1高考函数概念、方法、题型、易误点及应试技巧总结函数
- 格式:doc
- 大小:1.27 MB
- 文档页数:11
高考数学函数基础知识及常见陷阱总结函数作为高考数学中的重要内容,是很多同学学习的难点。
为了帮助大家更好地掌握函数知识,提高解题能力,下面将对高考数学函数的基础知识及常见陷阱进行详细总结。
一、函数的定义函数是一种特殊的对应关系,对于定义域内的每一个自变量的值,都有唯一确定的因变量的值与之对应。
简单来说,就是一个输入对应一个输出。
二、函数的三要素1、定义域定义域是函数自变量的取值范围。
在求解函数定义域时,需要考虑分式的分母不为零、偶次根式的被开方数非负、对数函数的真数大于零等情况。
例如,函数$f(x)=\frac{1}{x-1}$,其定义域为$x\neq 1$;函数$f(x)=\sqrt{x+2}$,其定义域为$x\geq -2$;函数$f(x)=\log_2(x-1)$,其定义域为$x>1$。
2、值域值域是函数因变量的取值范围。
求值域的方法有很多,比如观察法、配方法、换元法等。
3、对应法则对应法则是将定义域中的每个自变量值映射到值域中的因变量值的规则。
三、函数的常见类型1、一次函数形如$f(x)=kx+b$($k\neq 0$)的函数称为一次函数。
其图像是一条直线,当$k>0$时,函数单调递增;当$k<0$时,函数单调递减。
2、二次函数二次函数的一般式为$f(x)=ax^2+bx+c$($a\neq 0$)。
其图像是一条抛物线,对称轴为$x=\frac{b}{2a}$。
当$a>0$时,抛物线开口向上,函数在对称轴处取得最小值;当$a<0$时,抛物线开口向下,函数在对称轴处取得最大值。
3、反比例函数反比例函数的表达式为$f(x)=\frac{k}{x}$($k\neq 0$),其图像是双曲线。
当$k>0$时,函数在一、三象限,在每个象限内单调递减;当$k<0$时,函数在二、四象限,在每个象限内单调递增。
4、指数函数指数函数的形式为$f(x)=a^x$($a>0$且$a\neq 1$)。
高中数学知识点总结——函数_高三数学知识点总结函数是高中数学中一个重要的知识点,涉及到函数的概念、性质、图像、分类和应用等方面。
以下是高中数学中关于函数的知识点总结。
1、函数的定义:对于一个自变量集合D和一个值域集合R,如果存在一种规律使得对于任意一个自变量x∈D,都能唯一确定一个值y∈R,则称y是x的函数,记作y=f(x),其中x称为自变量,y称为因变量,f称为函数。
2、函数的表示方法:(1)显式表示法:y=f(x)(2)参数表示法:y=f(x,a,b,c……)(1)定义域:x的取值范围(2)值域:对于定义域中的每一个x,其得到的函数值y的集合(3)奇偶性:f(x)=f(-x)时,称函数f(x)为偶函数;f(x)=-f(-x)时,称函数f(x)为奇函数;对于任意函数f(x),其可分解为奇函数和偶函数的和(4)单调性:若对于定义域D内的任意两个数x1<x2,都有f(x1)<f(x2),则函数f(x)在D内单调递增;若对于定义域D内的任意两个数x1<x2,都有f(x1)>f(x2),则函数f(x)在D内单调递减;若函数f(x)在D内单调递增或单调递减,则称其为单调函数(5)周期性:若存在一个正数T,使得对于定义域D内的任意x,均有f(x+T)=f(x),则称函数f(x)为周期函数,T称为函数的周期4、函数的图像:(1)一般函数的图像:曲线(2)奇函数的图像:关于原点对称(4)周期函数的图像:具有一定的对称性(1)初等函数:常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数(2)组合函数:由多个初等函数组合而成(3)参数方程、隐函数、微积分中的函数等函数在数学中的应用范围非常广泛,涉及到数学、物理、化学、工程、生物等多个领域。
例如:(1)最值问题(2)曲线的切线和法线(3)求函数的零点、极值、间断点(4)微积分、求导和积分(5)奇偶性的应用综上所述,函数是高中数学中的重要知识点,需要掌握其定义、性质、分类和应用等方面的内容。
高考数学应试技巧之函数分析在高考数学中,函数分析是一个非常重要的考点,也是考试中经常出现的内容。
因此,学生需要在平时的学习中提前打好函数分析的基础,掌握一些应试技巧,以便在考试中更加得心应手。
一、函数的基本性质在函数分析中,首先要掌握函数的基本性质,例如奇偶性、增减性和单调性等。
通过对函数的基本性质的分析,可以对题目进行快速的判断和解答。
例如,若题目中给出函数f(x)为奇函数,则可以很快推出f(-x)=-f(x),这样就可以节省计算时间。
二、导数的应用导数是函数分析中重要的概念之一,也是计算函数极值、凹凸性等问题的基础。
在考试中,学生需要掌握导数计算的方法,熟练掌握导数的应用以及判断函数的单调性、凹凸性等。
通过对导数的应用,可以快速解决许多涉及极值和最值的问题,提升应试效率。
三、反函数的性质反函数是函数分析中的重要概念,它与函数的性质有着密切的关系。
在应试过程中,若难以直接对函数进行分析和判断,则可以采用反函数进行求解。
因此,学生需要掌握反函数的计算方法和反函数的基本性质,在考试中可以更加灵活运用。
四、极限的计算极限是数学中的核心概念之一,也是函数分析中不可或缺的一部分。
掌握函数极限的计算方法,可以在考试中更加快速、高效地解答问题。
此外,还可以通过极限的计算,熟练掌握函数的连续性和可导性等知识点,提高解题能力。
综上所述,高考数学中的函数分析是一个重要的考点,需要学生在平时的学习中加强掌握。
学生可以通过掌握函数的基本性质、导数的应用、反函数的性质和极限的计算方法等,提高应试能力和解题速度。
同时,学生也需要根据自身的实际情况,针对性地进行练习和巩固,才能更好地应对高考数学。
高考函数总结一、函数的概念与表示 1、函数 (1)函数的定义①原始定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量。
②近代定义:设A 、B 都是非空的数的集合,f :x →y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A →B 就叫做函数,记作y=f(x),其中B y A x ∈∈,,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域。
B C ⊆(2)构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式。
二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法:(1) 定义法 (2)变量代换法 (3)待定系数法(4)函数方程法 (5)参数法 (6)实际问题2、函数的定义域:要使函数有意义的自变量x 的取值的集合。
求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。
3。
复合函数定义域:已知f (x )的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式b x g a ≤≤)(解出。
三、函数的值域 1.函数的值域的定义在函数y=f (x )中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。
2.确定函数的值域的原则①当函数y=f (x )用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f (x )用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=f(x )用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f (x )由实际问题给出时,函数的值域由问题的实际意义确定。
数学高考知识点总结函数一、函数的基本概念1.1 函数的定义在数学中,函数是一种对应关系,它描述了一个集合中的每个元素与另一个集合中的唯一元素之间的关系。
如果对于集合X中的每一个元素x,都有集合Y中的唯一元素y与之对应,那么我们就称这种对应关系为函数。
通常用f(x)表示函数,其中x是自变量,f(x)是因变量。
1.2 函数的表示函数可以用不同的形式进行表示,常见的表示形式包括:① 变量关系式表示:y=f(x)或者y=f(x₁,x₂,…,xₙ)。
② 表格表示:将自变量和因变量的对应关系列成表格。
③ 图像表示:通过绘制函数的图像来表示函数的关系。
二、函数的性质2.1 奇函数和偶函数奇函数和偶函数是函数的一种性质,它们的定义如下:① 奇函数:如果对于任意的x,都有f(-x)=-f(x),那么我们称函数f(x)是奇函数。
② 偶函数:如果对于任意的x,都有f(-x)=f(x),那么我们称函数f(x)是偶函数。
奇函数以原点对称,而偶函数以y轴对称。
2.2 周期函数如果函数f(x)满足对于任意的x,都有f(x+T)=f(x),其中T为一个正常数,那么我们称函数f(x)是周期函数,T称为函数的周期。
2.3 单调性函数的单调性是指函数在定义域内的增减性质,可以分为严格单调增、严格单调减、非严格单调增、非严格单调减四种类型。
2.4 凹凸性函数的凹凸性描述了函数图像的凹凸形状,它可以分为凹函数和凸函数两种类型。
2.5 极值函数的极值是指函数在一定区间内取得最大值或最小值的点,可以分为最大值和最小值两种。
三、函数的图像3.1 函数的图像基本性质函数的图像是函数在平面直角坐标系中的几何形象,它具有以下基本性质:① 函数的图像可以用方程y=f(x)来表示。
② 函数的图像关于y轴对称,当且仅当函数f(-x)=f(x)时。
③ 函数的图像可以用表格来表示,通过将自变量和因变量的对应关系列成表格。
3.2 常见函数的图像常见的函数包括一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等,它们都有各自的特点和图像形状。
高考函数知识点和题型整理大全函数是高考数学中的一个重要知识点,几乎贯穿了整个高中数学学习的内容。
它是数学与实际问题相结合的桥梁,也是解决复杂计算和推理问题的基础工具。
本文将整理高考函数知识点和相关题型,帮助同学们系统地回顾和总结。
一、函数的定义与性质1. 函数的定义:若给定数集A和数集B,对于每一个属于A的元素x,通过一个确定的法则f,可以得出B中唯一确定的元素y与之对应,那么就称f为从A到B的一个函数。
2. 函数的性质:自变量、因变量、定义域、值域、图像与映射关系等。
二、常见函数类型及其性质1. 一次函数:一次函数是函数的一种特殊类型,其形式为y=ax+b,其中a和b 为常数,a≠0。
性质:函数图像为一条直线,斜率为a,截距为b;增减性与性质。
2. 二次函数:二次函数是函数的一种特殊类型,其形式为y=ax^2+bx+c,其中a、b和c为常数,a≠0。
性质:函数图像为一条抛物线,开口的方向由a的正负决定;顶点坐标与坐标轴交点等。
3. 幂函数:幂函数是函数的一种特殊类型,形式为y=x^a,其中a为常数。
性质:函数图像与幂指数a的奇偶性相关;增减性与性质。
4. 指数函数:指数函数是函数的一种特殊类型,形式为y=a^x,其中a为常数且a>0且a≠1。
性质:函数图像通过点(0, 1);增减性与性质。
5. 对数函数:对数函数是函数的一种特殊类型,形式为y=loga(x),其中a为常数且a>0且a≠1。
性质:函数图像通过点(1, 0);增减性与性质。
6. 三角函数:三角函数是函数的一种特殊类型,包括正弦函数、余弦函数和正切函数等。
性质:函数图像的周期、对称性、单调性等。
三、函数的运算与复合1. 函数的四则运算:函数的加减乘除运算与性质。
2. 函数的复合:函数的复合运算与性质。
四、函数的图像与方程1. 方程的解与函数的零点:求解方程与函数的零点之间的关系。
2. 函数图像与方程的联系:根据函数图像求解方程,根据方程确定函数图像等。
高三函数必背知识点总结一、函数的概念及定义函数是数学中常见的概念,它描述了一个输入与输出之间的对应关系。
在数学中,函数可以定义为:设有两个非空的数集A和B,如果对于A中的任意一个元素a,都在B中有唯一的确定元素b与之对应,那么就称这种对应关系为函数。
二、函数的表示方法1. 用公式表示:函数可以通过一个公式来表示,例如:f(x) = x^2。
2. 用图像表示:函数可以通过绘制其图像来表示,图像上的每个点表示函数的输入和输出。
3. 用数据表格表示:函数可以通过一个数据表格来表示,表格中的每一列对应于函数的输入和输出。
三、函数的分类函数根据其定义域和值域的性质可以分为以下几类:1. 一次函数:一次函数的表达式为y = kx + b,其中k和b为常数。
2. 二次函数:二次函数的表达式为y = ax^2 + bx + c,其中a、b和c为常数。
3. 指数函数:指数函数的表达式为y = a^x,其中a为常数且大于0且不等于1。
4. 对数函数:对数函数的表达式为y = loga(x),其中a为常数且大于0且不等于1。
5. 三角函数:包括正弦函数、余弦函数和正切函数等。
四、函数的性质1. 定义域和值域:函数的定义域是所有可能的输入值的集合,而值域是所有可能的输出值的集合。
2. 奇偶性:如果对于定义域内的任意x,都有f(-x) = f(x),则函数为偶函数;如果对于定义域内的任意x,都有f(-x) = -f(x),则函数为奇函数。
3. 对称轴:函数的对称轴是对称函数图像的一条直线,对称轴对应于函数为偶函数或奇函数的特点。
4. 单调性:函数的单调性指函数在定义域内的增减情况,可以分为递增和递减两种单调性。
5. 极值点:函数在某个定义域内的局部最大值或最小值点称为极值点。
6. 零点:函数的零点指函数等于零的点,也称为函数的根。
五、常用函数图像与性质1. 一次函数图像为一条直线,斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点。
高一数学函数题型及解题技巧总结一、基本概念函数是数学中非常重要的概念,它描述了输入和输出之间的关系。
在高中数学课程中,函数是一个重要的内容,学生需要掌握函数的基本概念以及相关的解题技巧。
1.1函数的定义函数是一种特殊的关系,它将一个或多个输入值映射到一个输出值。
数学上通常用f(x)表示函数,其中x是自变量,f(x)是因变量。
函数可以用一个公式、一个图象、一个表格或者一段描述来表示。
1.2函数的分类函数可以根据其性质进行分类,常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
每种函数都有其特定的表达式和性质。
1.3函数的性质函数有很多性质,例如定义域、值域、奇偶性、单调性、周期性等。
学生需要了解这些性质,以便在解题中灵活运用。
二、题型及解题技巧在高一数学中,关于函数的题型多种多样,接下来我们将针对常见的函数题型及解题技巧进行总结。
2.1函数的图象和性质这种题型要求学生根据函数的表达式画出函数的图象,并分析其性质。
解题时,学生需要掌握函数的图象特征,如开口方向、交点、极值点等,可以通过计算一阶导数和二阶导数来判断函数的单调性和凹凸性。
2.2函数的定义域和值域在这类题型中,学生需要根据函数的表达式确定其定义域和值域。
解题时,可以通过分析函数的分式和根式部分来确定函数的定义域和值域,需要注意的是,对于分式函数,分母不能为0。
2.3函数的性质和变化这类题型要求学生根据函数的表达式和图象,分析其性质和变化规律。
解题时,学生可以通过变换函数的参数来研究函数的性质和图象的变化。
2.4函数的应用函数在实际问题中有着广泛的应用,如匀速运动、生长模型、利润最大化等。
在解决这类问题时,学生需要将实际问题转化为数学模型,并根据函数的性质来解决问题。
2.5函数的求值与方程这类题型包括函数值的计算和方程的解法。
解题时,学生需要根据函数的表达式和条件,求出函数的值或解出方程。
在解决方程时,可以通过化简、配方、倒代入等方法来得到解。
高考函数知识点总结一、函数的概念1.1 函数的定义函数是一种特殊的对应关系,即对于一个自变量的取值,对应有唯一的因变量的取值。
形式化地说,设X和Y是两个非空集合,如果存在一个由X的元素到Y的元素的对应关系f,即X中的每个元素x都对应Y中唯一确定的一个元素y,那么这个对应关系就叫做函数。
1.2 函数的表示函数一般用一对括号表示,即f(x),其中x为自变量,f(x)为因变量。
函数可以用各种形式来表示,例如用文字描述、用公式表示、用图象表示等。
1.3 函数的符号表示如果函数f(x)的自变量x是属于实数集合R的,那么就称f(x)为实函数。
如果函数f(x)的因变量是属于复数集合C的,那么就称f(x)为复函数。
通常情况下,函数的符号表示可以是简单的字母,如y=f(x),也可以是复杂的组合,如y=f(g(x))。
1.4 函数的定义域与值域函数的定义域是指自变量x的取值范围,而值域是指因变量f(x)的取值范围。
函数的定义域和值域是函数最基本的性质,准确地找出函数的定义域和值域对于理解函数的性质和规律至关重要。
1.5 函数的图象函数的图象是一个坐标系中的点的集合,它可以用来直观地表示函数的性质和规律。
对于某些函数,可以用计算机软件或手工绘图的方式获得其图象,从而更好地理解函数的性态。
二、基本初等函数2.1 一次函数一次函数是指函数f(x)=ax+b(a≠0)。
一次函数是一种最简单的函数形式,它在平面直角坐标系中的图象是一条直线,因此也被称为线性函数。
一次函数的特点是斜率a和截距b。
2.2 二次函数二次函数是指函数f(x)=ax^2+bx+c(a≠0)。
二次函数在平面直角坐标系中的图象是一个抛物线,它具有对称轴、顶点、开口方向等性质。
二次函数又分为开口向上和开口向下两种情况。
2.3 幂函数幂函数是指函数f(x)=x^a(a为常数)。
当a是正整数时,幂函数是指数函数;当a是分数时,幂函数是根式函数。
幂函数的性质包括增减性、奇偶性、周期性等。
有关高考函数知识点总结在高考数学考试中,函数是一个非常重要的知识点,因此掌握函数的相关知识对于高中生来说是非常重要的。
函数是数学中的一个重要概念,它在解决实际问题和研究数学规律中起着非常重要的作用。
在高考中,函数的知识点主要包括函数的定义、性质、图像、基本初等函数、函数的运算、函数的求导等内容。
下面我们就来总结一下高考中常见的函数知识点,希望对广大高中生有所帮助。
一、函数的定义1.1 函数的基本概念函数是一种特殊的关系,它是一个变量到另一个变量的映射,即对于每一个自变量,都有唯一确定的因变量与之对应。
函数通常用数学式子来表示,例如y = f(x)。
1.2 函数的定义域和值域函数的定义域是指函数的自变量可能取值的集合,值域则是函数的因变量可能取值的集合。
在实际问题中,定义域和值域往往是由问题的条件限定的。
1.3 函数与方程函数与方程是两种不同的数学概念,函数是自变量到因变量的映射关系,而方程则是两个表达式之间的等式关系。
但在实际问题中,函数与方程往往是相互联系的,通过函数关系可以解决一些方程问题。
二、函数的性质2.1 奇函数与偶函数奇函数是指满足f(-x) = -f(x)的函数,偶函数是指满足f(-x) = f(x)的函数。
奇函数的图像通常具有中心对称性,而偶函数的图像通常具有原点对称性。
2.2 单调性函数的单调性是指函数在定义域内的增减性质。
若函数在定义域内递增,则称为增函数;若函数在定义域内递减,则称为减函数。
2.3 周期性周期函数是指满足f(x+T) = f(x)的函数,其中T为正数,称为函数的周期。
周期函数的图像通常具有一定的规律性,例如正弦函数、余弦函数等。
三、函数的图像3.1 函数的图像函数的图像是函数关系在平面直角坐标系中的几何表示,它可以直观显示函数的性质和规律。
常见的函数图像有直线、抛物线、三角函数曲线等。
3.2 函数的对称性函数的对称性指函数图像具有某种对称关系。
常见的对称性有轴对称、中心对称等。
函 数概念、方法、题型、易误点及应试技巧总结1. 映射f : A →B 的概念。
在理解映射概念时要注意:⑴A 中元素必须都有象且唯一; ⑵B 中元素不一定都有原象,但原象不一定唯一。
如(1)设:f M N →是集合M 到N 的映射,下列说法正确的是A 、M 中每一个元素在N 中必有象B 、N 中每一个元素在M 中必有原象C 、N 中每一个元素在M 中的原象是唯一的D 、N 是M 中所在元素的象的集合 (答:A );(2)点),(b a 在映射f 的作用下的象是),(b a b a +-,则在f 作用下点)1,3(的原象为点________(答:(2,-1));(3)若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个,A 到B 的函数有 个(答:81,64,81); (4)设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈,()x f x +是奇数”,这样的映射f 有____个(答:12);(5)设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____(答:∅或{1}).2.函数f : A →B 是特殊的映射。
特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个。
如(1)已知函数()f x ,x F ∈,那么集合{(,)|(),}{(,)|1}x y y f x x F x y x =∈=中所含元素的个数有 个(答: 0或1); (2)若函数42212+-=x x y 的定义域、值域都是闭区间]2,2[b ,则b = (答:2) 3. 同一函数的概念。
构成函数的三要素是定义域,值域和对应法则。
而值域可由定义域和对应法则唯一确定,因此当两个函数的定义域和对应法则相同时,它们一定为同一函数。
如若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“天一函数”,那么解析式为2y x =,值域为{4,1}的“天一函数”共有______个(答:9)4. 求函数定义域的常用方法(在研究函数问题时要树立定义域优先的原则): (1)根据解析式要求如偶次根式的被开方大于零,分母不能为零,对数log a x 中0,0x a >>且1a ≠,三角形中0A π<<, 最大角3π≥,最小角3π≤等。
如(1)函数lg 3y x =-的定义域是____(答:(0,2)(2,3)(3,4));(2)若函数2743kx y kx kx +=++的定义域为R ,则k ∈_______(答:30,4⎡⎫⎪⎢⎣⎭); (3)函数()f x 的定义域是[,]a b ,0b a >->,则函数()()()F x f x f x =+-的定义域是__________(答:[,]a a -);(4)设函数2()lg(21)f x ax x =++,①若()f x 的定义域是R ,求实数a 的取值范围;②若()f x 的值域是R ,求实数a 的取值范围(答:①1a >;②01a ≤≤)(2)根据实际问题的要求确定自变量的范围。
(3)复合函数的定义域:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域由不等式()a g x b ≤≤解出即可;若已知[()]f g x 的定义域为[,]a b ,求()f x 的定义域,相当于当[,]x a b ∈时,求()g x 的值域(即()f x 的定义域)。
如(1)若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(l og2x f 的定义域为__________(答:{}42|≤≤x x ); (2)若函数2(1)f x +的定义域为[2,1)-,则函数()f x 的定义域为________(答:[1,5]).5.求函数值域(最值)的方法: (1)配方法――二次函数(二次函数在给出区间上的最值有两类:一是求闭区间[,]m n 上的最值;二是求区间定(动),对称轴动(定)的最值问题。
求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系), 如(1)求函数225,[1,2]y x x x =-+∈-的值域(答:[4,8]);(2)当]2,0(∈x 时,函数3)1(4)(2-++=x a ax x f 在2=x 时取得最大值,则a 的取值范围是___(答:21-≥a ); (3)已知()3(24)x b f x x -=≤≤的图象过点(2,1),则1212()[()]()F x f x f x --=-的值域为______(答:[2, 5])(2)换元法――通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型,如(1)22sin 3cos 1y x x =--的值域为_____(答:17[4,]8-);(2)21y x =+_____(答:(3,)+∞)t =,0t ≥。
运用换元法时,要特别要注意新元t 的范围);(3)sin cos sin cos y x x x x =++的值域为____(答:1[1,2-+);(4)4y x =++____(答:[14]);(3)函数有界性法――直接求函数的值域困难时,可以利用已学过函数的有界性,来确定所求函数的值域,最常用的就是三角函数的有界性,如求函数2sin 11sin y θθ-=+,313xxy =+,2sin 11cos y θθ-=+的值域(答: 1(,]2-∞、(0,1)、3(,]2-∞);(4)单调性法――利用一次函数,反比例函数,指数函数,对数函数等函数的单调性,如求1(19)y x x x =-<<,229sin 1sin y x x =++,532log x y -=+______(答:80(0,)9、11[,9]2、[2,10]);(5)数形结合法――函数解析式具有明显的某种几何意义,如两点的距离、直线斜率、等等,如(1)已知点(,)P x y 在圆221x y +=上,求2yx +及2y x -的取值范围(答:[]33-、[); (2)求函数y =的值域(答:[10,)+∞);(3)求函数y =及y =的值域(答:)+∞、()注意:求两点距离之和时,要将函数式变形,使两定点在x 轴的两侧,而求两点距离之差时,则要使两定点在x 轴的同侧。
(6)判别式法――对分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其它方法进行求解,不必拘泥在判别式法上,也可先通过部分分式后,再利用均值不等式:①2by k x =+型,可直接用不等式性质, 如求232y x =+的值域(答:3(0,]2) ②2bx y x mx n =++型,先化简,再用均值不等式,如(1)求21xy x =+的值域(答:1(,]2-∞);如求函数y =1[0,]2)③22x m x n y x mx n''++=++型,通常用判别式法;如已知函数2328log 1mx x ny x ++=+的定义域为R ,值域为[0,2],求常数,m n 的值(答:5m n ==)④2x m x n y mx n ''++=+型,可用判别式法或均值不等式法,如求211x x y x ++=+的值域(答:(,3][1,)-∞-+∞)(7)不等式法――利用基本不等式,)a b a b R ++≥∈求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。
如设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21221)(b b a a +的取值范围是____________.(答:(,0][4,)-∞+∞)。
(8)导数法――一般适用于高次多项式函数,如求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。
(答:-48) 提醒:(1)求函数的定义域、值域时,你按要求写成集合形式了吗?(2)函数的最值与值域之间有何关系?6.分段函数的概念。
分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
在求分段函数的值0()f x 时,一定首先要判断0x 属于定义域的哪个子集,然后再代相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集。
如(1)设函数2(1).(1)()41)x x f x x ⎧+<⎪=⎨-≥⎪⎩,则使得()1f x ≥的自变量x 的取值范围是__________(答:(,2][0,10]-∞-);(2)已知1(0)()1(0)x f x x ≥⎧=⎨-<⎩ ,则不等式(2)(2)5x x f x +++≤的解集是________(答:3(,]2-∞)7.求函数解析式的常用方法:(1)待定系数法――已知所求函数的类型(二次函数的表达形式有三种:一般式:2()f x ax bx c =++;顶点式:2()()f x a x m n =-+;零点式:12()()()f x a x x x x =--,要会根据已知条件的特点,灵活地选用二次函数的表达形式)。
如已知()f x 为二次函数,且 )2()2(--=-x f x f ,且f(0)=1,图象在x 轴上截得的线段长为22,求()f x 的解析式 。
(答:21()212f x x x =++)(2)代换(配凑)法――已知形如(())f g x 的表达式,求()f x 的表达式。
如(1)已知,sin )cos 1(2x x f =-求()2xf 的解析式(答:242()2,[f x x x x =-+∈); (2)若221)1(xx x x f +=-,则函数)1(-x f =_____(答:223x x -+);(3)若函数)(x f 是定义在R 上的奇函数,且当),0(+∞∈x 时,)1()(3x x x f +=,那么当)0,(-∞∈x 时,)(x f =________(答:(1x ). 这里需值得注意的是所求解析式的定义域的等价性,即()f x 的定义域应是()g x 的值域。
(3)方程的思想――已知条件是含有()f x 及另外一个函数的等式,可抓住等式的特征对等式的进行赋值,从而得到关于()f x 及另外一个函数的方程组。
如(1)已知()2()32f x f x x +-=-,求()f x 的解析式(答:2()33f x x =--); (2)已知()f x 是奇函数,)(xg 是偶函数,且()f x +)(x g = 11-x ,则()f x = __(答:21xx -)。