酵母双杂交自激活现象
- 格式:ppt
- 大小:1.65 MB
- 文档页数:15
酵母双杂(共转)酵母双杂交的原理及实验步骤吴健2015.12.25一酵母双杂交的原理在酵母细胞中,有半乳糖存在的情况下,GAL4 可以激活半乳糖代谢酶GAL1的转录。
GAL4 蛋白包含两个结构域,单独的N 端的结构域(BD)可以特异地结合DNA 但是不能够激活转录;单独的C 端包含一个激活区域(AD)但是如果不能结合到17-mer 上游激活序列USA G 也不能激活转录。
将来自大肠杆菌的LecA DNA 结合域BD 和酵母的GAL4 转录激活域AD 重组后,在酵母中实现了下游基因的转录激活。
说明转录因子的BD 和AD 功能域可相互独立地发挥各自的作用,并且在重组后仍然具有基因转录的活性(Brent and Ptashne, 1985)。
酵母双杂交系统就是在这一分子基础上开发出来的,GAL4 的BD 和AD,分别与能够互作的蛋白X 和Y 融合表达。
由于XY 蛋白的结合,实现了GAL4 的BD 和AD 重组,GAL4 就重新获得了转录活性,转录因子就可以驱动报告基因表达(Fields and Song, 1989)。
除了将两个杂合载体BD-X 或AD-Y 转化入同一酵母细胞外,利用两个不同性别的酵母杂交(mating)也是实现BD 和AD 蛋白重组和蛋白互作检测的有效方法(Bendixen et al., 1994)。
Fig1. 酵母双杂原理图Fig2. 常用两种酵母菌的基因型Fig3. 常用两种酵母菌的报告基因Fig4. 常用AD和BD载体图Fig5. 酵母双杂流程图二酵母双杂交的基本步骤1 酵母感受态的制备配制培养酵母YPAD 培养基,以及筛选和转化酵母的SD 培养基,灭菌备用。
1) 用灭菌的接种环从保存的菌种中挑取一小块,在YPAD 培养基上划线分离单菌落,在30℃培养箱中倒置培养 3 d 活化菌种;2) 用灭菌的接种环挑取一个2-3 mm,生长时间小于一个月的单克隆到3 ml 的YPAD 培养基中,剧烈震荡1 min,打散所有的细胞块,30℃震荡培养8 h;3) 接种5 μl 的培养物到含有50 ml YPAD 的250 ml 的烧瓶中,30℃,250 r/min 震荡培养20 h,直到OD 600 =0.3;4) 700 g 室温离心5 min,去除上清,用100 ml 的YPAD 重悬细胞块,30℃230-250 r/min 震荡培养3-5 h,直到OD 600 =0.4-0.5;5) 700 g 室温离心5 min,去除上清,用60 ml 的灭菌的dd H2O 重悬细胞块;6) 700 g 室温离心5 min,去除上清,用3 ml 的1.1×TE/LiAc 溶液重悬细胞块;7) 将上清分装到2 个无菌的1.5 ml 的离心管,室温13200 g 离心15 sec;8) 去除上清,用600 μl 1.1×TE/LiAc 溶液悬浮细胞块,感受态制备完成。
酵母双杂交系统原理(一)酵母双杂交系统1. 什么是酵母双杂交系统?•酵母双杂交系统是一种常用的蛋白质相互作用研究方法,用于测试两个蛋白质是否相互作用,并进一步研究其相互作用的特点和机制。
•这个系统基于酵母菌(酿酒酵母或拟南芥酵母)的特性,当两个蛋白质相互作用时,可以触发酵母的生长或表达特定的报告基因。
2. 酵母双杂交系统的原理•酵母双杂交系统基于两个重要的分子域:DNA结合域(DBD)和激活域(AD)。
•DBD通常来自于一个转录因子,可以与DNA结合并调节基因的转录水平。
•AD则是一个激活域,可以与其他蛋白质相互作用并激活报告基因的表达。
•在酵母双杂交系统中,将待测蛋白的DBD与一个对照蛋白的AD 融合,构建成DBD-融合蛋白,而待测蛋白的AD与一个对照蛋白的DBD融合,构建成AD-融合蛋白。
•当两个融合蛋白相互作用时,DBD和AD相互结合,激活报告基因的表达,从而观察到酵母生长或报告基因的表达。
3. 酵母双杂交系统的应用•酵母双杂交系统广泛应用于蛋白质相互作用和功能研究领域。
•可以用于筛选蛋白质相互作用的伙伴,发现新的蛋白质复合物。
•可以用于研究蛋白质的亚细胞定位和功能等特性。
•可以用于研究蛋白质结构和功能的变异。
•可以用于研究蛋白质与其他生物分子(如DNA、RNA、小分子化合物等)的相互作用。
•可以用于研究蛋白质的信号传导途径和调控机制。
4. 酵母双杂交系统的优缺点优点:•酵母双杂交系统是一种简单、快速、高通量的方法,可以同时测试多个蛋白质相互作用。
•可以研究蛋白质相互作用的强度和特异性。
•可以在活细胞环境下进行研究,更接近生物体内的情况。
缺点:•酵母双杂交系统可能存在假阳性和假阴性的问题,需要进行进一步的验证。
•酵母双杂交系统对蛋白质的折叠状态和局部结构要求较高,对于某些复杂蛋白质可能不适用。
•酵母双杂交系统无法直接观察蛋白质相互作用的动力学过程,只能得到静态的结果。
总结酵母双杂交系统是一种重要的蛋白质相互作用研究方法,基于酵母菌的特性,通过构建融合蛋白实现对蛋白质相互作用的测试。
酵母杂交实验常见问题——单杂知识及自激活检测篇下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!题目:酵母杂交实验常见问题——单杂知识及自激活检测篇酵母杂交是一种广泛应用于蛋白质功能研究的实验方法,但在实际操作中仍会遇到一些常见问题。
酵母双杂交的原理引言:酵母双杂交是一种常用的分子生物学技术,用于研究蛋白质相互作用以及蛋白质与DNA或RNA的相互作用。
本文将详细介绍酵母双杂交的原理及其在科研领域中的应用。
一、酵母双杂交的基本原理酵母双杂交技术是基于酵母细胞的遗传特性和蛋白质相互作用的原理而发展起来的。
其基本原理可简单概括为以下三个步骤:第一步:构建酵母双杂交载体将目标蛋白质分别与DNA的两个片段(称为“鱼饵”和“猎物”)融合,构建酵母双杂交载体。
鱼饵片段通常与DNA结合蛋白质相连,而猎物片段通常与转录激活蛋白质相连。
第二步:转化酵母细胞将构建好的酵母双杂交载体转化到酵母细胞中。
这里使用的是酵母的双杂交株,其特点是缺失了酵母中的两个转录因子基因。
第三步:筛选蛋白质相互作用在含有适当选择性培养基的培养条件下,酵母细胞将仅在存在蛋白质相互作用的情况下存活下来。
通过对酵母细胞进行筛选,可以筛选出与目标蛋白质相互作用的蛋白质。
二、酵母双杂交的应用酵母双杂交技术已经被广泛应用于生物学研究中,尤其是在蛋白质相互作用的研究方面。
以下是酵母双杂交技术在不同领域的应用:1. 蛋白质相互作用研究酵母双杂交技术是研究蛋白质相互作用的重要方法。
通过酵母双杂交技术,可以筛选出与目标蛋白质相互作用的蛋白质,进一步研究其功能和调控机制。
2. 蛋白质与DNA或RNA相互作用研究酵母双杂交技术也可以用于研究蛋白质与DNA或RNA的相互作用。
通过将目标蛋白质与DNA或RNA片段进行融合,可以筛选出与目标蛋白质相互作用的DNA或RNA序列。
3. 药物靶点筛选酵母双杂交技术在药物研发中也起到了重要的作用。
通过将潜在药物分子与蛋白质片段进行融合,可以筛选出与药物分子相互作用的蛋白质,从而寻找药物的靶点。
4. 疾病相关基因研究酵母双杂交技术也被广泛应用于疾病相关基因的研究中。
通过将疾病相关基因与其他基因片段进行融合,可以筛选出与疾病相关基因相互作用的蛋白质,进一步研究其功能和调控机制。
(完整版)酵母双杂交原理酵母双杂交系统原理酵母双杂交系统(Yeast Two-hybrid System)由Fields和Song等首先在研究真核基因转录调控中建立。
典型的真核生长转录因子,如GAL4、GCN4、等都含有二个不同的结构域: DNA 结合结构域(DNA-binding domain)和转录激活结构域(transcription-activating domain)。
前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。
二个结构域不但可在其连接区适当部位打开,仍具有各自的功能。
而且不同两结构域可重建发挥转录激活作用。
酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。
主要有二类载体: a 含DNA -binding domain的载体; b 含DNA-activating domain的载体。
上述二类载体在构建融合基因时,测试蛋白基因与结构域基因必须在阅读框内融合。
融合基因在报告株中表达,其表达产物只有定位于核内才能驱动报告基因的转录。
例如GAL4-bd具有核定位序列(nuclear-localization sequence),而GAL4-ad没有。
因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。
双杂交系统的另一个重要的元件是报道株。
报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。
最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。
〈2〉具有可直接进行选择的标记基因和特征性报道基因。
〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。
一般编码一个蛋白的基因融合到明确的转录调控因子的DNA -结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。
酵母双杂交系统原理酵母双杂交系统(Yeast Two-hybrid System)由Fields和Song等首先在研究真核基因转录调控中建立。
典型的真核生长转录因子,如GAL4、GCN4、等都含有二个不同的结构域: DNA 结合结构域(DNA-binding domain)和转录激活结构域(transcription-activating domain)。
前者可识别DNA上的特异序列,并使转录激活结构域定位于所调节的基因的上游,转录激活结构域可同转录复合体的其他成分作用,启动它所调节的基因的转录。
二个结构域不但可在其连接区适当部位打开,仍具有各自的功能。
而且不同两结构域可重建发挥转录激活作用。
酵母双杂交系统利用杂交基因通过激活报道基因的表达探测蛋白-蛋白的相互作用。
主要有二类载体: a 含DNA -binding domain的载体; b 含DNA-activating domain的载体。
上述二类载体在构建融合基因时,测试蛋白基因与结构域基因必须在阅读框内融合。
融合基因在报告株中表达,其表达产物只有定位于核内才能驱动报告基因的转录。
例如GAL4-bd具有核定位序列(nuclear-localization sequence),而GAL4-ad没有。
因此,在GAL4-ad氨基端或羧基端应克隆来自SV40的T-抗原的一段序列作为核定位的序列。
双杂交系统的另一个重要的元件是报道株。
报道株指经改造的、含报道基因(reporter gene)的重组质粒的宿主细胞。
最常用的是酵母细胞,酵母细胞作为报道株的酵母双杂交系统具有许多优点: 〈1〉易于转化、便于回收扩增质粒。
〈2〉具有可直接进行选择的标记基因和特征性报道基因。
〈3〉酵母的内源性蛋白不易同来源于哺乳动物的蛋白结合。
一般编码一个蛋白的基因融合到明确的转录调控因子的DNA-结合结构域(如GAL4-bd,LexA-bd);另一个基因融合到转录激活结构域(如GAL4-ad,VP16)。
酵母双杂交实验报告一、实验目的酵母双杂交技术是一种用于研究蛋白质之间相互作用的分子生物学方法。
本次实验的目的是通过构建酵母双杂交载体,转化酵母细胞,筛选出与目标蛋白相互作用的蛋白质,从而深入了解蛋白质在细胞内的功能和调控机制。
二、实验原理酵母双杂交系统基于真核转录调控因子的结构和功能特点。
转录调控因子通常由两个结构域组成:DNA 结合结构域(BD)和转录激活结构域(AD)。
这两个结构域单独存在时不能激活转录,但当它们在空间上足够靠近时,则能够协同作用,激活报告基因的表达。
在酵母双杂交系统中,将编码目标蛋白(“诱饵”蛋白)的基因与BD 构建融合表达载体,将待检测的蛋白(“猎物”蛋白)的基因与 AD 构建融合表达载体。
如果“猎物”蛋白与“诱饵”蛋白相互作用,那么 BD 和 AD 就能够在空间上靠近,从而激活报告基因的表达。
通过检测报告基因的表达情况,就可以判断“猎物”蛋白与“诱饵”蛋白是否存在相互作用。
三、实验材料与试剂1、菌株与载体酵母菌株:AH109载体:pGBKT7(含 BD 序列)、pGADT7(含 AD 序列)2、工具酶与试剂盒限制性内切酶:EcoRI、BamHI 等T4 DNA 连接酶质粒提取试剂盒PCR 试剂盒3、培养基YPD 培养基SD 缺失培养基(Leu、Trp、His、Ade 等)4、试剂氨苄青霉素卡那霉素XαGal3-AT(3-氨基-1,2,4-三唑)5、实验仪器恒温培养箱离心机PCR 仪电泳仪凝胶成像系统四、实验步骤1、目的基因的扩增通过 PCR 技术从 cDNA 文库或基因组 DNA 中扩增出目标蛋白和待检测蛋白的编码基因。
设计合适的引物,在引物的 5'端引入限制性内切酶的酶切位点。
2、载体的构建分别用限制性内切酶对目的基因和载体进行双酶切,然后通过 T4 DNA 连接酶将目的基因连接到载体上。
将连接产物转化到大肠杆菌感受态细胞中,筛选出阳性克隆,提取质粒进行酶切鉴定和测序验证。
酵母双杂交实验是一种用于研究蛋白质之间相互作用的实验方法,它基于真核生物调控转录起始过程的机制。
酵母双杂交实验主要通过检测两个蛋白质在酵母细胞中的相互作用,从而揭示它们在生物体内的功能和相互作用。
酵母双杂交实验原理如下:
1. 构建重组质粒:首先,将目标蛋白质的表达载体与酵母双杂交系统中的启动子、激活子等调控元件进行重组,得到重组质粒。
2. 转化酵母细胞:将重组质粒转化到酵母细胞中,使目标蛋白质在酵母细胞中表达。
3. 筛选融合蛋白:利用选择性培养基,筛选出成功表达目标蛋白质的酵母细胞。
4. 鉴定蛋白质互作:将筛选出的酵母细胞进行混合、共培养,观察转录激活效应。
如果两个蛋白质之间存在相互作用,它们会结合在一起,形成完整的转录激活因子,从而激活报告基因的转录。
通过检测报告基因的表达水平,可以判断蛋白质之间是否发生相互作用以及作用强度。
5. 结果分析:根据实验结果,分析蛋白质之间的相互作用,进一步研究它们在生物体内的功能和调控机制。
目前常用的酵母双杂交系统有LexA系统和Gal4系统两种。
LexA系统基于原核蛋白LexA的DNA结合域和转录激活域,而Gal4系统则利用了酵母转录激活因子GAL4的DNA结合域和转录激活域。
这两种系统在实验操作和应用范围上略有不同,但均具有较高的灵敏度和特异性。