探索与表达规律
- 格式:doc
- 大小:95.00 KB
- 文档页数:4
5 探索与表达规律1.规律探索 规律探索是数学中常见的类型之一,是指从已知的几个数据或几个图形中发现其中的数据变化情况,并用代数式表示出来.规律探索体现了从特殊到一般,再从一般到特殊的数学思想.探索规律的一般方法是:(1)观察:从具体的、实际的问题出发,观察各个数量的特点及相互之间的变化规律;(2)猜想:由此及彼,合理联想,大胆猜想;(3)归纳:善于类比,从不同的事物中发现其相似或相同点;(4)验证:总结规律,作出结论,并取特殊值验证结论的正确性.探索规律问题,要从给出的几个有限的数据着手,认真观察其中的变化规律,尝试猜想、归纳其规律,并取特殊值代入验证. 在探索规律的过程中,要善于变换思维方式,这样可收到事半功倍的效果.【例1】 观察下列数表:根据数表中所反映的规律,猜想第6行与第6列的交叉点上的数应为__________,第n 行(n 为正整数)与第n列的交叉点上的数应为________.解析:通过观察、分析、比较可知,第1行与第1列的交叉点上的数是1,第2行与第2列的交叉点上的数是3,第3行与第3列的交叉点上的数是5,第4行与第4列的交叉点上的数是7,…,所以可猜想第6行与第6列的交叉点上的数是11,第n 行(n 为正整数)与第n 列的交叉点上的数应为2n -1.答案:11 2n -12.探索规律的常见类型及方法(1)数字规律和代数式规律常见的几种数字规律形式:①②(2)新运算的规律 新运算是指用特定的符号表示与加、减、乘、除不相同的一种规定运算. 新运算的实质是有理数的几种混合运算,关键是观察出用到了哪些运算,要特别注意运算的顺序.(3)图形规律探索图形规律的实质是用字母表示数,即列代数式.要从不同的角度分析,可用去括号、合并同类项验证规律.【例2-1】 符号“§”表示一种运算,它对一些数的运算结果如下:(1)§(1)=0,§(2)=1,§(3)=2,§(4)=3,… (2)§⎝⎛⎭⎫12=2,§⎝⎛⎭⎫13=3,§⎝⎛⎭⎫14=4,§⎝⎛⎭⎫15=5,… 利用上面的规律计算:§⎝⎛⎭⎫12 013-§(2 012).分析:从(1)中的运算可以看出,当括号内的数是整数时,运算的结果等于括号内的数减去1,所以§(2 012)=2011;从(2)中可以看出,当括号内的数是一个分子是1的分数时,运算的结果等于括号内那个数的倒数,所以§⎝⎛⎭⎫12 013=2 013.解:§⎝⎛⎭⎫12 013-§(2 012)=2 013-2 011=2.【例2-2】 观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( ).A .(2n +1)2B .(2n -1)2C .(n +2)2D .n 2解析:观察图形和下面的式子可以知道,1+8=1+8×1=9=32,1+8+16=1+8×1+8×2=52,1+8+16+24=1+8×1+8×2+8×3=72,…,其规律是:计算的结果是连续奇数的平方,所以1+8+16+24+…+8n =(2n +1)2.故选A.答案:A3.探索规律的应用常见的探索规律的应用:探索日历中的规律和折叠中的规律.(1)探索日历中的规律 在日历中一般我们可以从横行、竖列、斜列三个方向去寻找规律,当然也可以从其他角度去探索. ①横行:相邻两数相差1.如左下图所示:②竖列:相邻两数相差7.如右上图所示.③斜列:从左上到右下的斜列相邻两数相差8;从右上到左下的斜列相邻两数相差6.④日历中的3×3方框内的规律:在这9个方格中的数的和是中间方框中的数的9倍.若将中间数设为a ,则其余8个数可按规律如上图所示,则这9个数的和即为(a -8)+(a -7)+(a -6)+(a -1)+a +(a +1)+(a +6)+(a +7)+(a +8)=9a ,正好是中间数a 的9倍.(2)折叠中的规律 将一张纸折叠,每折叠一次就会得到纸的层数、折痕数,将这些数记录下来,找出规律,就可预测当折叠n 次后,相应的层数与折痕数.折叠次数:1,2,3,4,5,…,n .层数:2,4,8,16,32,…,2n .平行对折的折痕数:1,3,7,15,31,…,2n -1.____________________________________________________________________________________________________________________________________________________________________________________________________________________________ _______________________________________________________【例3-1】 2013年的元宵节是阳历2月24日,根据下面的日历,你知道春节和初夕分别是哪一天吗?请你填在下面的横线上:春节:2月__________日,除夕:2月__________日.解析:根据日历中竖列和横列的规律可以求出.如图,春节与元宵节在同一竖列中,根据竖列中相邻两数相差7,可知春节比元宵节少14,即24-14=10,春节是10日,根据横列中相邻相差1的规律,可知除夕是9日.答案:10 9【例3-2】将连续的偶数2,4,6,8,…排列成如右图所示的数表.(1)“十”字框内5个数的和,与框内中间的数18有什么关系?(2)若将“十”字框上、下、左、右平移,框住另外5个数,这5个数还有这样的规律吗?(3)设中间的数为a,用代数式表示“十”字框内5个数之和.分析:观察对比可以发现:左右相邻两数相差2,上下相邻两数相差12.再换另一组数,同样有这样的规律.解:(1)6+16+18+20+30=90,而90÷18=5,所以框内5个数的和是框内中间的数18的5倍.(2)将框上、下、左、右平移,任意框住5个数,同样有这样的规律.(3)若中间的数为a,则框住的5个数分别为a-12,a-2,a,a+2,a+12,其中a为偶数,故它们的和为(a -12)+(a-2)+a+(a+2)+(a+12)=5a.【例3-3】如果将一张长方形的纸,平行对折7次,展开后,会有__________条平行折痕,折痕会把这张长方形的纸分成__________个小长方形.解析:根据折叠中的规律:对折7次,即当n=7时,平行折痕数为2n-1=27-1=127(条),1条折痕能把长方形分成2个小长方形,2条能分成3个,…,127条折痕则分成128个小长方形.答案:127 128。
实践练习:观察以下日历
126
19125星期六
2518114星期五31
2417103星期四30231692星期三2922158星期二28
21147星期一2720136星期日
问题1:在 + 字形区域内,五个数之和与正中心何关系? 能用字母表示并验证这个关系吗? 问题2:在 H 形区域内,七个数之和与正中心的数有关系? 能用字母表示吗?
2.教材拓展
例1.如图a 是一个三角形,分别连接这个三角形三变的中点得到图b ,在分别连接图b 中间的小三角形三边中点,得到图c ,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题:
图a 图b 图c (1)将下表填写完整
图形编号
1 2 3 4 5 …… 三角形个数
1
5
9
(2) 在第n 个图形中有多少个三角形(用含n 的式子表示)
分析:第一个图形中有1个三角形,第二个图形中有5个三角形,第三个图形中有9个三角形,根据图中规律可知,每个图形中三角形的个数依次多4个。
所以第四个图形中有 个三角形,第五个图形中有 个三角形。
例2.做游戏:你在心里想好一个两位数,将十位数字乘2,然后加3,再将所得新数乘5,最后将得到的数加个位数字。
把你的结果告诉我,我就知道你心里想的两位数。
重复以上游戏,想一想为什么?
实践练习:按规律填空,并用字母表示一般规律:
① 2,4,6,8, ,12,14,… ②2,4,8, ,32,64,… ③1,3,7, ,31,… 尝试
1、按规律填空:
21,—61,121,—201,301, ,56
1
.。
3.3探索与表达规律1.探索数量关系,运用数学符号表示规律;2.通过运算验证规律;3.培养学生自主探究与合作交流的能力.重点探究数量关系,运用代数式表示规律的能力.难点用代数式表示实际问题中的规律.一、导入新课课件出示杨辉三角图,提出问题:你能猜想中间的数字是几吗?两边的呢?你能尝试写出下一层的数字吗?你是如何得到的?学生独立完成,教师点评.教师:这节课我们将一起探究数学中的规律.二、探究新知1.探索图形中的规律课件出示教材第96页第1个日历图.教师引导学生观察日历图,通过观察找到日历中每一行、每一列、每一条对角线上相邻两个数之间的关系,并提出问题:(1)日历图的套色方框中的9个数之和与该方框正中间的数有什么关系?学生独立思考后举手回答,教师点评.(2)这个关系对其他这样的方框成立吗?你能用代数式表示这个关系吗?学生小组讨论完毕后,派代表回答,教师引导学生验证结论的正确性并点评.(3)这个关系对任何一个月的日历都成立吗?为什么?学生小组讨论,并进行验证,找出一般性规律,派代表汇报讨论结果,教师点评.(4)你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示.学生独立思考,总结关系,然后小组内分享交流结果并汇报,最后由教师进行总评.课件出示教材第97页第2个日历图,提出问题:(1)如果将方框改为十字框,你能发现哪些规律?如果改为H形框呢?(2)你还能设计其他形状的包含数字规律的数框吗?学生小组讨论交流,教师点评.2.探究数字中的规律小亮和小丽在玩个小游戏.你在心里想好一个两位数,将这个两位数的十位数字乘2,然后加3,再将所得的和乘5,最后将得到的数加你想的那个两位数的个位数字.把你的结果告诉我,我就知道你心里想的两位数.学生讨论交流,共同探究其中的规律,从而激发起学生的学习兴趣.让学生以小组为单位,设计类似的数字游戏,并解释其中的道理.(1)一个三位数能否被3整除,只要看这个数的各数位上的数字之和能否被3整除.你能说明其中的道理吗?(2)一个四位数能否被3整除是否也有这样的规律?请说明理由.三、课堂练习1.教材第98页“随堂练习”.四、课堂小结通过本节课的学习,你有什么收获?找规律的一般步骤和方法:面对具体问题,首先对它的特例进行分析,然后猜想其规律,再用适当的代数式进行表示,最后检验得出结论.五、课后作业教材第98~99页第1,2题.课堂上,通过对日历的观察与分析,从不同角度进行思考,去探索日历中数与数之间的变化规律,用本章学习过的代数式表示规律;再以玩游戏的方式,让学生进一步巩固发现规律、用代数式表示规律的方法,并运用发现的规律来解决一些简单的问题,使学生体会数学就是一个发现规律、运用规律的过程,以此来激发学生的学习兴趣.本节课让学生通过动手实践与合作交流来完成对规律的探索、表达和验证过程,让学生充分展示自我、表现自我,在学习的过程中学会竞争与合作,增强团队互助合作的精神,提高学生的整体数学水平.☆问题解决策略:归纳1.能够利用从特殊到一般的归纳方法,从而发现数学结论、解决数学问题;2.体验从特殊到一般,再到特殊的数学思想.重点学会从特殊到一般的归纳方法.难点利用从特殊到一般的归纳方法解决问题.一、导入新课走近游乐园(1)一首永远唱不完的儿歌,你能用字母表示这首儿歌吗?1只青蛙1张嘴,2只眼睛4条腿,扑通1声跳下水.2只青蛙2张嘴,4只眼睛8条腿.扑通一声跳下水,3只青蛙3张嘴,6只眼睛12条腿,扑通1声跳下水……(2)联欢会上,小明按照4个红球、3个黄球、2个绿球、1个白球的顺序把气球串起来装饰会场,第52个气球是什么颜色?教师提出问题引导学生进行解决,初步感受探索规律.二、探究新知1.提出问题“低多边形风格”是一种数字艺术设计风格.它将整个区域分割为若干三角形,通过把相邻三角形涂上不同颜色,产生立体及光影的效果,随着三角形数量增加,效果更为斑斓绚丽.将长方形区域分割成三角形的过程是:在长方形内取一定数量的点,连同长方形的4个顶点,逐步连接这些点,保证所有连线不再相交产生新的点,直到长方形内所有区域都变成三角形.如图3-10,当长方形内有1个点时,可分得4个三角形;当长方形内有2个点时,可分得6个三角形(不计被分割的三角形).问题:当长方形内有35个点时,可分得多少个三角形?2.理解问题(1)先引导学生动手画一画,感受分割得到三角形的过程.(2)已知条件是什么?目标是什么?3.拟订计划(1)直接研究“长方形内有35个点”的情形,你遇到了什么困难?(2)哪些情形容易研究?从中你能发现什么规律?(3)你发现的规律正确吗?你能给出合理的解释吗?4.实施计划(1)先研究长方形内有三个点、四个点的情形,点数较少,易操作.(2)通过几种简单情形的数据,发现规律:长方形内点的个数每增加1,三角形的个数增加2.(3)得出结论:当长方形内有35个点的时候,分得的三角形个数是:4+2×34=725.回顾反思(1)从特殊到一般,当长方形内有n个点时,分得的三角形个数是多少?用含n的代数式来表示.归纳:4+2×(n-1)=2n+2(2)从一般再到特殊,当长方形内有100、1000、10000个点时,分得的三角形个数是多少?总结:在运用归纳策略寻找规律时,要先在若干简单情形中寻找相应的规律.初步发现规律后,可以通过更多的情形验证,再考虑一般情况.最后,试着给出合理的解释,并用数学语言简洁地表达规律.三、课堂练习教材P102~P103第1~4题.四、课堂小结本节课你有哪些收获呢?五、课后作业教材P107~P108第17,18,19题.本节课的教学过程中,教师通过设计不同的情景活动,引导学生去猜测,发现其中的规律,并尝试用代数式解释这个规律,让同学们体验从特殊到一般的教学思想.整个课堂同学们积极参与,合作交流,提高了他们探索、发现和归纳的能力.。
探索与表达规律(一)
教学设计
阜蒙县福兴地学校刘伟
学习目标:一,知识与技能
1、探索数量关系,并能解释具体问题中蕴含的一般规律或现象;
2、会用代数式表示简单问题中的数量关系。
二,过程与方法
培养学生观察、猜想、归纳、推理验证等发现问题的一般方法。
三,情感态度与价值观
在数学活动中,培养学生的交往协作能力和创新精神。
学习重点:探索实际问题中蕴涵的关系和规律。
学习难点:用字母、运算符号表示一般规律。
教学过程设计:
本节课教学过程遵循探究式教学原则,渗透“观察——猜想——归纳——验证”的数学学习方法,共设计了五大环节,即情境引入、合作探究、归纳提炼、拓展延伸、布置作业.
其具体内容与分析如下:
第一环节情境引入
出示日历的图片,日历是我们日常生活中常见的生活用品,但小小的日历中却蕴含着众多有趣的数学问题,今天就让我们一赶来探索一下日历中的数学,揭示出日历中的规律。
目的:通过见识生活中常见的事物,让学生感受数学无处不在,与我们的生活密切相关,激发学生的学习兴趣和探究欲望,为本节课作好情感、方法和思维铺垫。
第二环节合作探究
探究1:数的变化规律
内容:探索教材中的问题:日历中的数学规律。
1.请同学们快速记住日历中的数字并能准确的说出它们的位置.
2.将上述日历中的有关
数字隐藏,请同学填空,并
说说是以什么方法记忆日历的?
学生通过观察,找到日历中每一行、每一列、每一条对角线上相邻两数之间的关系.
3.用套色方框框住日历中的九个数,并让学生计算套色方框中这九个数的和.
并提问:
(1)请思考方框中九个数的和与正中间的数有什么关系?
(2)这个关系对十月份的日历成立,那对其他月份的日历成立吗?
从而得到猜想:蓝色方框中九个数之和=9×正中间的数
(3)我们应该如何进行验证?
学生根据方框中数的不确定性,引导他们想到用字母表示数,学生可能设任意一个方格的数为字母(任意),表示出其余的八个数,通过代数和运算发现,设正中间的数为字母计算较为简单,得到“问什么设什么”,根据代数和的运算验证了猜想的正确性.
从而得到规律:蓝色方框中九个数之和=9×正中间的数
(4)挑战:给出几个图形,如“十”字形、“H”形,“M”形,让学生以小组为单位对相应图形中数的规律进行探究,并用代数式表示验证规律,并分小组展示.
;
目的:
教学中用屏幕显示日历图中的套色方框,让学生自主探究问题串,然后生生之间、师生之间相互交流,目的在于通过学生自主探究和合作交流的学习方式,让师生共同经历探索数量关系、运用符号表示规律、通过计算验证规律的过程,进一步发展其符号感;让学生经历从特殊到一般再到特殊的认识过程,发展其辩证唯物主义观点。
鼓励学生用不同的思维方式,可以有不同设法,分别尝试比较,得出最佳方案,培养学生发散思维能力。
通过探讨、归纳来总结规律是这一环节的主要目的。
第三环节 归纳提炼
内容:
请学生谈谈探索规律的基本知识和基本方法。
目的:
由师生交流来“归纳小结、评价升华”,一方面是通过对上面问题回顾帮学生梳理知识体系,归纳学习方法,了解其学习情况,提升其思维层次。
另一方面是给学生准确、全面表述自己观点的机会,并培养学生及时总结、归纳知识的好习惯。
第四环节 拓展延伸
内容:提供能够吸引学生、且富有规律的习题,让学生在从事探索性活动中取得成功感。
探究2: 图形的变化规律
内容:出示两种简单的图形探索规律,然后再鼓励学生进行挑战
用棋子摆成以下图案,并填写表格:
①填写下表:
②摆第n个图案需要
颗棋子.
让学生认识到有时仅从整个图形是不容易发现规律的,需要借助于拆分来猜想得到规律,并用具体图形来验证.
目的:
教学中学生生最直接的思考方式就是从图形上获取规律,教师用课件显示图形摆放规律,让学生经历从感性到理性的思维上升过程,从而从图形的摆放方式上探索数量关系、运用符号表示规律、通过计算验证规律,进一步发展其符号感;但是我们要鼓励学生用不同的思维方式,所以教师可以引导学生将图形整体组合进行拆分来研究,得到规律。
探究3:数字的排列规律
内容:出示问题,1,3,5,7,9,11,,,17,19------
1X11= 11X111= 111X1111=
让学生在观察数字排列时,发现其中所隐含的规律。
第五环节布置作业
内容:
问题解决1,2.
目的:
本环节的目的是为了检测学生对本节知识的理解和掌握情况,并巩固所学知识,实现了探索规律从“生活问题数学化、数学问题生活化”的相互转化。