15蛋白质合成及转运
- 格式:ppt
- 大小:5.09 MB
- 文档页数:45
蛋白质的合成转运知识点整理●一、蛋白质合成的分子基础●(一)mRNA是蛋白质合成的模板●(1)mRNA以核苷酸序列的方式携带遗传信息,指导合成多肽链中的氨基酸的序列;●(2)每一个氨基酸可通过mRNA上3个核苷酸序列组成的遗传密码来决定,这些密码以连续的方式连接组成读码框架;读码框架之外的序列称作非编码区;●(3)读码框架5'端,是由起始密码AUG开始的,它编码一个蛋氨酸;在读码框架的3'端含有终止密码:UAA、UAG和UGA;●(4)mRNA分子的5'端序列对于起始密码的选择有重要作用,原核生物和真核生物有所差别。
●①原核生物中在mRNA分子起始密码子的上游含有一段特殊的核糖体结合位点序列,使得核糖体能够识别正确的起始密码AUG。
原核生物的mRNA通常是多基因的,分子内的核糖体结合位点使得多个基因可独立地进行读码框架的翻译;●②真核生物mRNA通常只为一条多肽链编码,mRNA5'末端的帽子结构可能对于核糖体进入部位的识别起到一定作用。
翻译的起始通常开始于从核糖体进入部位向下游扫描到的第一个AUG序列。
●(二)tRNA转运活化的氨基酸至mRNA模板上●关键部位:tRNA含有两个关键的部位:氨基酸结合部位,与mRNA的结合部位。
●接头的作用:tRNA在识别mRNA分子上的密码子时,具有接头的作用。
氨基酸一旦与tRNA形成氨酰-tRNA后,进一步的去向由tRNA来决定●(三)核糖体是蛋白质合成的工厂●1.核糖体的活性部位●A位=氨基酰位:结合氨基酰-tRNA●P位=肽酰位:结合肽酰tRNA●E位=出口位:释放已经卸载了氨基酸的tRNA●2.多核糖体●多核糖体是指分离核糖体时得到的若干成串的核糖体。
多核糖体是由一个mRNA分子与一定数目的单个核糖体结合而成的,形似念珠状。
每个核糖体可以独立完成一条肽链的合成,在多核糖体上可以同时进行多条多肽链的合成,提高了翻译的效率●二、蛋白质的生物合成●(一)原料●mRNA作为模板,tRNA作为特异的氨基酸搬运工具,核糖体作为蛋白质合成装配的场所,有关的酶与蛋白质因子参与反应、ATP或GTP提供能量●(二)酶●1.转肽酶●催化核蛋白体P位上的肽酰基转移至A位氨基酰-tRNA的氨基上,使酰基与氨基结合形成肽键;并受释放因子的作用后发生变构,表现出酯酶的水解活性,使P位上的肽链与tRNA分离;是一种核酶;肽基转移酶●2.氨酰-tRNA合成酶●催化氨基酸的活化●专一性:对氨基酸有极高的专一性,每种氨基酸都有专一的酶,只作用于L-氨基酸,不作用于D-氨基酸。
细胞内蛋⽩质的合成与运输_论⽂细胞内蛋⽩质的合成与运输摘要:蛋⽩质是⼀切⽣命的物质基础,这不仅是因为蛋⽩质是构成机体组织器官的基本成分,更重要的是蛋⽩质本⾝不断地进⾏合成与分解。
这种合成、分解的对⽴统⼀过程,推动⽣命活动,调节机体正常⽣理功能,保证机体的⽣长、发育、繁殖、遗传及修补损伤的组织。
根据现代的⽣物学观点,蛋⽩质和核酸是⽣命的主要物质基础。
关键字:多肽链、蛋⽩质、翻译、核糖体、运输途径、运输⽅式,研究前景前⾔:国家重⼤科学研究计划对中国的四项重要科学研究所涉及的领域分别作了详细说明,四个项⽬分别是蛋⽩质研究,量⼦调控研究,纳⽶研究,发育与⽣殖研究。
尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有⼀半以上基因的功能是未知的。
⽬前功能基因组中所采⽤的策略,如基因芯⽚、基因表达序列分析等,都是从细胞中mRNA的⾓度来考虑的,其前提是细胞中mRNA的⽔平反映了蛋⽩质表达的⽔平。
但事实并不完全如此,从DNA mRNA蛋⽩质,存在三个层次的调控,即转录⽔平调控,翻译⽔平调控,翻译后⽔平调控。
从mRNA⾓度考虑,实际上仅包括了转录⽔平调控,并不能全⾯代表蛋⽩质表达⽔平。
⽏庸置疑,蛋⽩质是⽣理功能的执⾏者,是⽣命现象的直接体现者,对蛋⽩质结构和功能的研究将直接阐明⽣命在⽣理或病理条件下的变化机制。
蛋⽩质本⾝的存在形式和活动规律,如翻译后修饰、蛋⽩质间相互作⽤以及蛋⽩质构象等问题,仍依赖于直接对蛋⽩质的研究来解决。
虽然蛋⽩质的可变性和多样性等特殊性质导致了蛋⽩质研究技术远远⽐核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个⽣命过程。
⼀、蛋⽩质⽣物合成过程遗传密码表在mRNA的开放式阅读框架区,以每3个相邻的核苷酸为⼀组,代表⼀种氨基酸或其他信息,这种三联体形势称为密码⼦(codon)。
如图,通常的开放式阅读框架区包含500个以上的密码⼦。
遗传密码的特点⼀⽅向性:密码⼦及组成密码⼦的各碱基在mRNA序列中的排列具有⽅向性(direction),翻译时的阅读⽅向只能是5ˊ→3ˊ。
蛋白质转运的四种方式
蛋白质转运是指在细胞内将蛋白质从一个位置转移到另一个位置的过程。
这一过程可以通过以下四种方式进行:
1. 核内转运:某些蛋白质需要在细胞核内进行转运,以参与DNA复制、转录和修复等核内生物学过程。
这种转运方式通常依赖于核孔复合物,它是核膜上的一组蛋白质复合物,能够选择性地将特定的蛋白质运送进入或离开细胞核。
2. 胞质转运:大多数蛋白质通过胞质转运从细胞质移动到其他细胞器中。
这种转运方式通常涉及到信号肽,即蛋白质上的一段特定序列,在蛋白质合成过程中被识别并用于定位蛋白质到特定的细胞器。
3. 高尔基体转运:高尔基体是一个细胞内的复杂细胞器,负责加工和分拣蛋白质。
在高尔基体转运中,蛋白质经过一系列加工步骤,例如糖基化和蛋白质折叠,以及与特定的转运蛋白相互作用,最终被分泌到细胞外或送往其他细胞器。
4. 内质网转运:内质网是一种包裹和运输蛋白质的细胞器,在蛋白质合成过程中起着重要的作用。
蛋白质在合成过程中与内质网上的核糖体相互作用,并随后通过蛋白质通道进入内质网腔。
在内质网中,蛋白质会经过一系列加工步骤,例如糖基化和蛋白质折叠,以确保它们的正确功能和结构。
蛋白质合成和转运的分子机制蛋白质是构建生命体的重要基础,同时也是调节、催化、运输等多种生命活动的关键物质。
在细胞内,蛋白质的合成和转运是一个非常重要的过程,直接关系到细胞的正常生活活动和生存。
近年来,科学家们在研究蛋白质合成和转运的分子机制方面取得了很多重要进展。
一、蛋白质合成机制蛋白质合成是指通过信息传递过程将mRNA上的暗示信息转化成氨基酸序列,进而合成蛋白质的过程。
它是一种非常复杂的生物过程,既涉及到多种生物大分子,如核酸、RNA和蛋白质等,也涉及到很多分子机制,如转录、翻译、修饰等。
在这一复杂的蛋白质合成过程中,一些关键分子机制起到了非常重要的作用。
1.核糖体核糖体是细胞合成蛋白质时的重要工具。
它是一种特殊的蛋白质-RNA复合物,能够通过无数次反复地转录和翻译,使细胞内大量的蛋白质得以合成。
研究发现,核糖体的合成能力与其结构和配合物有着密不可分的联系,这意味着核糖体的变化可能能够导致蛋白质的合成机制也相应地发生改变。
2.蛋白酶体蛋白酶体是一种细胞内酶类分子,能够参与分解细胞内无法再利用的蛋白质。
蛋白酶体的存在对于蛋白质合成和转运过程有着重要的联系,因为通过蛋白酶体的分解,无效的蛋白质分子可以被重新利用,这样就可节省细胞的合成和修饰成本。
3.蛋白激酶蛋白激酶是一类负责蛋白质合成过程的糖化酶,它能够调节和激活特定的蛋白质,从而影响蛋白质的表达和合成。
蛋白激酶的降解和修饰作用对于蛋白质合成流程中的分子机制和稳定性有着直接的影响。
二、蛋白质转运机制蛋白质转运是指将细胞内合成的蛋白质从一个细胞区域传递到另一个细胞区域的过程。
这个过程与蛋白质的合成过程紧密相连,因为只有先对合成的蛋白质进行修饰和翻译,才能将其转移到特定的细胞区域。
1.肌动蛋白肌动蛋白是一种非常常见的细胞内蛋白质,它在蛋白质转运过程中发挥着非常重要的作用。
研究表明,肌动蛋白能够对蛋白质的运输和聚集起到重要的支配作用。
2.内质网内质网是细胞内的一个非常重要的蛋白质转运和修饰区域。
详解分泌蛋⽩的合成和运输在⽣物体内,蛋⽩质的合成位点和功能位点常常被⼀层或多层⽣物膜所隔开,这样就产⽣了蛋⽩质运转的问题。
核糖体是真核⽣物细胞内合成蛋⽩质的场所,⼏乎在任何时候,都有数以百计或千计的蛋⽩质离开核糖体并被输送到细胞质、细胞核、线粒体、内质⽹和溶酶体、叶绿体等各个部分,补充和更新细胞功能。
那么这些蛋⽩质是怎样准确⽆误的被送到特定部位的?我们都知道蛋⽩质由内质⽹向⾼尔基体再向细胞膜转运时是由囊泡膜包裹着的,⽽从核糖体向内质⽹中转运时是怎样转运的呢?为什么说分泌蛋⽩的转运穿越了“0层膜”呢?分泌蛋⽩在内质⽹和⾼尔基体⼜上分别进⾏什么样的加⼯?加⼯过程中如何保证肽链折叠即空间结构的准确性,如果有折叠错误的畸形肽链怎么办?这些都是⼗分有趣的问题,在此做⼀简要的阐述。
⼀、蛋⽩质在核糖体上的合成及转运核糖体是蛋⽩质的合成场所毫⽆异议,核糖体在细胞中有两种存在形式游离核糖体和附着核糖体,之前我们认为参与细胞组成的结构蛋⽩在游离核糖体上合成,⽽分泌蛋⽩在附着核糖体上合成。
通过查阅资料发现其实⽆论是结构蛋⽩还是分泌蛋⽩在开始合成时都是在游离核糖体上的,只是当分泌蛋⽩合成起始后便逐渐转移⾄粗⾯内质⽹上,并且肽链边合成边转⼊粗⾯内质⽹腔中(即边翻译边转运),随后经⾼尔基体分泌到细胞外,以这种⽅式进⾏合成和转运的除分泌蛋⽩外还包括溶酶体、细胞膜蛋⽩以及内质⽹和⾼尔基体本⾝的蛋⽩成分。
其他结构蛋⽩在游离核糖体上合成后直接转运⾄功能部位,如线粒体、叶绿体、过氧化物酶体、细胞核及细胞质基质的蛋⽩质,最近发现有些还可转运⾄内质⽹中,但与分泌蛋⽩不同的是在游离核糖体上合成多肽链以后再转运⾄内质⽹中(即翻译完成后在转运)。
那么多肽链是以什么⽅式进⼊内质⽹腔中的呢?⼀般认为蛋⽩质跨膜运转信号也是由mRNA 编码的。
在起始密码⼦后,有⼀段编码疏⽔性氨基酸序列的RNA区域,这个氨基酸序列被称为信号肽(即有些练习题上出现的“P肽段”)。
细胞内各种蛋白质的合成和转运途径引言:细胞是生物体的基本单位,其中蛋白质是构成细胞的重要组成部分。
细胞内的蛋白质合成和转运途径是维持细胞正常功能的关键过程。
本文将介绍细胞内蛋白质合成的主要途径,包括转录、翻译和后转录修饰,以及蛋白质的转运途径,包括核糖体、内质网和高尔基体等。
一、蛋白质合成的途径1. 转录蛋白质合成的第一步是转录,即将DNA中的基因信息转录成RNA。
在细胞核中,DNA的双链解旋,RNA聚合酶结合到DNA上,根据DNA模板合成mRNA。
mRNA是一条单链RNA,它携带着从DNA中转录得到的基因信息。
2. 翻译翻译是蛋白质合成的第二步,即将mRNA上的基因信息翻译成蛋白质。
翻译发生在细胞质中的核糖体中。
核糖体由rRNA和蛋白质组成,它能够识别mRNA上的密码子,并将相应的氨基酸连接起来,形成多肽链。
翻译的过程包括起始、延伸和终止三个阶段,通过tRNA和蛋白因子的参与完成。
3. 后转录修饰蛋白质合成的最后一步是后转录修饰,即对新合成的蛋白质进行修饰和折叠。
这一过程发生在内质网和高尔基体中。
内质网是一个复杂的膜系统,它能够将新合成的蛋白质进行折叠和修饰,如糖基化、磷酸化等。
高尔基体则进一步对蛋白质进行修饰,并将其定位到细胞的不同位置。
二、蛋白质的转运途径1. 核糖体核糖体是蛋白质合成的场所,它位于细胞质中。
在核糖体中,mRNA上的密码子与tRNA上的反密码子互补配对,通过蛋白因子的辅助,将氨基酸连接成多肽链。
核糖体能够识别起始密码子和终止密码子,从而控制蛋白质的合成过程。
2. 内质网内质网是一个复杂的膜系统,它位于细胞质中。
内质网上的核糖体能够合成蛋白质,并将其进行折叠和修饰。
折叠不正确的蛋白质将被内质网上的分解酶降解,而正确折叠的蛋白质则会进一步转运到高尔基体或其他细胞器。
3. 高尔基体高尔基体是一个复杂的膜系统,它位于细胞质中。
高尔基体接收来自内质网的蛋白质,并对其进行进一步修饰和定位。
细胞内各种蛋白质的合成和转运途径细胞是生命的基本单位,其中蛋白质是细胞的重要组成部分。
蛋白质的合成和转运是维持细胞正常功能的关键过程。
本文将从蛋白质的合成和转运途径两个方面进行探讨,旨在揭示细胞内蛋白质的合成和转运机制。
一、蛋白质的合成蛋白质的合成发生在细胞内的核糖体中,包括转录和翻译两个过程。
转录是指DNA序列的信息被转录成RNA分子的过程,而翻译是指RNA分子被翻译成蛋白质的过程。
1. 转录转录是蛋白质合成的第一步,它在细胞核中进行。
转录的过程包括三个主要步骤:起始、延伸和终止。
起始阶段,RNA聚合酶与DNA上的启动子结合,开始合成RNA分子;延伸阶段,RNA聚合酶沿着DNA模板链进行核苷酸的配对合成RNA链;终止阶段,RNA聚合酶在遇到终止信号后停止合成RNA链,释放出已合成的RNA分子。
2. 翻译翻译是蛋白质合成的第二步,它在细胞质中的核糖体中进行。
翻译的过程包括三个主要步骤:启动、延伸和终止。
启动阶段,核糖体与起始tRNA和mRNA上的起始密码子结合,形成翻译复合体;延伸阶段,核糖体沿着mRNA链解读密码子,将相应的氨基酸带入核糖体,形成多肽链;终止阶段,核糖体在遇到终止密码子时停止翻译,释放出已合成的多肽链。
二、蛋白质的转运途径蛋白质合成完成后,需要经过一系列的转运途径才能到达其最终的功能位置。
蛋白质的转运途径包括:核糖体输出通路、内质网转运途径、高尔基体转运途径和细胞膜转运途径。
1. 核糖体输出通路核糖体输出通路是蛋白质从核糖体转运到细胞质的途径。
在核糖体输出通路中,合成的蛋白质通过核孔复合体进入细胞质,并与分子伴侣蛋白结合形成复合物,以保护和引导蛋白质的正确折叠和定位。
2. 内质网转运途径内质网转运途径是蛋白质从核糖体进入内质网的途径。
在内质网转运途径中,合成的蛋白质通过信号肽识别和内质网蛋白质质量控制系统的检查,进入内质网腔室,并在内质网中进行折叠和修饰。
3. 高尔基体转运途径高尔基体转运途径是蛋白质从内质网进入高尔基体的途径。
蛋白质的合成蛋白质的种类是由基因决定的,也就是说人类基因组有多少个基因,人体就有多少种蛋白质,只是蛋白质表达的时期和部位不同.根据人类基因组计划分析得知:全部人类基因组约有2.91Gbp,约有39000多个基因;也就是说人体蛋白质的种类有39000多种蛋白质生物合成可分为五个阶段,氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放、蛋白质合成后的加工修饰一.氨基酸的活化分散在胞液中的各种氨基酸需经特异的氨基酰-tRNA合成酶催化,ATP供能,并需Mg2+或Mn2+参与在氨基酸的羧基上进行活化,生成中间复合物()后者再与相应的tRNA作用,将氨基酰转移到tRNA分子的氨基酸臂上,即3′末端腺苷酸中核糖的3′(或2′)羟基以酯键相结合形成氨基酰-tRNA【氨基酰tRNA的生成】tRNA各种tRNA的一级结构互不相同,但它们的二级结构都呈三叶草形三叶草形结构的主要特征是:含有四个螺旋区、三个环和一个附加叉四个螺旋区构成四个臂,其中含有3′末端的螺旋区称为氨基酸臂,因为此臂的3′-末端都是C-C-A-OH序列,可与氨基酸连接三个环分别用Ⅰ、Ⅱ、Ⅲ表示环Ⅰ含有5,6二氢尿嘧啶,称为二氢尿嘧啶环(DHU环)环Ⅱ顶端含有由三个碱基组成的反密码子,称为反密码子环;反密码子可识别mRNA分子上的密码子,在蛋白质生物合成中起重要的翻译作用环Ⅲ含有胸苷(T)、假尿苷(ψ)、胞苷(C),称为假尿嘧啶环(TψC环);此环可能与结合核糖体有关tRNA在二级结构的基础上进一步折叠成为倒“L”字母形的三级结构起始因子原核起始因子只有三种(IF1、IF2、IF3)真核起始因子(简称为eIF)种类多且复杂,已鉴定的真核起始因子共有12种延长因子原核生物(简称EF)由三部分组成:EF-Tu,EF-Ts,和EF-GEF-Tu它介导氨酰-tRNA进入核糖体的空位EF-Ts充当EF-Tu亚基的鸟嘌呤核苷酸交换因子,催化EF-Tu释放GDPEF-G催化tRNA的移位和多肽延伸的每个循环后期mRNA从核糖体上掉下来真核生物(简称eEF)真核生物中分为:eEF-1和eEF-2eEF-1有两个亚基,α和βγα相当于原核生物中的EF-Tu亚基,它介导氨酰-tRNA进入核糖体的空位Βγ相当于原核生物中EF-Ts,核苷酸交换因子α,催化GDP从α上释放eEF-2相当于原核生物的EF-G,催化tRNA的移位和多肽延伸的每个循环后期mRNA从核糖体上掉下来终止因子(释放因子)原核生物细胞的释放因子(简称RF):识别终止密码子引起完整的肽链和核糖体从mRNA 上释放的蛋白质释放因子1(RF1):能识别终止密码子UAA和UAG而终止蛋白质合成的细菌释放因子释放因子2(RF2):能识别终止密码子UAA和UGA而终止蛋白质合成的细菌释放因子释放因子3(RF3):与延长因子EF-G有关的细菌蛋白质合成终止因子当它终止蛋白质合成时,它使得因子RF1和RF2从核糖体上释放真核生物细胞只有一种终止因子(称为eRF)能识别所有的终止密码子因为它没有与GTP结合的位点,所以它不能帮助完成合成的多肽从P位点的tRNA的释放在真核生物内可能还存在能与eRF合作、帮组多肽从核糖体释放的蛋白质核糖体的活性部位单个核糖体上存在四个活性部位,在蛋白质合成中各有专一的识别作用1.A部位:氨基酸部位或受位:主要在大亚基上,是接受氨酰基-tRNA的部位2.P部位:肽基部位或供位:主要在小亚基上,是释放tRNA的部位3.肽基转移酶部位(肽合成酶),简称T因子:位于大亚基上,催化氨基酸间形成肽键,使肽链延长4.GTP酶部位:即转位酶(EF-G),简称G因子,对GTP具有活性,催化肽键从供体部位→受体部位核糖体上还有许多与起始因子、延长因子、释放因子以及各种酶相结合的位点核糖体的大小是以沉降系数S来表示,S数值越大、颗粒越大、分子量越大原核细胞与真核细胞核糖体的大小亚基是不同的二.核糖体循环(肽链合成)1.肽链启动阶段在蛋白质生物合成的启动阶段,核蛋白体的大、小亚基,mRNA与一种具有启动作用的氨基酸tRNA共同构成启动复合体。