运筹学试题及答案(两套)
- 格式:doc
- 大小:207.50 KB
- 文档页数:17
运筹学试题及答案运筹学试题及答案大家不妨来看看小编推送的运筹学试题及答案,希望给大家带来帮助!《运筹学》复习试题及答案(一)一、填空题1、线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2、图解法适用于含有两个变量的线性规划问题。
3、线性规划问题的可行解是指满足所有约束条件的解。
4、在线性规划问题的基本解中,所有的非基变量等于零。
5、在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6、若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7、线性规划问题有可行解,则必有基可行解。
8、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。
9、满足非负条件的基本解称为基本可行解。
10、在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11、将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12、线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13、线性规划问题可分为目标函数求极大值和极小_值两类。
14、线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15、线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16、在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。
17、求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18、19、如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj,同时令Xj=Xj- Xj。
20、表达线性规划的简式中目标函数为ijij21、、(2、1 P5))线性规划一般表达式中,aij表示该元素位置在二、单选题1、如果一个线性规划问题有n个变量,m个约束方程(m<n),系数矩阵的数为m,则基可行解的个数最为_C_。
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
一、(20分)某工厂在计划期内要安排生产I 、II 两种产品,已知生产单位产品所需的设备台时及A 、B 两种原材料的消耗如下表所示。
该工厂每生产一件产品I 可获利3元,每生产一件产品II 可获利4元,问应如何安排计划使该工厂获利最多?试建立该问题的数学模型,并用单纯形法求解。
答:解:设该工厂生产产品I 1x 件,产品II 2x 件线性规划的数学模型为12121212max3428416412,0z x x x x x x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩ (5分) 将该模型化为标准形式并用单纯形法求解:12123142512345max3428416412,,,,0z x x x x x x x x x x x x x x =+++≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩ (5分)i σ30 0 0 -1 3 0 4 1x 4x 2x2 83 1 0 0 0 0 1 1 -4 0 0 1 0 -1/2 [2] 1/4 - 8/2 3*4 i σ0 0 -3 0 1/2 3 0 41x 4x 2x4 4 21 0 0 0 0 1 0 -2 1/2 1/4 1/2 -1/8 0 1 0 i σ-2-1/4(8分)因此,最优解()*4,2,0,0,4TX =,最优值*20z =,即生产产品I4件,产品I2件,获得总利润最大为20元。
(2分)二、(20分)已知某运输问题的运价表如下:甲 乙 丙 丁 产量 A B C 6 4 2 7 5 9 5 10 7 8 8 3 8 9 7 销量8655求此运输问题的最优调运方案。
答:解:用伏格尔法给出初始调运方案如下(10分)计算空格的检验数如下甲 乙 丙 丁 产量 A ③ ⑤ 8 B ⑥ ③ 9 C ② ⑤ 7 销量8655甲乙丙丁产量销地产 地(7分)所有检验数都非负,因此,该初始方案即为最优方案,总运费104。
(3分)三、(20分)某工厂用一条生产线生产两种产品A 和B ,每周生产线运行时间为60小时,生产一台A 产品需要4小时,生产一台B 产品需要6小时。
一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X 1≤1 和 X 1≥2 。
5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。
6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T 8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_无解_________;10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不问:(1)对偶问题的最优解: Y =(4,0,9,0,0,0)T (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、已知线性规划(20分) MaxZ=3X 1+4X 2X 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤8X 1,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y 3≥3y1+4y2+2y 3≥4y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。
运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。
答案:多,竞争。
运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
《运筹学》课程考试试卷一、填空题(共10分,每空1分)1、线性规划问题的3个要素是: 、 和 。
2、单纯形法最优性检验和解的判别,当 现有顶点对应的基可行解是最优解,当 线性规划问题有无穷多最优解,当 线性规划问题存在无界解。
4、连通图的是指: 。
5、树图指 ,最小树是 。
6、在产销平衡运输问题中,设产地为m 个,销地为n 个,运输问题的解中的基变量数为 。
二、简答题 简算题(共20分) 1、已知线性规划问题,如下: max Z=71x -22x +53x⎪⎩⎪⎨⎧=≥≤+≤+-3,2,1,084632..31321i x x x x x x t s i请写出其对偶问题。
(10分)2、已知整数规划问题:1212121212max105349..528,0,,z x x x x s t x x x x x x =++≤⎧⎪+≤⎨⎪≥⎩且为整数在解除整数约束后的非整数最优解为(x1, x2)=(1, 1.5),根据分支定界法,请选择一个变量进行分支并写出对应的2个子问题(不需求解)。
(10分)三、计算题(共70分)1、某厂用A1,A2两种原料生产B1,B2,B3三种产品,工厂现有原料,每吨所需原料数量以及每吨产品可得利润如下表。
在现有原料的条件下,应如何组织生产才能使该厂获利最大?(共20分) (1) 写出该线性规划问题的数学模型(4分)(2)将上面的数学模型化为标准形式(2分)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)2、考虑下列运输问题:请用表上作业法求解此问题,要求:使用V ogel法求初始解。
若表格不够可自行添加(15分)3、有4台机器都可以做A、B、C、D四种工作,都所需费用不同,其费用如下表所示。
请用匈牙利法求总费用最小的分配方案。
(10分)4、某工厂内联结6个车间的道路如下图所示,已知每条道路的的距离,求沿部分道路架设6个车间的电话网,使电话线总距离最短。
《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
运筹学试题及答案(两套)运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
每小题1分,共15分)11.若线性规划无最优解则其可行域无界X基本解为空12.凡基本解一定是可行解X同1913.线性规划的最优解一定是基本最优解X可能为负14.可行解集非空时,则在极点上至少有一点达到最优值X可能无穷15.互为对偶问题,或者同时都有最优解,或者同时都无最优解16.运输问题效率表中某一行元素分别乘以一个常数,则最优解不变X17.要求不超过目标值的目标函数是18.求最小值问题的目标函数值是各分枝函数值的下界19.基本解对应的基是可行基X当非负时为基本可行解,对应的基叫可行基20.对偶问题有可行解,则原问题也有可行解X21.原问题具有无界解,则对偶问题不可行22.m+n-1个变量构成基变量组的充要条件是它们不包含闭回路23.目标约束含有偏差变量24.整数规划的最优解是先求相应的线性规划的最优解然后取整得到X25.匈牙利法是对指派问题求最小值的一种求解方法三、填空题(每小题1分,共10分)26.有5个产地5个销地的平衡运输问题,则它的基变量有( 9 )个 27.已知最优基,C B =(3,6),则对偶问题的最优解是( )28.已知线性规划求极小值,用对偶单纯形法求解时,初始表中应满足条件( 对偶问题可行 ) 29.非基变量的系数c j 变化后,最优表中( )发生变化30.设运输问题求最大值,则当所有检验数( )时得到最优解。
31.线性规划的最优解是(0,6),它的第1、2个约束中松驰变量(S 1,S 2)= ( )32.在资源优化的线性规划问题中,某资源有剩余,则该资源影子价格等于( )33.将目标函数转化为求极小值是( )34.来源行551134663x x x +-=的高莫雷方程是( )35.运输问题的检验数λij 的经济含义是( ) 四、求解下列各题(共50分) 36.已知线性规划(15分)123123123max 3452102351,2,3jZ x x x x x x x x x x j =++⎧+-≤⎪-+≤⎨⎪≥=⎩0,(1)求原问题和对偶问题的最优解;(2)求最优解不变时c j 的变化范围 37.求下列指派问题(min )的最优解(10分)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=656979109182015125865C38.求解下列目标规划(15分)13421321211122213324412min ()40603020,,,0(1,,4)i i z p d d P d P d x x d d x x d d x d d x d d x x d d i ++---+-+-+-+-+=+++⎧++-=⎪++-=⎪⎪+-=⎨⎪+-=⎪⎪≥=⎩L39.求解下列运输问题(min )(10分)601008011090401029131814458⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C五、应用题(15分)40.某公司要将一批货从三个产地运到四个销地,有关数据如下表所示。
销地产地B 1B 2 B 3B 4 供应量 A 1 7 3 7 9560 A 2 2 6 5 11400 A 3 6 4 2 5750 需求量32240480380 现要求制定调运计划,且依次满足: (1)B 3的供应量不低于需要量;(2)其余销地的供应量不低于85%;(3)A3给B3的供应量不低于200;(4)A2尽可能少给B1;(5)销地B 2、B3的供应量尽可能保持平衡。
(6)使总运费最小。
试建立该问题的目标规划数学模型。
运筹学(B卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划最优解不唯一是指( )A.可行解集合无界B.存在某个检验数λk>0且C.可行解集合是空集D.最优表中存在非基变量的检验数非零2.则( )A.无可行解B.有唯一最优解C.有无界解D.有多重解3.原问题有5个变量3个约束,其对偶问题( )A.有3个变量5个约束B.有5个变量3个约束C.有5个变量5个约束D.有3个变量3个约束4.有3个产地4个销地的平衡运输问题模型具有特征( )A.有7个变量B.有12个约束C.有6约束D.有6个基变量5.线性规划可行域的顶点一定是( )A.基本可行解B.非基本解C.非可行解D.最优解6.X是线性规划的基本可行解则有( )A.X中的基变量非零,非基变量为零B.X不一定满足约束条件C.X中的基变量非负,非基变量为零D.X是最优解7.互为对偶的两个问题存在关系( )A .原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题也有可行解C .原问题有最优解解,对偶问题可能没有最优解D .原问题无界解,对偶问题无可行解8.线性规划的约束条件为则基本解为( )A.(0, 2, 3, 2) B.(3, 0, -1, 0)C.(0, 0, 6, 5) D.(2, 0, 1, 2)9.要求不低于目标值,其目标函数是( )A.B.C.D.10.μ是关于可行流f的一条增广链,则在μ上有( )A.对任意B.对任意C.对任意D..对任意,),(≥∈-ijfji有μ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
每小题1分,共15分)11.线性规划的最优解是基本解× 12.可行解是基本解×13.运输问题不一定存在最优解× 14.一对正负偏差变量至少一个等于零× 15.人工变量出基后还可能再进基×16.将指派问题效率表中的每一元素同时减去一个数后最优解不变 17.求极大值的目标值是各分枝的上界18.若原问题具有m 个约束,则它的对偶问题具有m 个变量 19.原问题求最大值,第i 个约束是“≥”约束,则第i 个对偶变量y i ≤020.要求不低于目标值的目标函数是min Z d -= 21.原问题无最优解,则对偶问题无可行解×22.正偏差变量大于等于零,负偏差变量小于等于零×23.要求不超过目标值的目标函数是min Z d += 24.可行流的流量等于发点流出的合流 25.割集中弧的容量之和称为割量。
三、填空题(每小题1分,共10分)26.将目标函数123min 1058Z x x x =-+转化为求极大值是( )27.在约束为的线性规划中,设110201A ⎡⎤=⎢⎥⎣⎦,它的全部基是( ) 28.运输问题中m+n -1个变量构成基变量的充要条件是( ) 29.对偶变量的最优解就是( )价格30.来源行212234333x x x-+=的高莫雷方程是()31.约束条件的常数项b r变化后,最优表中()发生变化32.运输问题的检验数λij与对偶变量u i、v j之间存在关系()33.线性规划,,84,62,m ax21212121≥≤+≤++-=xxxxxxxxZ的最优解是(0,6),它的对偶问题的最优解是()34.已知线性规划求极大值,用对偶单纯形法求解时,初始表中应满足条件()35.Dijkstra算法中的点标号b(j)的含义是()四、解答下列各题(共50分)36.用对偶单纯形法求解下列线性规划(15分)37.求解下列目标规划(15分)38.求解下列指派问题(min)(10分)39.求下图v1到v8的最短路及最短路长(10分)五、应用题(15分)40.某厂组装三种产品,有关数据如下表所示。
产品单件组装工时日销量(件)产值(元/件)日装配能力A B C 1.11.31.5706080406080300要求确定两种产品的日生产计划,并满足:(1)工厂希望装配线尽量不超负荷生产;(2)每日剩余产品尽可能少;(3)日产值尽可能达到6000元。
试建立该问题的目标规划数学模型。
运筹学(A卷)试题参考答案一、单选题(每小题1分,共10分)1.B2.C3. A4.D5.B6.C7.B8.B9.A 10.A二、判断题(每小题1分,共15分)11. ×12. ×13. ×14.×15.√16.×17.√18. √19.×20. ×21. √ 22. √ 23. √ 24. × 25. √ 三、填空题(每小题1分,共10分)26.(9) 27.(3,0) 28.(对偶问题可行) 29.(λj ) 30.(小于等于0) 31. (0,2) 32. (0)33.12(min 5)Z x x '=-+34.134134552(554)663s x x s x x --=---=-或35.x ij 增加一个单位总运费增加λij 四、计算题(共50分) 36.解:(1)化标准型 2分12312341235max 3452102351,2,,5jZ x x x x x x x x x x x x j =++⎧+-+=⎪-++=⎨⎪≥=⎩L 0,(2)单纯形法5分C BX B x 1 x 2 x 3 x 4 x 5 b4 x 2 1 1 0 0.6 0.2 7 5x 31 0 1 0.2 0.4 4 C(j)-Z(j)-6-3.4 -2.8 48(3)最优解X=(0,7,4);Z =48(2分) (4)对偶问题的最优解Y =(3.4,2.8)(2分)(5)Δc 1≤6,Δc 2≥-17/2,Δc 3≥-6,则1235(,9),,13c c c ∈-∞≥-≥-(4分)37.解:,(5分)(5分)38.(15分)作图如下:满意解X=(30,20)39.(10分)最优值Z=1690,最优表如下:销地产地B1B2B3产量A1×8×540440A27014×18201390A31091002×10110 销量80 100 60 24五、应用题(15分)40.设x ij 为A i 到B j 的运量,数学模型为11223435465776813233311112131221222323314243444335531233min ()()4802742085854323200..85B z Pd P d d d P d P d P d d P d x x x d d x x x d d x B B B A x x d d x x x d d x d d s t -----+-++-+-+-+-+-+=+++++++++++-=+++-=+++-=+++-=+-=保证供应需求的%需求的%需求的%对3212216112131122232773481130222000 (1,2,3; 1,2,3,4);,0(1,2,...,8);ij ij i j iji i B A B B B x d x x x x x x d d c x d x i j d d i +-++==-+⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨-=⎪++---+-=⎪⎪⎪-=⎪⎪≥==⎪⎪≥=⎩∑∑对与的平衡运费最小运筹学(B 卷)试题参考答案一、单选题(每小题1分,共10分)1.D2.A3. A4.D5.A6.C7.D8.B9.B 10.C 二、判断题(每小题1分,共15分)11. × 12.× 13. × 14. × 15 . × 16.× 17.√ 18. √ 19.√ 20. √ 21. × 22. × 23. √ 24. √ 25. √ 三、空题(每小题1分,共10分)26.123max 1058Z x x x '=-+-27.28.不包含任何闭回路 29.影子30.1341341122333s x x s x x --=---=-或31.最优解32.ij ij i jc u v λ=--33.(1,0)34.检验数小于等于零 35.发点v i 到点v j 的最短路长 四、解答题(共50分) 36..(15分) 模型(3分)C j3 4 5 0 0bC B X Bx 1 x 2 x 3 x 4 x 50 x 4-1 -2 -3 1 0-8x 5[-2] -2 -1 0 1-10λj3 4 5 0 00 x 4 0 [-1] -5/2 1 -1/2 -3x 11 1 1/2 0 -1/25λj0 1 7/2 0 3/24 x 2 0 1 5/2-1 1/233x 11 0 -2 1 -12λj0 0 1 1 1最优解X =(2,3);Z =18 (2分) 37.(15分)(画图10分)满意解X 是AB 线段上任意点。