一阶二阶无源所有滤波器正确设计
- 格式:doc
- 大小:143.71 KB
- 文档页数:5
竭诚为您提供优质文档/双击可除低通滤波器实验报告篇一:绝对经典的低通滤波器设计报告经典无源低通滤波器的设计团队:梦知队团结奋进,求知创新,追求卓越,放飞梦想队员:日期:20XX.12.10目录第一章一阶无源Rc低通滤波电路的构建 (3)1.1理论分析 (3)1.2电路组成 (4)1.3一阶无源Rc低通滤波电路性能测试 (5)1.3.1正弦信号源仿真与实测 (5)1.3.2三角信号源仿真与实测 (10)1.3.3方波信号源仿真与实测 (15)第二章二阶无源Lc低通滤波电路的构建 (21)2.1理论分析 (21)2.2电路组成 (22)2.3二阶无源Lc带通滤波电路性能测试 (23)2.3.1正弦信号源仿真与实测 (23)2.3.2三角信号源仿真与实测 (28)2.3.3方波信号源仿真与实测 (33)第三章结论与误差分析 (39)3.1结论 (39)3.2误差分析 (40)第一章一阶无源Rc低通滤波电路的构建1.1理论分析滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。
也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。
低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。
图1Rc低通滤波器基本原理图当输入是直流时,输出电压等于输入电压,因为xc无限大。
当输入频率增加时,xc减小,也导致Vout逐渐减小,直到xc=R。
此时的频率为滤波器的特征频率fc。
解出,得:在任何频率下,应用分压公式可得输出电压大小为:因为在=为:时,xc=R,特征频率下的输出电压用分压公式可以表述这些计算说明当xc=R时,输出为输入的70.7%。
按照定义,此时的频率称为特征频率。
1.2电路组成图2-一阶Rc电路multisim仿真电路原理图图3-一阶Rc实物电路原理图电路参数:c=1.0μFR1=50ΩR2=50ΩR3=20ΩR4=20ΩR5=20Ω1.3一阶无源Rc滤波器电路性能测试1.3.1正弦信号仿真与实测对于一阶无源Rc滤波器电路,我们用100hz、1000hz、10000hz三种不同正弦频率信号检测,其仿真与实测电路图如下:篇二:低通滤波器的设计沈阳航空航天大学课程设计(说明书)班级/学号学生姓名指导教师沈阳航空航天大学课程名称电子技术综合课程设计院(系)专业班级学号姓名课程设计题目低通滤波器的设计课程设计时间:年月日至年月1日课程设计的内容及要求:一、设计说明设计一个低通滤波器。
二阶无源滤波器一、实验目的1. 了解RC 无源滤波器的种类、基本结构及其特性。
2. 学会列写无源滤波器网络函数的方法。
3. 学会测量无源滤波器幅频特性的方法。
二、实验内容1. 列写无源低通、高通、带通和带阻滤波器的网络函数。
2. 用示波器观察二阶无源滤波器的幅频特性曲线。
三、实验仪器1. 信号与系统实验箱 一台 2. 信号系统实验平台3. 二阶无源滤波器模块(DYT3000-61) 一块 4. 20MHz 双踪示波器 一台 5. 连接线若干四、实验原理滤波器是一种能使有用频率信号通过而同时抑制(或大为衰减)无用频率信号的电子装置。
工程上常用它作信号处理、数据传送和抑制干扰等。
这里主要讨论模拟滤波器。
1. 基本概念及初步定义滤波器的一般结构如图17-1所示。
图中的V i (t )表示输入信号,V o (t )为输出信号。
假设滤波器是一个线性时不变网络,则在复频域内其传递函数(系统函数)为()()()o i V s A s V s图17-1 滤波电路的一般结构式中A (s )是滤波电路的电压传递函数,一般为复数。
对于频率来说(s =j ω)则有()()()j A j A j e φωωω= (式17-1)这里()A j ω为传递函数的模,()ϕω为其相位角。
此外,在滤波电路中关心的另一个量是时延τ(ω),它定义为()()()d s d ϕωτωω=-通常用幅频响应来表征一个滤波电路的特性,欲使信号通过滤波器的失真很小,则相位和时延响应亦需考虑。
当相位响应φ(ω)作线性变化,即时延响应τ(ω)为常数时,输出信号才可能避免失真。
2. 滤波电路的分类对于幅频响应,通常把能够通过的信号频率范围定义为通带,而把受阻或衰减的信号频率范围称为阻带,通带和阻带的界限频率叫做截止频率。
理想滤波电路在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减(()0A j ω=)。
通常通带和阻带的相互位置不同,滤波电路通常可分为以下几类:① 低通滤波器低通滤波电路的幅频响应如图17-2(a )所示,图中A 0表示低频增益∣A ∣增益的幅值。
摘要 (3)一、课程设计目的: (4)二、课程设计仪器 (4)三、设计滤波器的整体思路 (4)1、设计思路 (4)2、设计指标:截止频率为10500Hz的高通滤波器。
(4)3、滤波器的有关参数 (4)四、一阶高通滤波电路设计 (5)1.定义:让某一频率以上的信号分量通过,而对该频率以下的信号分量大大抑制的电容、电感与电阻等器件的组合装置。
(5)2.一阶高通滤波器电路图如下: (5)五、电路板制作(规格:7cm*5cm) (7)六、频谱函数测试 (8)七、误差分析 (13)八、实验总结: (14)八、心得体会 (14)摘要滤波电路是一种能使有用频率信号通过而同时抑制无用频率信号的电子装置。
工程上常用它来作信号处理、数据传输和抑制干扰等。
我们现在主要讨论模拟滤波器。
以往这种滤波电路主要采用无源R、L和C组成,20世纪60年代以来,集成运放获得了迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。
此外,由于集成运放的开环电压和输入阻抗均很高,输出阻抗又低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。
但是,集成运放的带宽有限,所以目前有缘滤波电路的工作频率难以做的很高,以及难于对功率信号进行滤波,这是它的不足之处。
在实际电子系统中,输入信号往往是含有多种频率成分的复杂信号,可能还会混入各种噪声、干扰及其它无用频率的信号,因此需要设法将有用频率信号挑选出来、将无用信号频率抑制掉。
完成此任务需要具有选频功能的电路。
关键词:滤波运放信号选频一、课程设计目的:(1)熟悉常用仪表,了解电路调试的基本方法 ;(2)进一步提高自己的动手实践能力;(3)掌握专业课程设计报告;(4)设计一个截止频率为10500Hz 的高通滤波器 。
二、课程设计仪器三、设计滤波器的整体思路1、设计思路(1)首先根据滤波器的基本原理,设计出其基本组成框图。
(2)根据有源高通滤波器的原理图,按照层次化、模块化、 参数化的设计思路,完成设计电路。
【最新整理,下载后即可编辑】低通无源滤波器仿真与分析一、滤波器定义所谓滤波器(filter),是一种用来消除干扰杂讯的器件,对输入或输出的信号中特定频率的频点或该频点以外的频率进行有效滤除的电路,就是滤波器,其功能就是得到一个特定频率或消除一个特定频率。
一般可实为一个可实现的线性时不变系统。
二、滤波器的分类常用的滤波器按以下类型进行分类。
1)按所处理的信号:按所处理的信号分为模拟滤波器和数字滤波器两种。
2)按所通过信号的频段按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。
低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。
高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。
带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。
带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。
3)按所采用的元器件按所采用的元器件分为无源和有源滤波器两种。
无源滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。
这类滤波器的优点是:电路比较简单,不需要直流电源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。
有源滤波器:由无源元件(一般用R 和C)和有源器件(如集成运算放大器)组成。
这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。
4) 按照阶数来分通过传递函数的阶数来确定滤波器的分类。
三、网络的频率响应在时域中,设输入为)(t x ,输出为)(t y ,滤波器的脉冲响应函数为)(t h 。
无源低通滤波器的设计与仿真摘要:无源低通滤波器应用范围十分广泛。
本文分别就无源低通滤波器中RC 滤波器和LC 滤波器的电路结构和传递函数进行分析后,设计出截止角频率为10Krad/s 的无源低通滤波器,并利用Matlab 下的simulink 环境进行仿真,比较滤波器的滤波效果。
关键词:RC 滤波器;LC 滤波器;Matlab0. 引言滤波器是一种用来消除干扰的器件,有能力进行信号处理的装置可以称为滤波器。
无源滤波器具有结构简单、成本低廉、运行可靠性较高等优点,如何合理地设计和优化其参数,对保证电网谐波治理和无功补偿的效果,提高系统的整体性能起着十分重要的作用。
滤波器按所通过信号的频段分为低通、高通、带通和带阻四种。
低通滤波器允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声;高通滤波器允许信号中的高频分量通过,抑制低频或直流分量;带通滤波器它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声;带阻滤波器抑制一定频段内的信号,允许该频段以外的信号通过。
1.无源低通滤波器类型及其特性分析1.1RC 滤波器无源RC 低通滤波器的组成元件为电阻R 与电容C 。
1.1.1 一阶RC 低通滤波器一阶RC 低通滤波器的电路如图1-1所示。
图1-1 一阶RC 低通滤波器由拉普拉斯变换法分析线性电路知该系统传递函数()G S 为:11()1SC G S RCS R SC==++(1-1) 取S j ω=,得:1()1G jw jRC ω=+ 令T=RC,则:幅频特性()A ω=,相频特性()arctan()T ϕωω=-故,当ω很小时,A(ω)→1,信号几乎不衰减;当ω很大时,A(ω)→0,信号几乎完全被衰减,不能通过。
当增益的分贝数下降3dB时,即()A ω==,得到截止频率c ω,此时c T ω=1,1/c RC ω=.令c ω=10Krad/s,R 取100Ω,C 取1F μ,则1()0.00011G S S =+.利用matlab 仿真软件,得到波特图如图1-2所示。
一阶低通滤波器有源低通滤波器计算利用R、L、C所组成的滤波电路称作无源滤波器,它有很多的缺点。
其中的电感L本身具有电阻与电容,使得输出结果会偏离理想值,而且会消耗电能。
若只利用 R、C再附加放大器则形成主动滤波器,它有很多的优点,例如:不使用电感使得输出值趋近理想值;在带通范围能提高增益,减少损失;用放大器隔离输出、入 端,使之可以使用多级串联。
1、一阶低通滤波器(一节RC网路) 838电子截止频率:126计算公式大全频率低于时→电压增益频率高于时→衰减斜率:每10倍频率20dB图1 电路组成 图2 响应曲线所谓低通滤波器(LPS:low pass filter)是允许低频讯号通过,而不允许高频讯号通过的滤波器。
图3所示是RC低通滤波电路,其电压回路公式:其增益可得实际增益为增益值是频率的函数,在低频区ω极小, RωC << 1,A V(ω) = 1讯号可通;在高频区ω极大, RωC >> 1,A V(ω) = 0信号不通。
RωC = 1时是通与不通的临界点,此时的频率定义为截止频率:。
图4所示RC低通滤波电路的增益随频率的变化是缓慢的,故其不是一个好的滤波电路。
图5所示是低通有源滤波器,它的增益显示在图6。
低通有源滤波器在低频区的增益为:V O /VI=(R1+R2)/R2其推导如下:在低频区RC串联之电位降都在电容,故V in = V C = Vp。
见图5,因负回馈,电路在线性工作区,于是我们有关系式:,可知电容C之电位降与电阻R2之电位降相同,又流过R1与R2之电流相同均为I,故得到电脑桌面背景图片在高频区RC串联之电位降都在电阻,故V C = V p = 0。
因负回馈,电路在线性工作区,于是有关系式:,得到R2之电位降为0,I = 0,V0 = 0。
图3 RC低通无源滤波电路图4 RC低通滤波电路之输出讯号振幅与频率的关系图5 低通有源滤波器图6 低通主动滤波器增益二阶低通滤波器(二节RC网路)有源二阶低通滤波器计算(二节RC网路)电路原理截止频率频率低于时→电压增益频率高于时→衰减斜率:每10倍频率40 dBEX:如图所示电路(假设为理想OP),当频率为159kHz时,其电压增益约为? 详解:(1)该电路为低通主动滤波器,所以其高频截止频率(f H)为(2)由于OPA为非反相放大器,所以其(倍),若以dB值表示,则为20 logAv =20 log10=20(dB)(3)输入频率159kHz为截止频率15.9kHz的10倍,由于输入讯号的频率每上升10倍时,该低通主动滤波器的增益将下降20dB(-20dB),故当输入讯号的频率为159kHz时,其电压增益已降为0dB(20-20=0)有源一阶高通滤波器计算(一节RC网路)有源一阶高通滤波器(一节RC网路)电路 响应曲线截止频率频率高于F L时→电压增益频率低于F L时→增加斜率:每10倍频率20dB二阶高通滤波器(二节RC网路) 二阶高通滤波器(二节RC网路) 电路源理 频率计算截止频率频率高于F L时→电压增益频率低于F L时→增加斜率:每10倍频率40 dB无源带通滤波器若想要接收某一特定频率的电波,需要用滤波电路来做筛选。