k +-==+,122214y y tn k +==+. ∵直线PD 与直线l 垂直,∴312PD m k k m-=-=-,整理得21142t k =-+.∴2142(0)k t t +=-<.又∵221212||(1)[()4]AB k x x x x =++-2222284(44)(1)[()]1414kt t k k k --=+-++22224(1)(14)514k k t k ++-==+, ∴22224(1)(14)514k k t k ++-=+22(23)(2)2t t t t-+--=-,解得1t =-或3t =. ∵3t =与0t <矛盾,∴1t =-.∵21142t k =-+,∴12k =±. 故直线l 的方程为112y x =-或112y x =--.22.解:(Ⅰ)函数()f x 的定义域为0x >,()1ln f x a x '=--,若()0f x '=, 则ln 1x a =-,1a x e-=,又∵()f x '是单调递减的,∴当x 变化时,()f x ',()f x 的变化情况如下表:∴()f x 在区间1(0,)a e-内为增函数,在区间1(,)a e -+∞内为减函数.(Ⅱ)(1)0f =,()1ln f x a x '=--.当1a ≤时,在1x ≥上,()0f x '≤,故函数()f x 在(1,)+∞上单调递减,()(1)0f x f ≤=. 当1a >时,在1x ≥上,()1ln 0f x a x '=--=,解得111a x e -=>. 又()1ln f x a x '=--在(1,)+∞上单调递减,∴在1(1,)x 上()0f x '>,函数()f x 在1(1,)x 上单调递增,()(1)0f x f ≥=与任意1x ≥,f x≤成立矛盾.恒有()0-∞. 综上,实数a的取值范围为(,1]。
2020年河北省廊坊市霸州第四中学高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 不等式组的解集记为D,有下面四个命题:p1:?(x,y)∈D,x+2y≥1,p2:?(x,y)∈D,x+2y≥2,p3:?(x,y)∈D,x+2y≤3,p4:?(x,y)∈D,x+2y≤﹣1.其中的真命题是( )A.p2,p3 B.p1,p2 C.p1,p4 D.p1,p3参考答案:A考点:命题的真假判断与应用.专题:不等式的解法及应用.分析:作出不等式组的表示的区域D,对四个选项逐一分析即可.解答:解:作出不等式组表示的区域:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,显然,区域D有一部分在x+2y=1的下方,故p1:?(x,y)∈D,x+2y≥1错误;区域D有一部分在x+2y=2的上方,故p2:?(x,y)∈D,x+2y≥2正确,区域D有一部分在x+2y=3的下方,故p3:?(x,y)∈D,x+2y≤3正确,区域D全部在x+2y=﹣1的上方,故p4:?(x,y)∈D,x+2y≤﹣1错误.综上所述p2,p3正确,故选:A点评:本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.2. 在R上定义了运算“”:;若不等式对任意实数x恒成立,则实数的取值范围是()A. B. C. D.参考答案:C略3. 有四个关于三角函数的命题:p1:?x∈R,sin2+cos2=,p2:?x,y∈R,sin(x﹣y)=sinx﹣siny,p3:锐角△ABC中,sinA<cosB,p4:△ABC中,若A>B,则sinA>sinB,其中的假命题是()A.p1,p4 B.p2,p4 C.p1,p3 D.p3,p4参考答案:C【考点】命题的真假判断与应用.【分析】逐一分析给定四个命题的真假,可得结论.【解答】解:sin2+cos2=1恒成立,故命题p1:?x∈R,sin2+cos2=为假命题;当x=y=0时,sin(x﹣y)=sinx﹣siny=0,故命题p2:?x,y∈R,sin(x﹣y)=sinx﹣siny为真命题;锐角△ABC中,A+B>,即A>﹣B,即sinA>sin(﹣B)=cosB,故命题p3:锐角△ABC中,sinA<cosB为假命题;:△ABC中,若A>B,则a>b,则2RsinA>2RsinB,则sinA>sinB,故命题p4:△ABC中,若A>B,则sinA>sinB为真命题;故选:C4. “”是“”的()A.必要而不充分条件B.充分而不要条件C.充要条件D.既不充分又不必要条件参考答案:A略5. 如图,点P、Q、R、S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的一个图是()参考答案:C略6. 已知f(x+1)=,f(1)=1,(x∈N*),猜想f(x)的表达式为()A.f(x)=B.f(x)=C.f(x)=D.f(x)=参考答案:B【考点】36:函数解析式的求解及常用方法.【分析】把f(x+1)=取倒数得,根据等差数列的定义,可知数列{}是以为首项,为公差的等差数列,从而可求得f(x)的表达式.【解答】解:∵f(x+1)=,f(1)=1,(x∈N*),∴.∴数列{}是以为首项,为公差的等差数列.∴=,∴f(x)=,故选B.7. 设双曲线(0<a<b)的半焦距为c,直线L过点(a,0),(0,b)两点,已知原点到直L的距离为,则双曲线的离心率是()A.2B.C.D.参考答案:A8. 直线的倾斜角为()A. B. C. D.参考答案:D9. “p或q是假命题”是“非p为真命题”的()A 充分而不必要条件B 必要而不充分条件C 充要条件D既不充分也不必要条件参考答案:A10. 已知命题,命题,若命题“”是真命题,则实数的取值范围是()A. B.C. D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 设有函数和,已知时恒有,则实数的取值范围是.参考答案:略12. 椭圆的焦点为,点在椭圆上.若,则.(用数字填写)参考答案:213. 在区间上随机取一个数,使成立的概率为.参考答案:14. 我校开展“爱我河南,爱我方城”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示,记分员在去掉一个最高分和一个最低分后,计算的平均分为91,复核员在复核时,发现一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是.参考答案:1考点:茎叶图.专题:概率与统计.分析:由题意,得到作品A的所有成绩,由平均数公式得到关于x的等式解之.解答:解:由题意,作品A去掉一个最高分和一个最低分后,得到的数据为89,89,92,93,90+x,92,91,由平均数公式得到=91,解得x=1;故答案为:1.点评:本题考查了茎叶图以及平均数公式的运用;关键是由茎叶图得到正确信息,运用平均数公式计算.属于基础题.15. 设一个扇形的半径为,圆心角为,用它做成一个圆锥的侧面,则这个圆锥的体积是_________.参考答案:16. 函数y=x3﹣x2﹣x的单调递减区间为.参考答案:(,1)【考点】利用导数研究函数的单调性.【分析】先求出函数的导数,通过解导函数小于0,从而求出函数的递减区间.【解答】解:y′=3x2﹣2x﹣1,令y′<0,解得:﹣<x<1,故答案为:(﹣,1).【点评】本题考察了函数的单调性,导数的应用,是一道基础题.17. 某产品的广告费用x与销售额y的统计数据如下表广告费用(万元)销售额(万元)根据上表可得回归方程中的为9.4,则 .参考答案:9.1三、解答题:本大题共5小题,共72分。
2022年河北省廊坊市第三中学高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若p是假命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.¬p是假命题D.¬q是假命题参考答案:B【考点】复合命题的真假.【分析】利用复合命题的真假写出结果即可.【解答】解:p是假命题,q是假命题,¬p是真命题,¬q是真命题,可得p∨q是假命题.故选:B.2. 不等式的解集为A、B、C、D、R参考答案:B3. 已知向量,且的夹角为钝角,则在平面上,点所在的区域是()参考答案:A,,的夹角为钝角,由=知则,等价于或,则不等式组表示的平面区域为A.4. 设等差数列{a n}的前n项和为S n,已知a2=﹣10,a3+a7=﹣8,当S n取得最小值时,n的值为()A.5 B.6 C.7 D.6或7参考答案:D【考点】等差数列的通项公式.【分析】利用等差数列的通项公式与单调性即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2=﹣10,a3+a7=﹣8,∴a1+d=﹣10,2a1+8d=﹣8,解得a1=﹣12,d=2.∴a n=﹣12+2(n﹣1)=2n﹣14,令a n≤0,解得n≤7.当S n取得最小值时,n的值为6或7.故选:D.【点评】本题考查了等差数列的通项公式与单调性,考查了推理能力与计算能力,属于中档题.5. 如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是().A.161 cm B.162 cm C.163 cm D.164 cm参考答案:B略6. 若,,若,则m=()A.B.C.2 D.﹣2参考答案:D【考点】数量积判断两个平面向量的垂直关系.【分析】根据两向量垂直数量积为0,列出方程求解即可.【解答】解:∵,,且,∴?=m+2=0解得m=﹣2.故选:D.【点评】本题考查了两向量垂直数量积为0的应用问题,是基础题目.7. 若函数y=f(x)的定义域是[0,2],则函数g(x)=的定义域是()A.[0,1] B.[0,1)C.[0,1)∪(1,4] D.(0,1)参考答案:B【考点】33:函数的定义域及其求法.【分析】根据f(2x)中的2x和f(x)中的x的取值范围一样得到:0≤2x≤2,又分式中分母不能是0,即:x﹣1≠0,解出x的取值范围,得到答案.【解答】解:因为f(x)的定义域为[0,2],所以对g(x),0≤2x≤2且x≠1,故x∈[0,1),故选B.8. 已知等差数列{a n}的公差d=2,a3=5,数列{b n},b n=,则数列{b n}的前10项的和为()A.B.C.D.参考答案:A【考点】8E:数列的求和.【分析】利用等差数列的通项公式、“裂项求和”方法即可得出.【解答】解:等差数列{a n}的公差d=2,a3=5,∴a1+2×2=5,解得a1=1.∴a n=1+2(n﹣1)=2n﹣1.b n===,则数列{b n}的前10项的和=+…+==.故选:A.9. 设,均为单位向量,则“与夹角为”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件参考答案:D【分析】根据与夹角为,求,判断充分性;根据,求,夹角,判断必要性,即可得出结果.【详解】因为,均为单位向量,若与夹角为,则;因此,由“与夹角为”不能推出“”;若,则,解得,即与夹角为,所以,由“”不能推出“与夹角为”因此,“与夹角为”是“”的既不充分也不必要条件.故选D10. 设α,β是两个不同的平面,m是直线且m?α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】m∥β并得不到α∥β,根据面面平行的判定定理,只有α内的两相交直线都平行于β,而α∥β,并且m?α,显然能得到m∥β,这样即可找出正确选项.【解答】解:m?α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m?α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.【点评】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念.二、填空题:本大题共7小题,每小题4分,共28分11. 已知,则不等式的解集是.参考答案:12. 从等腰直角的底边上任取一点,则为锐角三角形的概率为_________.参考答案:略13. 已知点P在直线上,过点P作圆的切线,切点分别为A,B,则当直线时,弦AB的长为__________.参考答案:【分析】由圆的切线段长的求法可得:,再由等面积法即可得解.【详解】解:如图连接,,.由题易知,,又,所以,则,易知,所以.由等面积法,得,所以.【点睛】本题考查了圆的切线问题,属中档题.14. 在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________.参考答案:0.815. 已知椭圆中心在原点,一个焦点为(,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是.参考答案:16. 函数的定义域为参考答案:17. 与双曲线有共同的渐近线,且经过点的双曲线的标准方程为参考答案:三、解答题:本大题共5小题,共72分。
2020-2021学年河北省廊坊市高二上期末文科数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若命题p:∀x∈R,x2﹣3x+5>0,则该命题的否定是()A.∃x∈R,x2﹣3x+5≤0 B.∃x∈R,x2﹣3x+5>0C.∀x∈R,x2﹣3x+5<0 D.∀x∈R,x2﹣3x+5≤02.一个年级有20个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为18的学生留下进行交流,这里运用的是()A.分层抽样 B.抽签法 C.随机数表法 D.系统抽样法3.抛物线的焦点坐标是()A.(0,1) B . C . D .4.根据如下样本数据得到的回归直线方程必过点()x 0 1 2 3 4y 1 3 4 5 7A.(2,2)B.(1.5,2)C.(2,4)D.(1.5,4)5.“α是第一象限角”是“关于x,y的方程x2sinα+y2cosα=1所表示的曲线是椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知双曲线的一条渐近线方程为y=2x,则双曲线的离心率为()A. B. C.或 D.27.7.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A .2B .4C .8D .168.已知函数f (x )=lnx ﹣f′(1)x 2+2x ﹣1,则f (1)的值为( ) A .﹣1 B .0 C .1 D .2 9.已知椭圆与双曲线有相同的焦点,则动点P (n ,m )的轨迹是( )A .椭圆的一部分B .双曲线的一部分C .抛物线的一部分D .圆的一部分10.一个圆内有一个内接等边三角形,一动点在圆内运动,则此点落在等边三角形内部的概率为( )A .B .C .D .11.函数f (x )=(2a ﹣1)lnx ﹣x 在(0,1)上为增函数,则实数a 的取值范围是( ) A .a <1 B .a≤1 C .a≥1 D .0<a≤1 12.设F 1,F 2分别为椭圆的左右两个焦点,点P 为椭圆上任意一点,则使得成立的P 点的个数为( )A .0B .1C .2D .3二、填空题13.函数()ln f x x x 在点(1,0)处的切线方程为____________. 14.连续抛掷2颗骰子,则出现朝上的点数之和等于8的概率为 .15.已知f(x)=x5+x4+2x3+3x2+4x+1,应用秦九韶算法计算x=2时的值时,v2的值为.16.下列四个命题中:①若p∨q为真命题,则p与q至少有一个为真命题;②统计中用相关系数r来衡量两个变量之间线性关系的强弱,且r越大相关性越强;③“若lgx2=0,则x=1”的否命题为真命题;④双曲线与双曲线有相同的焦点.其中真命题的序号为.三、解答题17.5000辆汽车通过某一段公路时的时速频率分布直方图如图所示.问:(1)求汽车速度在[50,70)的频率;(2)根据频率分布直方图估算出样本数据的中位数.18.已知函数f(x)=mx3﹣3x2+n﹣2(m≠0).(1)若f(x)在x=1处取得极小值1,求实数m,n的值;(2)在(1)的条件下,求函数f(x)在x∈[﹣1,2]的最大值.19.已知椭圆,焦点在直线x﹣2y﹣2=0上,且离心率为.(1)求椭圆方程;(2)过P(3,1)作直线l与椭圆交于A,B两点,P为线段AB的中点,求直线l的方程.20.某商家开展迎新春促销抽奖活动,小张、小李两人相约同一天上午去参加抽奖活动.(1)若抽奖规则是从一个装有3个红球和4个白球的袋中又放回地抽取2个球,当两球同色时则中奖,求中奖的概率;(2)若小张计划在10:00~10:40之间赶到,小李计划在10:20~11:00之间赶到,求小张比小李提前到达的概率.21.已知函数.(1)试判断f(x)在定义域内的单调性;(2)若f(x)在区间[1,e2]上的最小值为2,求实数a的值.22.已知抛物线y2=ax(a>0),过动点P(m,0)且斜率为1的直线与该抛物线交于不同的两点A,B,|AB|≤a.(1)求m的取值范围;(2)若线段AB的垂直平分线交x轴于点Q,求△QAB面积的最大值.参考答案1.A【解析】试题分析:根据全称命题的否定是特称命题进行判断即可.解:命题是全称命题,则命题的否定是特称命题,即∃x∈R,x2﹣3x+5≤0,故选:A.2.D【解析】试题分析:根据系统抽样的定义进行判断即可.解:每个班同学以1﹣50排学号,要求每班学号为18的同学留下来交流,数据之间的间距差相同,都为50,所以根据系统抽样的定义可知,这里采用的是系统抽样的方法.故选:D.3.B【解析】试题分析:先根据标准方程求出p值,判断抛物线x2=2y的开口方向及焦点所在的坐标轴,从而写出焦点坐标.解:∵抛物线,即x2=2y中,p=1,=,焦点在y轴上,开口向上,∴焦点坐标为(0,),故选:B.4.C【解析】试题分析:由已知表格中的数据,我们根据平均数公式计算出变量x,y的平均数,根据回归直线一定经过样本数据中心点,可得结论.解:由表中数据可得:=(0+1+2+3+4)=2,=(1+3+4+5+7)=4,∵回归直线一定经过样本数据中心点,故选C.5.B【解析】试题分析:根据充分条件和必要条件的定义结合椭圆的方程进行判断即可.解:若x2sinα+y2cosα=1表示的曲线是椭圆,则满足sinα>0,cosα>0,且sinα≠cosα,即2kπ<α<2kπ+,且α≠2kπ+,k∈Z,则“α是第一象限角”是“关于x,y的方程x2sinα+y2cosα=1所表示的曲线是椭圆”必要不充分条件,故选:B6.A【解析】试题分析:求出双曲线的渐近线方程,可得b=2a,由a,b,c的关系和离心率公式,计算即可得到所求值.解:双曲线的渐近线方程为y=±x,由题意可得=2,即有b=2a,c==a,可得e==,故选:A.7.C【解析】试题分析:根据程序框图可知,程序运行时,列出数值S与n对应变化情况,从而求出当S=2时,输出的n即可.解:.由框图可知,程序运行时,数值S与n对应变化如下表:S ﹣1 2n 2 4 8故S=2时,输出n=8.故选C视频8.B【解析】试题分析:根据导数关系先求出f′(1)的值,进行求解即可.解:函数的导数f′(x)=﹣2f′(1)x+2.则f′(1)=1﹣2f′(1)+2.得f′(1)=1,则f(x)=lnx﹣x2+2x﹣1,则f(1)=ln1﹣1+2﹣1=0,故选:B9.D【解析】试题分析:由椭圆双曲线方程可求得焦点坐标,进而根据有相同的焦点,建立等式求得m 和n的关系即可.解:∵椭圆与双曲线有相同的焦点,∴9﹣n2=4+m2,即m2+n2=5(0<n<3)这是圆的一部分,故选:D.10.B【解析】试题分析:根据几何概型的概率公式求出对应的面积进行计算即可.解:设圆的半径为R,则圆内接等边三角形的边长为R,则正三角形的面积S=×(R)2×=R2,圆的面积S=πR2,则点落在等边三角形内部的概率为P==,故选:B.11.C【解析】试题分析:求出函数的导数,得到(2a﹣1)﹣x≥0在x∈(0,1)恒成立,分离参数,求出a的范围即可.解:∵f(x)=(2a﹣1)lnx﹣x,f′(x)=﹣1=,若f(x)在(0,1)上为增函数,则(2a﹣1)﹣x≥0在x∈(0,1)恒成立,即a≥=1,故选:C.12.C【解析】试题分析:设P(x0,y0),由和P(x0,y0)为椭圆上任意一点,列出方程组,能求出使得成立的P点的个数.解:设P(x0,y0),∵F1,F2分别为椭圆的左右两个焦点,点P为椭圆上任意一点,∴F1(﹣4,0),F2(4,0),=(﹣4﹣x0,﹣y0),=(4﹣x0,﹣y0),∵,∴(﹣4﹣x0)(4﹣x0)+(﹣y0)2=﹣7,即=9,①又∵设P(x0,y0)为椭圆上任意一点,∴,②联立①②,得:或,∴使得成立的P点的个数为2个.故选:C.13.x﹣y﹣1=0【解析】试题分析:求出原函数的导函数,得到函数在x=1时的导数值,即切线的斜率,然后由直线方程的点斜式得答案.解:由f(x)=xlnx,得,∴f′(1)=ln1+1=1,即曲线f(x)=xlnx在点(1,0)处的切线的斜率为1,则曲线f(x)=xlnx在点(1,0)处的切线方程为y﹣0=1×(x﹣1),整理得:x﹣y﹣1=0.故答案为x﹣y﹣1=0.14.【解析】试题分析:先求出基本事件总数,再用列举法求出出现朝上的点数之和等于8的基本事件个数,由此能求出出现朝上的点数之和等于8的概率.解:连续抛掷2颗骰子,基本事件总数n=6×6=36,出现朝上的点数之和等于8的基本事件有:(2,6),(6,2),(3,5),(5,3),(4,4),共5个,∴出现朝上的点数之和等于8的概率为p=.故答案为:.15.8【解析】试题分析:由f(x)=x5+x4+2x3+3x2+4x+1=(((x+1)x+2)x+4)x+1,即可得出.解:f(x)=x5+x4+2x3+3x2+4x+1=(((x+1)x+2)x+4)x+1,∴x=2时,v0=1,v1=(2+1)×2=6,v2=6+2=8.故答案为:8.16.①③④【解析】试题分析:根据复合命题判断①,根据线性关系判断②,根据对数函数函数性质判断③,根据双曲线的性质判断④.解:①若p∨q为真命题,则p与q至少有一个为真命题,故①正确;②用相关指数|r|来刻画回归效果,|r|越大,说明模型的拟合效果越好,故②错误;③“若lgx2=0,则x=1”的否命题是:若lgx2≠0,则x≠1为真命题,故③正确;④双曲线中c2=13,双曲线中c2=13,有相同的焦点,故④正确;其中真命题的序号为:①③④,故答案为①③④.17.(1)0.4,(2)62.5.【解析】试题分析:(1)由频率分布直方图分别求出[50,60)的频率和[60,70)的频率,由此能求出汽车速度在[50,70)的频率.(2)设中位数为x,由频率分布直方图可知中位数落在[60,70)之间,由此能求出样本数据的中位数.解:(1)由频率分布直方图得[50,60)的频率为0.03×10=0.3,…(1分)[60,70)的频率为0.04×10=0.4,…(2分)∴汽车速度在[50,70)的频率为0.3+0.4=0.7.…(4分)(2)设中位数为x,由频率分布直方图可知中位数落在[60,70)之间,0.1+0.3+(x﹣60)×0.04=0.5,…(8分)解得x=62.5,∴样本数据的中位数为62.5.…(10分)18.(1)(2)6【解析】试题分析:(1)求出函数的导数,得到关于m,n的方程组,解出检验即可;(2)求出函数的单调区间,从而求出函数的最大值即可.解:函数f(x)的定义域是R,f′(x)=3mx(x﹣),(1)∵f(x)在x=1处取得极小值,∴,即,解得:,经检验符合题意;(2)由(1)得:f′(x)=6x(x﹣1),x∈(﹣1,0)∪(1,2)时,f′(x)>0,x∈(0,1)时,f′(x)<0,∴f(x)在(﹣1,0),(1,2)递增,在(0,1)递减,∴f(x)max=max{f(0),f(2)},而f(0)=2,f(2)=6,∴f(x)max=f(2)=6.19.(1).(2)9x+4y﹣31=0.【解析】试题分析:(1)由焦点在直线x﹣2y﹣2=0上,令y=0,得焦点(2,0),再由离心率e==,能求出椭圆方程.(2)设A(x1,y1),B(x2,y2),利用点差法能求出l的方程.解:(1)∵椭圆,焦点在直线x﹣2y﹣2=0上,∴令y=0,得焦点(2,0),∴c=2,∵离心率e==,∴,解得a=4,∴b2=16﹣4=12,∴椭圆方程为.(2)设A(x1,y1),B(x2,y2),∵过P(3,1)作直线l与椭圆交于A,B两点,P为线段AB的中点,∴由题意,x1+x2=6,y1+y2=2,,∴+=0,∴k l==﹣,∴l的方程为:y﹣1=﹣,即9x+4y﹣31=0.20.(1)中奖概率为.(2)小张比小李提前到达的概率为.【解析】试题分析:(1)根据古典概型的概率公式进行计算即可.(2)根据几何概型的概率公式求出对应事件对应区域的面积进行计算即可.解:(1)从袋中7个球中的摸出2个,试验的结果共有7×7=49(种)…(1分)中奖的情况分为两种:(i)2个球都是红色,包含的基本事件数为4×4=16;(ii)2个球都是白色,包含的基本事件数为3×3=9.…(3分)所以,中奖这个事件包含的基本事件数为16+9=25.因此,中奖概率为.…(5分)(2)设小张和小李到达的时间分别为10点到11点之间的x,y分钟.用(x,y)表示每次试验的结果,则所有可能结果为Ω={(x,y)|0≤x≤4或0≤y≤60};…(7分)记小张比小李提前到达为事件A,则事件A的可能结果为A={(x,y)|x<y,0≤x≤4或0≤y≤60};.…(9分)如图所示,试验全部结果构成区域Ω为正方形ABCD.而事件A所构成区域是正方形内的阴影部分.根据几何概型公式,得到P(A)===.所以,小张比小李提前到达的概率为.…(12分)21.(1)f(x)在(0,a)递减,在(a,+∞)递增;(2)a=.【解析】试题分析:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)通过讨论a的范围,确定函数的单调性,从而求出函数的最小值即可.解:由已知得f(x)得的定义域是(0,+∞),f′(x)=,(1)∵a>0,∴﹣a<0,当x∈(0,a)时,f(x)<0,当x∈(a,+∞)时,f(x)>0,∴f(x)在(0,a)递减,在(a,+∞)递增;(2)由(1)得:①0<a≤1时,f(x)在在[1,e2]递增,∴f(x)min=f(1)==2,得a=2(舍),②当1<a<e2时,f(x)在(1,a)递减,在(a,e2)递增,∴f(x)min=f(a)=lna+=2,解得:a=,③当a≥e2时,f(x)在[1,e2]递减,∴f(x)min=f(e2)=2+=2,无解,综上:a=.22.(1)﹣<m;(2).【解析】试题分析:(1)设出直线的方程与抛物线方程联立消去y,设直线l与抛物线两个不同的交点坐标为A,B,进而根据判别是对大于0,及x1+x2的和x1x2的表达式,求得AB的长度的表达式,根据|AB|的范围确定a的范围(2)求出线段AB的垂直平分线方程,得Q的坐标,进而表示出△NAB的面积,根据|AB|范围确定三角形面积的最大值.解:(1)设直线l的方程为y=x﹣m代入y2=ax,得y2﹣ay﹣am=0.设直线l与抛物线两个不同的交点坐标为A(x1,y1)、B(x2,y2),△=a2﹣4(﹣am)>0,∴m>﹣,y1+y2=a,y1y2=﹣am,|AB|=≤a,∴m,∴﹣<m;(2)由(1)线段AB的中点坐标为(+m,),线段AB的垂直平分线方程为y﹣=﹣(x﹣﹣m),令y=0,可得Q(m+a,0),Q到AB的距离d=,∴△QAB面积S=≤=,∴△QAB面积的最大值为.。
河北省廊坊市2019年数学高二年级上学期期末检测试题一、选择题1.6(x 展开式中常数项为( ) A .160-B .160C .240-D .2402.已知向量(2,1)a =--r ,(3,2)b =r ,则2a b =-r r ( ) A .(6,4)--B .(5,6)--C .(8,5)--D .(7,6)--3.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到的数据如下表所示.由表中数据求得y 关于x 的回归方程为0.6ˆ5ˆyx a =+,则在这些样本点中任取一点,该点落在回归直线上方的概率为( )A.5 B.5 C.5D.无法确定4.若某程序框图如图所示,则该程序运行后输出的值是( )A .89B .910C .1011D .11125.设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,6.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅,…,癸酉,甲戌,乙亥,丙子,…,癸未,甲申、乙酉、丙戌,…,癸巳,…,共得到60个组成,周而复始,循环记录,2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( )A .乙亥年B .戊戌年C .庚子年D .辛丑年 7.已知~,则( ).A.B.C.3D.8.某射手每次射击击中目标的概率为p ,这名射手进行了10次射击,设X 为击中目标的次数,1.6DX =,(=3)(=7)P X P X <,则p = A .0.8B .0.6C .0.4D .0.29.设椭圆C :22221(0)x y a b a b+=>>的左右焦点分别为1F ,2F ,过点1F 的直线与C 交于点P ,Q .若212PF F F =,且113||4||PF QF =,则C 的离心率为( )A.57B.3510.某市的天气预报中,有“降水概率预报”,例如预报“明天降水概率为90%”,这是指( ) A .明天该地区约有90%的地方会降水,其余地方不降水 B .明天该地区约90%的时间会降水,其余时间不降水C .气象台的专家中,有90%认为明天会降水,其余的专家认为不降水D .明天该地区降水的可能性为90%11.若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A .sin y x = B .ln y x = C .xy e = D .3y x =12.在平面内,点到直线的距离公式为,通过类比的方法,可求得在空间中,点到平面的距离为( )A. B.C.D.二、填空题13.函数()xf x xe =的最小值是____________.14.已知圆22440x x y --+=的圆心是点P ,则点P 到直线10x y --=的距离是 .15.已知球的半径为24cm ,一个圆锥的高等于这个球的直径,而且球的表面积等于圆锥的表面积,则这个圆锥的体积是__________ cm 3.(结果保留圆周率p )16.若直线1:2340l x ay +-=与直线()2:210l ax a y +-+=垂直,则实数a 的值为___. 三、解答题17.如图,等腰直角三角形直角顶点位于原点,另外两个顶点,在抛物线上,若三角形的面积为16.(Ⅰ)求的方程;(Ⅱ)若抛物线的焦点为,直线与交于,两点,求的周长.18.已知函数,其中.(Ⅰ)若,解不等式;(Ⅱ)记不等式的解集为,若,求的取值范围.19.已知各项都是正数的数列的前n项和为,,.求数列的通项公式;设数列满足:,,数列的前n项和求证:.若对任意恒成立,求的取值范围.20.某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:广告费支出销售额)若用线性回归模型拟合与的关系,求关于的线性回归方程;(2)用二次函数回归模型拟合与的关系,可得回归方程:,经计算二次函数回归模型和线性回归模型的分别约为和,请用说明选择哪个回归模型更合适,并用此模型预测超市广告费支出为3万元时的销售额.参数数据及公式:,,.21.已知是实数,函数。
河北省廊坊市中学高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知中,若,则是A.直角三角形 B.等腰三角形C.等腰或直角三角形D.等腰直角三角形参考答案:A略2. .已知是椭圆的左焦点, 是椭圆上的一点, 轴, (为原点), 则该椭圆的离心率是()A.B.C.D.参考答案:C略3. 若△ABC为钝角三角形,三边长分别为2,3,x,则x的取值范围是()A.B.C.D.参考答案:D【考点】三角形的形状判断.【专题】计算题.【分析】根据三角形为钝角三角形,得到三角形的最大角的余弦值也为负值,分别设出3和x所对的角为α和β,利用余弦定理表示出两角的余弦,因为α和β都为钝角,得到其值小于0,则分别令余弦值即可列出关于x的两个不等式,根据三角形的边长大于0,转化为关于x的两个一元二次不等式,分别求出两不等式的解集,取两解集的交集即为x的取值范围.【解答】解:由题意,,∴x的取值范围是,故选D.【点评】此题考查学生灵活运用余弦定理化简求值,会求一元二次不等式组的解集,是一道综合题.学生在做题时应注意钝角三角形这个条件.4. 在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是()A.BC∥平面PDF B.DF⊥平面PAEC.平面PDF⊥平面ABC D.平面PAE⊥平面ABC参考答案:C略5. 设是定义在R上的奇函数,且恒成立,则不等式的解集是A. B.C. D.参考答案:D6. 已知向量若,则()A.B.C.D.参考答案:B略7.参考答案:A略8. 设函数是上以5为周期的可导偶函数,则曲线在处的切线的斜率为A.B.C.D.参考答案:D略9. 设,若直线与线段AB没有公共点,则的取值范围是A. B. C. D.参考答案:D10. 设等差数列的前项和为,若,则的值是()A. B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 方向向量为,且过点A(3,4)的直线的一般式方程为.参考答案:2x ﹣y﹣2=0【考点】IG:直线的一般式方程.【分析】根据点向式方程计算即可【解答】解:方向向量为,且过点A(3,4)的方程为=,即2x﹣y﹣2=0,故答案为:2x﹣y﹣2=0.12. 已知集合A={1,3,m},B={3,4},A∪B={1,2,3,4},则实数m= ▲.参考答案:213. 首项为的等差数列从第10项起开始为正数,则公差的取值范围是______________.参考答案:略14. 设实数x、y满足约束条件则目标函数z=2x﹣y的最大值是.参考答案:4【考点】简单线性规划.【分析】根据目标函数的解析式形式,分析目标函数的几何意义,然后判断目标函数取得最优解的点的坐标,即可求解【解答】解:作出不等式组表示的 平面区域,如图所示由z=2x ﹣y 可得y=2x ﹣z ,则﹣z 表示直线z=2x ﹣y 在y 轴上的截距,截距越小,z 越大由可得A (2,0),此时z 最大为4,故答案为:4【点评】本题考查线性规划知识的运用,考查学生的计算能力,考查数形结合的数学思想 15. 圆与双曲线的渐近线相切,则的值是 .参考答案:16. 抛物线上横坐标为2的点到其焦点的距离为________参考答案:略17. 如右图,棱长为3a 正方体OABC -,点M 在上,且2,以O 为坐标原点,建立如图空间直有坐标系,则点M 的坐标为 .参考答案:(2a ,3a ,3a )三、 解答题:本大题共5小题,共72分。
河北省廊坊市数学高二上学期文数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高一下·汕头期末) 省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌800粒种子中抽取60粒进行检测,现将这800粒种子编号如下001,002,…,800,若从随机数表第8行第7列的数7开始向右读,则所抽取的第4粒种子的编号是()(如表是随机数表第7行至第9行)A . 105B . 507C . 071D . 7172. (2分)下列四个结论:①方程k=与方程y-2=k(x+1)可表示同一直线;②直线l过点P(x1 , y1),倾斜角为,则其方程为x=x1;③直线l过点P(x1 , y1),斜率为0,则其方程为y=y1;④所有直线都有点斜式和斜截式方程.其中正确的个数为()A . 1B . 2C . 3D . 43. (2分)阅读右面的程序框图,则输出的S=()A . 14B . 20C . 30D . 554. (2分)(2017·三明模拟) 若变量x,y满足约束条件,则的最大值为()A .B .C . 1D . 25. (2分) (2016高二下·民勤期中) 如图所示,在一个边长为1的正方形AOBC内,曲y=x2和曲线y= 围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是()A .B .C .D .6. (2分)在四边形ABCD中,AD∥BC,,将沿BD折起,使平面ABD平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是()A . 平面ABD平面ABCB . 平面ADC平面BCDC . 平面ABC平面BCDD . 平面ADC平面ABC7. (2分)已知正方体的外接球的体积是,则这个正方体的棱长是()A .B .C .D .8. (2分) (2016高二上·河北期中) 为了研究一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm),根据所得数据画出的样本频率分布直方图如图,那么在这片树木中底部周长大于100cm 的株树大约中()A . 3000B . 6000C . 7000D . 80009. (2分)已知x,y满足线性约束条件,则的取值范围是()A .B .C . [1,2]D .10. (2分)(2018·全国Ⅱ卷文) 从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A . 0.6B . 0.5C . 0.4D . 0.311. (2分) (2016高二上·武城期中) 如图,正方体ABCD﹣A1B1C1D1的棱长为2,线段D1B1上有两个动点E、F,且EF=1,则下列结论中错误的是()A . AC⊥BEB . AA1∥平面BEFC . 三棱锥A﹣BEF的体积为定值D . △AEF的面积和△BEF的面积相等12. (2分) (2018高二上·遂宁期末) 在直角坐标系内,已知是以点为圆心的圆上C 的一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为和,若圆C上存在点,使得,其中点、,则的最大值为()A . 7B . 6C . 5D . 4二、填空题 (共4题;共4分)13. (1分)在研究身高和体重的关系时,求得相关指数R2≈________,可以叙述为“身高解释了71%的体重变化”,而随机误差贡献了乘余的29%,所以身高对体重的效应比随机误差的效应大得多.14. (1分) (2017高三上·红桥期末) 执行如图所示的程序框图,若输入的a的值为3,则输出的i=________.15. (1分) (2018高二上·綦江期末) 14.圆截直线所得的弦长为________.16. (1分) (2019高二上·九台月考) 若点在圆上,则实数 ________.三、解答题 (共6题;共45分)17. (5分)若直线ax+3y﹣5=0过连结A(﹣1,﹣2),B(2,4)两点线段的中点,求实数a的值.18. (10分)(2020·邵阳模拟) 某公司为提高市场销售业绩,设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采取促销”和“没有采取促销”的营销网点各选了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,,,,,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为“精英店”.“采用促销”的销售网点“不采用促销”的销售网点附①:0.1000.0500.0100.0012.7063.841 6.63510.828附②:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为, .(1)请根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采促销活动有关”;采用促销无促销合计精英店非精英店合计5050100(2)某“精英店”为了创造更大的利润,通过分析上一年度的售价(单位:元)和日销量(单位:件)()的一组数据后决定选择作为回归模型进行拟合.具体数据如下表,表中的45.8395.52413.5 4.621.6①根据上表数据计算,的值;②已知该公司产品的成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.19. (5分)(2017·温州模拟) 在四菱锥P﹣ABCD中,PA⊥AD,PA=1,PC=PD,底面ABCD是梯形,AB∥CD,AB⊥BC,AB=BC=1,CD=2.(I)求证:PA⊥AB;(II)求直线AD与平面PCD所成角的大小.20. (5分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b 至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.21. (10分) (2017高一上·济南月考) 如图11所示,三棱台中,,,分别为的中点.(1)求证:平面;(2)若, ,求证:平面平面 .22. (10分) (2018高一上·广西期末) 已知关于,的方程: .(1)若方程表示圆,求的取值范围;(2)若圆与直线:相交于 , 两点,且,求的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共45分)17-1、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、。
河北省廊坊市文安镇中学2020年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 映射f:A→B,如果满足集合B中的任意一个元素在A中都有原象,则称为“满射”. 已知集合A中有4个元素,集合B中有3个元素,那么从A到B的不同满射的个数为()A.24 B.6 C.36 D.72参考答案:解析:C 集合A中必须有两个元素和B中的一个元素对应,A中剩下的两个元素和B中的其余元素相对应,故应为2. 已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面,=3,那么直线与平面所成角的正弦值为A. B. C. D.参考答案:C略3. 如果实数x,y满足等式(x-2)2+y2=3,那么的最大值是( )A.B.C.D.参考答案:D略4. 已知等差数列共有11项,其中奇数项之和为30,偶数项之和为15,则a6为()A.5 B.30 C.15 D.21参考答案:C【考点】等差数列的通项公式.【分析】由a1+a3+…+a11=30,a2+a4+…+a10=15,相减即可得出.【解答】解:∵a1+a3+…+a11=30,a2+a4+…+a10=15,相减可得:a1+5d=15=a6,故选:C.5. 已知,,直线过点且与线段相交,则直线的斜率的取值范围是( )A.或 B. C. D.参考答案:A略6. 设,则“”是“且”的( )A.充分而不必要条件 B.必要而不充分条件C.即不充分也不必要条件 D.充分必要条件参考答案:B7. 直线的倾斜角()A. B. C. D.参考答案:C略8. 下列说法正确的是A、三点确定一个平面B、四边形一定是平面图形C、梯形一定是平面图形D、平面和平面有不同在一条直线上的三个交点参考答案:C9. 某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是( )A.恰有1名男生与恰有2名女生B.至少有1名男生与全是男生C.至少有1名男生与至少有1名女生D.至少有1名男生与全是女生参考答案:A【考点】互斥事件与对立事件.【专题】阅读型.【分析】互斥事件是两个事件不包括共同的事件,对立事件首先是互斥事件,再就是两个事件的和事件是全集,由此规律对四个选项逐一验证即可得到答案.【解答】解:A中的两个事件符合要求,它们是互斥且不对立的两个事件;B中的两个事件之间是包含关系,故不符合要求;C中的两个事件都包含了一名男生一名女生这个事件,故不互斥;D中的两个事件是对立的,故不符合要求.故选A【点评】本题考查互斥事件与对立事件,解题的关键是理解两个事件的定义及两事件之间的关系.属于基本概念型题.10. 若直线2ax+by﹣2=0(a>0,b>0)平分圆x2+y2﹣2x﹣4y﹣6=0,则+的最小值是()A.2﹣B.﹣1 C.3+2D.3﹣2参考答案:C【考点】直线与圆的位置关系.【分析】由题意可得直线2ax+by﹣2=0(a>0,b>0)经过圆x2+y2﹣2x﹣4y﹣6=0的圆心,可得a+b=1.再根据+=+=3++,利用基本不等式求得它的最小值.【解答】解:由题意可得直线2ax+by﹣2=0(a>0,b>0)经过圆x2+y2﹣2x﹣4y﹣6=0的圆心(1,2),故有2a+2b=2,即a+b=1.再根据+=+=3++≥3+2=2+2,当且仅当=时,取等号,故+的最小值是3+2,故选:C.【点评】本题主要考查直线和圆的位置关系,基本不等式的应用,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11. 设满足约束条件,若目标函数的最大值为8,则的最小值为________.参考答案:4略12. 执行如图所示的算法流程图,则最后输出的S的值为_________.参考答案:8.【分析】根据流程图,依次计算与判断,直至终止循环,输出结果.【详解】执行循环:结束循环,输出13. 已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C 上不存在点P,使得∠APB为直角,则实数m的取值范围是.参考答案:(0,4)∪(6,+∞)【考点】直线与圆的位置关系.【专题】综合题;转化思想;直线与圆.【分析】C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径r=1,设P(a,b)在圆C 上,则=(a+m,b),=(a﹣m,b),由已知得m2=a2+b2=|OP|2,m的最值即为|OP|的最值,可得结论.【解答】解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径r=1,设P(a,b)在圆C上,则=(a+m,b),=(a﹣m,b),若∠APB=90°,则⊥,∴?=(a+m)(a﹣m)+b2=0,∴m2=a2+b2=|OP|2,∴m的最大值即为|OP|的最大值,等于|OC|+r=5+1=6.最小值为5﹣1=4,∴m的取值范围是(0,4)∪(6,+∞).故答案为:(0,4)∪(6,+∞).【点评】本题考查实数的最大值的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.14. 已知实数x,y满足,则|3x+4y﹣7|的最大值是.参考答案:14【考点】简单线性规划.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将直线l:t=3x+4y﹣7对应的直线进行平移,观察截距的变化可得t的范围,由此可得|3x+4y﹣7|的最大值.【解答】解:作出不等式组,表示的平面区域,得到如图的△ABC及其内部,其中A(﹣1,﹣1),B(0,1),C(1,0)设t=F(x,y)=3x+4y﹣7,将直线l:t=3x+4y﹣7进行平移,当l经过点A时,目标函数z达到最小值;当l经过点B时,目标函数z达到最大值∴t最大值=F(0,1)=﹣3,t最小值=F(﹣1,﹣1)=﹣14∴|3x+4y﹣7|∈[3,14],故Z=|3x+4y﹣7|的最大值是14.故答案为:14.15. 定义方程的实数根叫做函数的“新不动点”,则下列函数有且只有一个“新不动点”的是(写出所有正确的序号)①②③④参考答案:②③16. 已知函数(,),它的一个对称中心到最近的对称轴之间的距离为,且函数的图像过点,则的解析式为.参考答案:略17. 若直线x+(1+m) y+2+m=0与直线2mx+4y+6=0平行,则m的值为.参考答案:﹣2【考点】直线的一般式方程与直线的平行关系.【专题】计算题.【分析】由两直线ax+by+c=0与mx+ny+d=0平行?(m≠0、n≠0、d≠0)解得即可..【解答】解:∵直线x+(1+m) y+2+m=0与2mx+4y+6=0平行∴∴m=﹣2故答案为﹣2.【点评】本题考查两直线平行的条件,解题过程中要注意两直线重合的情况,属于基础题.三、解答题:本大题共5小题,共72分。
2015-2016学年河北省廊坊市高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.1.若命题p:∀x∈R,x2﹣3x+5>0,则该命题的否定是()A.∃x∈R,x2﹣3x+5≤0 B.∃x∈R,x2﹣3x+5>0C.∀x∈R,x2﹣3x+5<0 D.∀x∈R,x2﹣3x+5≤02.一个年级有20个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为18的学生留下进行交流,这里运用的是()A.分层抽样 B.抽签法 C.随机数表法 D.系统抽样法3.抛物线的焦点坐标是()A.(0,1) B. C. D.4.根据如下样本数据得到的回归直线方程必过点()x 0 1 2 3 4y 1 3 4 5 7A.(2,2) B.(1.5,2) C.(2,4) D.(1.5,4)5.“α是第一象限角”是“关于x,y的方程x2sinα+y2cosα=1所表示的曲线是椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知双曲线的一条渐近线方程为y=2x,则双曲线的离心率为()A. B. C.或D.27.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.2 B.4 C.8 D.168.已知函数f(x)=lnx﹣f′(1)x2+2x﹣1,则f(1)的值为()A.﹣1 B.0 C.1 D.29.已知椭圆与双曲线有相同的焦点,则动点P(n,m)的轨迹是()A.椭圆的一部分 B.双曲线的一部分C.抛物线的一部分 D.圆的一部分10.一个圆内有一个内接等边三角形,一动点在圆内运动,则此点落在等边三角形内部的概率为()A. B. C. D.11.函数f(x)=(2a﹣1)lnx﹣x在(0,1)上为增函数,则实数a的取值范围是()A.a<1 B.a≤1 C.a≥1 D.0<a≤112.设F1,F2分别为椭圆的左右两个焦点,点P为椭圆上任意一点,则使得成立的P点的个数为()A.0 B.1 C.2 D.3二、填空题:本大题共4小题,每小题5分,共20分.13.曲线f(x)=xlnx在点(1,0)处的切线方程为.14.连续抛掷2颗骰子,则出现朝上的点数之和等于8的概率为.15.已知f(x)=x5+x4+2x3+3x2+4x+1,应用秦九韶算法计算x=2时的值时,v2的值为.16.下列四个命题中:①若p∨q为真命题,则p与q至少有一个为真命题;②统计中用相关系数r来衡量两个变量之间线性关系的强弱,且r越大相关性越强;③“若lgx2=0,则x=1”的否命题为真命题;④双曲线与双曲线有相同的焦点.其中真命题的序号为.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.5000辆汽车通过某一段公路时的时速频率分布直方图如图所示.问:(1)求汽车速度在[50,70)的频率;(2)根据频率分布直方图估算出样本数据的中位数.18.已知函数f(x)=mx3﹣3x2+n﹣2(m≠0).(1)若f(x)在x=1处取得极小值1,求实数m,n的值;(2)在(1)的条件下,求函数f(x)在x∈[﹣1,2]的最大值.19.已知椭圆,焦点在直线x﹣2y﹣2=0上,且离心率为.(1)求椭圆方程;(2)过P(3,1)作直线l与椭圆交于A,B两点,P为线段AB的中点,求直线l的方程.20.某商家开展迎新春促销抽奖活动,小张、小李两人相约同一天上午去参加抽奖活动.(1)若抽奖规则是从一个装有3个红球和4个白球的袋中又放回地抽取2个球,当两球同色时则中奖,求中奖的概率;(2)若小张计划在10:00~10:40之间赶到,小李计划在10:20~11:00之间赶到,求小张比小李提前到达的概率.21.已知函数.(1)试判断f(x)在定义域内的单调性;(2)若f(x)在区间[1,e2]上的最小值为2,求实数a的值.22.已知抛物线y2=ax(a>0),过动点P(m,0)且斜率为1的直线与该抛物线交于不同的两点A,B,|AB|≤a.(1)求m的取值范围;(2)若线段AB的垂直平分线交x轴于点Q,求△QAB面积的最大值.2015-2016学年河北省廊坊市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.1.若命题p:∀x∈R,x2﹣3x+5>0,则该命题的否定是()A.∃x∈R,x2﹣3x+5≤0 B.∃x∈R,x2﹣3x+5>0C.∀x∈R,x2﹣3x+5<0 D.∀x∈R,x2﹣3x+5≤0【考点】命题的否定.【分析】根据全称命题的否定是特称命题进行判断即可.【解答】解:命题是全称命题,则命题的否定是特称命题,即∃x∈R,x2﹣3x+5≤0,故选:A.2.一个年级有20个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为18的学生留下进行交流,这里运用的是()A.分层抽样 B.抽签法 C.随机数表法 D.系统抽样法【考点】系统抽样方法.【分析】根据系统抽样的定义进行判断即可.【解答】解:每个班同学以1﹣50排学号,要求每班学号为18的同学留下来交流,数据之间的间距差相同,都为50,所以根据系统抽样的定义可知,这里采用的是系统抽样的方法.故选:D.3.抛物线的焦点坐标是()A.(0,1) B. C. D.【考点】抛物线的简单性质.【分析】先根据标准方程求出p值,判断抛物线x2=2y的开口方向及焦点所在的坐标轴,从而写出焦点坐标.【解答】解:∵抛物线,即x2=2y中,p=1, =,焦点在y轴上,开口向上,∴焦点坐标为(0,),故选:B.4.根据如下样本数据得到的回归直线方程必过点()x 0 1 2 3 4y 1 3 4 5 7A.(2,2) B.(1.5,2) C.(2,4) D.(1.5,4)【考点】线性回归方程.【分析】由已知表格中的数据,我们根据平均数公式计算出变量x,y的平均数,根据回归直线一定经过样本数据中心点,可得结论.【解答】解:由表中数据可得: =(0+1+2+3+4)=2, =(1+3+4+5+7)=4,∵回归直线一定经过样本数据中心点,故选:C.5.“α是第一象限角”是“关于x,y的方程x2sinα+y2cosα=1所表示的曲线是椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合椭圆的方程进行判断即可.【解答】解:若x2sinα+y2cosα=1表示的曲线是椭圆,则满足sinα>0,cosα>0,且sinα≠cosα,即2kπ<α<2kπ+,且α≠2kπ+,k∈Z,则“α是第一象限角”是“关于x,y的方程x2sinα+y2cosα=1所表示的曲线是椭圆”必要不充分条件,故选:B6.已知双曲线的一条渐近线方程为y=2x,则双曲线的离心率为()A. B. C.或D.2【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,可得b=2a,由a,b,c的关系和离心率公式,计算即可得到所求值.【解答】解:双曲线的渐近线方程为y=±x,由题意可得=2,即有b=2a,c==a,可得e==,故选:A.7.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.2 B.4 C.8 D.16【考点】循环结构.【分析】根据程序框图可知,程序运行时,列出数值S与n对应变化情况,从而求出当S=2时,输出的n即可.【解答】解:.由框图可知,程序运行时,数值S与n对应变化如下表:S ﹣1 2n 2 4 8故S=2时,输出n=8.故选C8.已知函数f(x)=lnx﹣f′(1)x2+2x﹣1,则f(1)的值为()A.﹣1 B.0 C.1 D.2【考点】导数的运算.【分析】根据导数关系先求出f′(1)的值,进行求解即可.【解答】解:函数的导数f′(x)=﹣2f′(1)x+2.则f′(1)=1﹣2f′(1)+2.得f′(1)=1,则f(x)=lnx﹣x2+2x﹣1,则f(1)=ln1﹣1+2﹣1=0,故选:B9.已知椭圆与双曲线有相同的焦点,则动点P(n,m)的轨迹是()A.椭圆的一部分 B.双曲线的一部分C.抛物线的一部分 D.圆的一部分【考点】轨迹方程.【分析】由椭圆双曲线方程可求得焦点坐标,进而根据有相同的焦点,建立等式求得m和n 的关系即可.【解答】解:∵椭圆与双曲线有相同的焦点,∴9﹣n2=4+m2,即m2+n2=5(0<n<3)这是圆的一部分,故选:D.10.一个圆内有一个内接等边三角形,一动点在圆内运动,则此点落在等边三角形内部的概率为()A. B. C. D.【考点】几何概型.【分析】根据几何概型的概率公式求出对应的面积进行计算即可.【解答】解:设圆的半径为R,则圆内接等边三角形的边长为R,则正三角形的面积S=×(R)2×=R2,圆的面积S=πR2,则点落在等边三角形内部的概率为P==,故选:B.11.函数f(x)=(2a﹣1)lnx﹣x在(0,1)上为增函数,则实数a的取值范围是()A.a<1 B.a≤1 C.a≥1 D.0<a≤1【考点】利用导数研究函数的单调性.【分析】求出函数的导数,得到(2a﹣1)﹣x≥0在x∈(0,1)恒成立,分离参数,求出a的范围即可.【解答】解:∵f(x)=(2a﹣1)lnx﹣x,f′(x)=﹣1=,若f(x)在(0,1)上为增函数,则(2a﹣1)﹣x≥0在x∈(0,1)恒成立,即a≥=1,故选:C.12.设F1,F2分别为椭圆的左右两个焦点,点P为椭圆上任意一点,则使得成立的P点的个数为()A.0 B.1 C.2 D.3【考点】椭圆的简单性质.【分析】设P(x0,y0),由和P(x0,y0)为椭圆上任意一点,列出方程组,能求出使得成立的P点的个数.【解答】解:设P(x0,y0),∵F1,F2分别为椭圆的左右两个焦点,点P为椭圆上任意一点,∴F1(﹣4,0),F2(4,0),=(﹣4﹣x0,﹣y0),=(4﹣x0,﹣y0),∵,∴(﹣4﹣x0)(4﹣x0)+(﹣y0)2=﹣7,即=9,①又∵设P(x0,y0)为椭圆上任意一点,∴,②联立①②,得:或,∴使得成立的P点的个数为2个.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.曲线f(x)=xlnx在点(1,0)处的切线方程为x﹣y﹣1=0 .【考点】利用导数研究曲线上某点切线方程.【分析】求出原函数的导函数,得到函数在x=1时的导数值,即切线的斜率,然后由直线方程的点斜式得答案.【解答】解:由f(x)=xlnx,得,∴f′(1)=ln1+1=1,即曲线f(x)=xlnx在点(1,0)处的切线的斜率为1,则曲线f(x)=xlnx在点(1,0)处的切线方程为y﹣0=1×(x﹣1),整理得:x﹣y﹣1=0.故答案为:x﹣y﹣1=0.14.连续抛掷2颗骰子,则出现朝上的点数之和等于8的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数,再用列举法求出出现朝上的点数之和等于8的基本事件个数,由此能求出出现朝上的点数之和等于8的概率.【解答】解:连续抛掷2颗骰子,基本事件总数n=6×6=36,出现朝上的点数之和等于8的基本事件有:(2,6),(6,2),(3,5),(5,3),(4,4),共5个,∴出现朝上的点数之和等于8的概率为p=.故答案为:.15.已知f(x)=x5+x4+2x3+3x2+4x+1,应用秦九韶算法计算x=2时的值时,v2的值为8 .【考点】秦九韶算法.【分析】由f(x)=x5+x4+2x3+3x2+4x+1=(((x+1)x+2)x+4)x+1,即可得出.【解答】解:f(x)=x5+x4+2x3+3x2+4x+1=(((x+1)x+2)x+4)x+1,∴x=2时,v0=1,v1=(2+1)×2=6,v2=6+2=8.故答案为:8.16.下列四个命题中:①若p∨q为真命题,则p与q至少有一个为真命题;②统计中用相关系数r来衡量两个变量之间线性关系的强弱,且r越大相关性越强;③“若lgx2=0,则x=1”的否命题为真命题;④双曲线与双曲线有相同的焦点.其中真命题的序号为①③④.【考点】复合命题的真假.【分析】根据复合命题判断①,根据线性关系判断②,根据对数函数函数性质判断③,根据双曲线的性质判断④.【解答】解:①若p∨q为真命题,则p与q至少有一个为真命题,故①正确;②用相关指数|r|来刻画回归效果,|r|越大,说明模型的拟合效果越好,故②错误;③“若lgx2=0,则x=1”的否命题是:若lgx2≠0,则x≠1为真命题,故③正确;④双曲线中c2=13,双曲线中c2=13,有相同的焦点,故④正确;其中真命题的序号为:①③④,故答案为:①③④.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.5000辆汽车通过某一段公路时的时速频率分布直方图如图所示.问:(1)求汽车速度在[50,70)的频率;(2)根据频率分布直方图估算出样本数据的中位数.【考点】众数、中位数、平均数;频率分布直方图.【分析】(1)由频率分布直方图分别求出[50,60)的频率和[60,70)的频率,由此能求出汽车速度在[50,70)的频率.(2)设中位数为x,由频率分布直方图可知中位数落在[60,70)之间,由此能求出样本数据的中位数.【解答】解:(1)由频率分布直方图得[50,60)的频率为0.03×10=0.3,…[60,70)的频率为0.04×10=0.4,…∴汽车速度在[50,70)的频率为0.3+0.4=0.7.…(2)设中位数为x,由频率分布直方图可知中位数落在[60,70)之间,0.1+0.3+(x﹣60)×0.04=0.5,…解得x=62.5,∴样本数据的中位数为62.5.…18.已知函数f(x)=mx3﹣3x2+n﹣2(m≠0).(1)若f(x)在x=1处取得极小值1,求实数m,n的值;(2)在(1)的条件下,求函数f(x)在x∈[﹣1,2]的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(1)求出函数的导数,得到关于m,n的方程组,解出检验即可;(2)求出函数的单调区间,从而求出函数的最大值即可.【解答】解:函数f(x)的定义域是R,f′(x)=3mx(x﹣),(1)∵f(x)在x=1处取得极小值,∴,即,解得:,经检验符合题意;(2)由(1)得:f′(x)=6x(x﹣1),x∈(﹣1,0)∪(1,2)时,f′(x)>0,x∈(0,1)时,f′(x)<0,∴f(x)在(﹣1,0),(1,2)递增,在(0,1)递减,∴f(x)max=max{f(0),f(2)},而f(0)=2,f(2)=6,∴f(x)max=f(2)=6.19.已知椭圆,焦点在直线x﹣2y﹣2=0上,且离心率为.(1)求椭圆方程;(2)过P(3,1)作直线l与椭圆交于A,B两点,P为线段AB的中点,求直线l的方程.【考点】椭圆的简单性质.【分析】(1)由焦点在直线x﹣2y﹣2=0上,令y=0,得焦点(2,0),再由离心率e==,能求出椭圆方程.(2)设A(x1,y1),B(x2,y2),利用点差法能求出l的方程.【解答】(本题满分12分)解:(1)∵椭圆,焦点在直线x﹣2y﹣2=0上,∴令y=0,得焦点(2,0),∴c=2,∵离心率e==,∴,解得a=4,∴b2=16﹣4=12,∴椭圆方程为.(2)设A(x1,y1),B(x2,y2),∵过P(3,1)作直线l与椭圆交于A,B两点,P为线段AB的中点,∴由题意,x1+x2=6,y1+y2=2,,∴+=0,∴k l==﹣,∴l的方程为:y﹣1=﹣,即9x+4y﹣31=0.20.某商家开展迎新春促销抽奖活动,小张、小李两人相约同一天上午去参加抽奖活动.(1)若抽奖规则是从一个装有3个红球和4个白球的袋中又放回地抽取2个球,当两球同色时则中奖,求中奖的概率;(2)若小张计划在10:00~10:40之间赶到,小李计划在10:20~11:00之间赶到,求小张比小李提前到达的概率.【考点】几何概型;列举法计算基本事件数及事件发生的概率.【分析】(1)根据古典概型的概率公式进行计算即可.(2)根据几何概型的概率公式求出对应事件对应区域的面积进行计算即可.【解答】解:(1)从袋中7个球中的摸出2个,试验的结果共有7×7=49(种)…中奖的情况分为两种:(i)2个球都是红色,包含的基本事件数为4×4=16;(ii)2个球都是白色,包含的基本事件数为3×3=9.…所以,中奖这个事件包含的基本事件数为16+9=25.因此,中奖概率为.…(2)设小张和小李到达的时间分别为10点到11点之间的x,y分钟.用(x,y)表示每次试验的结果,则所有可能结果为Ω={(x,y)|0≤x≤4或0≤y≤60};…记小张比小李提前到达为事件A,则事件A的可能结果为A={(x,y)|x<y,0≤x≤4或0≤y≤60};.…如图所示,试验全部结果构成区域Ω为正方形ABCD.而事件A所构成区域是正方形内的阴影部分.根据几何概型公式,得到P(A)===.所以,小张比小李提前到达的概率为.…21.已知函数.(1)试判断f(x)在定义域内的单调性;(2)若f(x)在区间[1,e2]上的最小值为2,求实数a的值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)通过讨论a的范围,确定函数的单调性,从而求出函数的最小值即可.【解答】解:由已知得f(x)得的定义域是(0,+∞),f′(x)=,(1)∵a>0,∴﹣a<0,当x∈(0,a)时,f(x)<0,当x∈(a,+∞)时,f(x)>0,∴f(x)在(0,a)递减,在(a,+∞)递增;(2)由(1)得:①0<a≤1时,f(x)在在[1,e2]递增,∴f(x)min=f(1)==2,得a=2(舍),②当1<a<e2时,f(x)在(1,a)递减,在(a,e2)递增,∴f(x)min=f(a)=lna+=2,解得:a=,③当a≥e2时,f(x)在[1,e2]递减,∴f(x)min=f(e2)=2+=2,无解,综上:a=.22.已知抛物线y2=ax(a>0),过动点P(m,0)且斜率为1的直线与该抛物线交于不同的两点A,B,|AB|≤a.(1)求m的取值范围;(2)若线段AB的垂直平分线交x轴于点Q,求△QAB面积的最大值.【考点】抛物线的简单性质.【分析】(1)设出直线的方程与抛物线方程联立消去y,设直线l与抛物线两个不同的交点坐标为A,B,进而根据判别是对大于0,及x1+x2的和x1x2的表达式,求得AB的长度的表达式,根据|AB|的范围确定a的范围(2)求出线段AB的垂直平分线方程,得Q的坐标,进而表示出△NAB的面积,根据|AB|范围确定三角形面积的最大值.【解答】解:(1)设直线l的方程为y=x﹣m代入y2=ax,得y2﹣ay﹣am=0.设直线l与抛物线两个不同的交点坐标为A(x1,y1)、B(x2,y2),△=a2﹣4(﹣am)>0,∴m>﹣,y1+y2=a,y1y2=﹣am,|AB|=≤a,∴m,∴﹣<m;(2)由(1)线段AB的中点坐标为(+m,),线段AB的垂直平分线方程为y﹣=﹣(x﹣﹣m),令y=0,可得Q(m+a,0),Q到AB的距离d=,∴△QAB面积S=≤=,∴△QAB面积的最大值为.。