高考数学常用公式(全)
- 格式:doc
- 大小:1.50 MB
- 文档页数:28
高中高考数学公式大全1.代数公式- 二次方程根公式:若ax^2+bx+c=0 (a≠0),则 x=(-b±√(b^2-4ac))/(2a)。
-二次三项全解公式:若知二次三项完全分解为(x-a)(x-b)(x-c)=0,则x=a,b,c。
- 余弦和公式:cos(A±B)=cosAcosB∓sinAsinB。
- 余弦差公式:cos(A-B)=cosAcosB+sinAsinB。
- 正弦和公式:sin(A±B) = sinAcosB±cosAsinB。
- 正弦差公式:sin(A-B) = sinAcosB-cosAsinB。
- 二项式定理:(a+b)^n = C(n,0)a^n b^0+C(n,1)a^(n-1)b+C(n,2)a^n^(n-2)b^2+…+C(n,n)na^0 b^n。
2.几何公式-长方形面积公式:面积=长×宽。
-正方形面积公式:面积=边长×边长。
-圆面积公式:面积=πr^2-平行四边形面积公式:面积=底边×高。
-梯形面积公式:面积=(上底+下底)×高÷2-三角形面积公式:面积=底边×高÷2- 三角形余弦定理:c^2 = a^2 + b^2 - 2abcosC。
- 三角形正弦定理:sinA/a = sinB/b = sinC/c。
- 三角形正弦面积公式:面积 = (1/2)abSinC。
-三角形内切圆半径公式:r=面积/半周长。
3.数列和数列项公式-等差数列通项公式:an = a1 + (n-1)d。
-等差数列前n项和公式:Sn = (n/2)(a1 + an)。
-等差数列等差公式:dn = an+1 - an。
-等差数列求和公式:Sn=(2a1+(n-1)d)n/2-等比数列通项公式:an = a1 * q^(n-1)。
-等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。
数学高考公式数学高考公式汇总如下:1. 二次函数的一般式:y=ax^2+bx+c。
2. 二次函数的顶点式:y=a(x-h)^2+k。
3. 二次函数的根与系数的关系:若Δ=b^2-4ac>0,则有两个不相等的实数根;若Δ=0,则有两个相等的实数根;若Δ<0,则无实数根。
4. 二次函数的对称轴:x=h。
5. 二次函数的顶点坐标:(h,k)。
6. 二次函数的图像开口方向:若a>0,则开口向上;若a<0,则开口向下。
7. 一次函数的斜率:k=(y2-y1)/(x2-x1)。
8. 一次函数的点斜式方程:y-y1=k(x-x1)。
9. 一次函数的截距式方程:y=kx+b。
10. 两直线垂直的判定条件:两直线斜率的乘积为-1。
11. 两直线平行的判定条件:两直线斜率相等。
12. 两点间距离公式:d=sqrt((x2-x1)^2+(y2-y1)^2)。
13. 等差数列通项公式:an=a1+(n-1)d。
14. 等差数列求和公式:Sn=(n/2)(a1+an)。
15. 等比数列通项公式:an=a1*r^(n-1)。
16. 等比数列求和公式(当r≠1):Sn=a1(1-r^n)/(1-r)。
17. 三角函数的正弦定理:a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)。
18. 三角函数的余弦定理:c^2=a^2+b^2-2ab*cosC。
19. 三角函数的正切定理:tan(A-B)=(tanA-tanB)/(1+tanA*tanB)。
20. 三角函数的和差化积公式:sin(A±B)=sinA*cosB±cosA*sinB,cos(A±B)=cosA*cosB∓sinA*sinB。
21. 高斯-赛德尔消元法。
22. 矩阵乘法:设A为m×p矩阵,B为p×n矩阵,则AB为m×n矩阵,其中(A*B)ij=a(i,1)b(1,j)+…+a(i,p)b(p,j)。
高考数学公式大全(最全面,最详细)抛物线:y = ax *+ bx + c就是y等于ax 的平方加上 bx再加上 ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式: S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T 推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tan A^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))an9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*t anA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sin A^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))0A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+ 210*tanA^6-45*tanA^8+tanA^10)²万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)³2正方形的周长=边长³4长方形的面积=长³宽正方形的面积=边长³边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底³高梯形的面积=(上底+下底)³高÷2直径=半径³2 半径=直径÷2圆的周长=圆周率³直径=圆周率³半径³2圆的面积=圆周率³半径³半径长方体的表面积=(长³宽+长³高+宽³高)³2长方体的体积 =长³宽³高正方体的表面积=棱长³棱长³6正方体的体积=棱长³棱长³棱长圆柱的侧面积=底面圆的周长³高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积³高圆锥的体积=底面积³高÷3长方体(正方体、圆柱体)的体积=底面积³高平面图形名称符号周长C和面积S正方形 a—边长 C=4aS=a2长方形 a和b-边长 C=2(a+b)S=ab三角形 a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)³180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a³b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l³h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
一、代数部分:1. 一元一次方程:ax + b = 0,解为 x = -b/a(a ≠ 0)。
2. 一元二次方程:ax^2 + bx + c = 0,解为 x = [-b ± √(b^2 - 4ac)] / 2a。
3. 平方差公式:a^2 - b^2 = (a + b)(a - b)。
4. 完全平方公式:a^2 + 2ab + b^2 = (a + b)^2,a^2 - 2ab + b^2 = (a -b)^2。
5. 立方公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2),a^3 - b^3 = (a -b)(a^2 + ab + b^2)。
6. 二项式定理:(a + b)^n = C(n, 0)a^n b^0 + C(n, 1)a^(n-1) b^1 + ... + C(n, n-1)a^1 b^(n-1) + C(n, n)a^0 b^n。
7. 多项式除法:将多项式P(x)除以单项式x - a,商为Q(x),余数为R(x),满足P(x) = (x - a)Q(x) + R(x)。
8. 指数运算法则:a^m a^n = a^(m+n),(a^m)^n = a^(mn),a^m / a^n = a^(m-n)(a ≠ 0,m,n为正整数)。
9. 对数运算法则:log_a(xy) = log_a(x) + log_a(y),log_a(x/y) = log_a(x) - log_a(y),log_a(x^n) = n log_a(x)。
二、几何部分:1. 三角形面积公式:S = (1/2) 底高。
2. 圆的周长公式:C = 2πr,圆的面积公式:S = πr^2。
3. 矩形面积公式:S = 长宽。
4. 平行四边形面积公式:S = 底高。
5. 梯形面积公式:S = (上底 + 下底) 高 / 2。
6. 圆锥体积公式:V = (1/3) πr^2h。
7. 球体积公式:V = (4/3) πr^3。
「高考数学公式定理大全」1.初等代数- 分式性质:$\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}$- 因式分解:差平方公式 $a^2 - b^2 = (a+b)(a-b)$,和差平方公式 $a^2+b^2=(a+b)^2-2ab$- 二次根式:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm 2\sqrt{ab}$,$(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=a-b$- 二次方程:$ax^2+bx+c=0$,求根公式 $x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}$- 一次不等式:若$a>b$,则$ca>cb$($c>0$),若反号方向,不等号方向互换即可2.平面向量- 向量表示:$\vec{AB}=(x_2-x_1,y_2-y_1)$- 向量运算:加法 $\vec{a}+\vec{b}=(a_1+b_1,a_2+b_2)$,数乘$k\cdot \vec{a}=(ka_1,ka_2)$- 向量模长:$,\vec{AB},=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ - 向量共线:若$\vec{a}=k\cdot \vec{b}$,则$\vec{a}$与$\vec{b}$共线- 向量垂直:若$\vec{a}\cdot \vec{b}=0$,则$\vec{a}$和$\vec{b}$垂直,其中$\vec{a}\cdot \vec{b}=a_1b_1+a_2b_2$3.空间几何- 距离公式:点P(x,y,z)到平面Ax+By+Cz+D=0的距离为 $d=\frac{,Ax+By+Cz+D,}{\sqrt{A^2+B^2+C^2}}$- 点到直线的距离:点P(x0,y0,z0)到直线Ax+By+Cz+D=0的距离为$d=\frac{,Ax_0+By_0+Cz_0+D,}{\sqrt{A^2+B^2+C^2}}$- 两直线关系:平行条件为$\frac{A_1}{A_2}=\frac{B_1}{B_2}=\frac{C_1}{C_2}$,垂直条件为$A_1A_2+B_1B_2+C_1C_2=0$4.三角函数- 基本关系:正弦定理 $\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}=2R$,余弦定理 $a^2=b^2+c^2-2bc\cos A$ - 解三角形:已知三边a、b、c或三边两角及夹边等情况下,先确定角的类型,然后利用$S=\frac{1}{2}ab\sin C$公式计算面积,最后利用相关定理计算其他需要的长度或角度。
高考数学公式大全一、代数公式:1.二次方程的求根公式:对于二次方程 $ax^2 + bx + c = 0$,其根可以由以下公式求得:$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$2.平方差公式:$(a+b)^2 = a^2 + 2ab + b^2$$(a-b)^2 = a^2 - 2ab + b^2$3.一元二次方程求解公式:对于一元二次方程 $ax^2 + bx + c = 0$,其根可以由以下公式求得:$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$4.一次函数方程的解法:对于一次函数方程 $y = kx + b$,其中 $k$ 为斜率,$b$ 为$y$ 轴截距,可以通过解方程 $kx + b = 0$ 求得直线与 $x$ 轴的交点和方程的解。
5.倍角公式:$\sin{2\theta} = 2\sin{\theta}\cos{\theta}$$\cos{2\theta} = \cos^2{\theta} - \sin^2{\theta} =2\cos^2{\theta} - 1 = 1 - 2\sin^2{\theta}$$\tan{2\theta} = \frac{2\tan{\theta}}{1-\tan^2{\theta}}$$\cot{2\theta} = \frac{\cot^2{\theta}-1}{2\cot{\theta}}$ 6.三角函数关系:$\sin^2{\theta} + \cos^2{\theta} = 1$$\tan{\theta} = \frac{\sin{\theta}}{\cos{\theta}}$$\cot{\theta} = \frac{\cos{\theta}}{\sin{\theta}}$$\sin{(\pi - \theta)} = \sin{\theta}$$\cos{(\pi - \theta)} = -\cos{\theta}$$\tan{(\pi - \theta)} = -\tan{\theta}$二、几何公式:1.圆的周长和面积:圆的半径为$r$,则其周长$C$和面积$A$分别为:$C = 2\pi r$$A = \pi r^2$2.直角三角形的勾股定理:直角三角形的两直角边分别为$a$和$b$,斜边长度为$c$,则满足勾股定理:$a^2+b^2=c^2$3.三角形的面积公式:设三角形的底为$b$,高为$h$,则其面积$S$可以用以下公式计算:$S = \frac{1}{2}bh$4.向量的模长和方向角公式:设二维向量 $\boldsymbol{a} = (x,y)$,其中 $x$ 为横坐标,$y$ 为纵坐标,其模长 $,\boldsymbol{a},$ 和方向角 $\theta$(与$x$ 轴的夹角)计算公式如下:$,\boldsymbol{a}, = \sqrt{x^2 + y^2}$$\theta = \arctan{\frac{y}{x}}$5.相似三角形的性质:设 $\triangle ABC$ 和 $\triangle A'B'C'$ 是相似三角形,则它们对应边长之间的比例关系为:$\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{AC}{A'C'}$6.空间几何平行、垂直关系判定公式:设直线 $l_1$ 和 $l_2$ 在空间中,其方向向量分别为$\boldsymbol{a}$ 和 $\boldsymbol{b}$,则有以下关系:$l_1 \perp l_2 \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0$三、概率统计公式:1.排列公式:$A_n^m = \frac{n!}{(n-m)!}$2.组合公式:$C_n^m = \frac{n!}{m!(n-m)!}$3.二项式定理:$(a+b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b^1 + \cdots +C_n^n a^0 b^n$4.期望值公式:离散型随机变量$X$的期望值可以由以下公式计算:$E(X) = \sum{x \cdot P(X=x)}$连续型随机变量$X$的期望值可以由以下公式计算:$E(X) = \int{xf(x)dx}$其中,$P(X=x)$为离散型随机变量$X$取值为$x$的概率,$f(x)$为连续型随机变量$X$的概率密度函数。
高考数学必背公式整理一、平面几何公式1. 直线的一般方程:Ax + By + C = 02. 两点间的距离公式:AB = √[(x2 - x1)² + (y2 - y1)²]3. 点到直线的距离公式:d = |Ax0 + By0 + C| / √(A² + B²)4. 两直线夹角的余弦公式:cosθ = (A₁A₂ + B₁B₂) / (√(A₁² + B₁²) √(A₂² + B₂²))5. 两直线平行的条件:A₁ / A₂ = B₁ / B₂ ≠ C₁ / C₂6. 两直线垂直的条件:A₁A₂ + B₁B₂ = 07. 两直线交点的坐标:x = (B₁C₂ - B₂C₁) / (A₁B₂ - A₂B₁),y = (A₂C₁ - A₁C₂) / (A₁B₂ - A₂B₁)二、立体几何公式1. 体积公式:长方体的体积 V = lwh,正方体的体积V = a³,圆柱的体积V = πr²h,圆锥的体积V = (1/3)πr²h,球体的体积 V = (4/3)πr³2. 表面积公式:长方体的表面积 S = 2lw + 2lh + 2wh,正方体的表面积 S = 6a²,圆柱的表面积S = 2πrh + 2πr²,圆锥的表面积S = πrl + πr²,球体的表面积S = 4πr²三、三角函数公式1. 余弦定理:c² = a² + b² - 2abcosC2. 正弦定理:a / sinA = b / sinB = c / sinC3. 三角恒等式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ四、导数公式1. 基本导数:(xⁿ)' = nxⁿ⁻¹,(sinx)' = cosx,(cosx)' = -sinx,(tanx)' = sec²x,(cotx)' = -csc²x,(lnx)' = 1/x,(ex)' = ex2. 乘法法则:(uv)' = u'v + uv'3. 除法法则:(u/v)' = (u'v - uv') / v²4. 链式法则:(f(g(x)))' = f'(g(x)) * g'(x)五、积分公式1. 基本积分:∫xⁿdx = (xⁿ⁺¹) / (n⁺¹),∫sinxdx = -cosx,∫cosxdx = sinx,∫sec²xdx = tanx,∫csc²xdx = -cotx,∫1/xdx = ln|x|,∫exdx = ex2. 乘法法则:∫uvdx = ∫u'vdx + ∫uv'dx3. 替换法则:∫f(g(x))g'(x)dx = ∫f(u)du六、概率统计公式1. 排列公式:Aₙₙ = n! / (n - m)!2. 组合公式:Cₙₙ = n! / (m!(n - m)!)3. 二项式定理:(a + b)ⁿ = Cⁿ₀aⁿb⁰ + Cⁿ₁aⁿ⁻¹b¹ + ... + Cⁿₙa⁰bⁿ4. 期望公式:E(X) = Σ(xP(x))5. 方差公式:Var(X) = Σ(x²P(x)) - [E(X)]²以上是高考数学中常用的必背公式。
高考数学公式大全1. 二次方程的求根公式:对于二次方程$ax^2+bx+c=0$,其中$a\neq0$,它的根可以通过以下公式得出:$x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$2. 两点间距离公式:设平面上点A($x_1,y_1$)和点B($x_2,y_2$)的坐标,则点A与点B之间的距离为:$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$3. 等差数列前n项和公式:设等差数列的首项为$a_1$,公差为$d$,前n项和为$S_n$,则$S_n$可以通过以下公式计算:$S_n=\frac{n}{2}(2a_1+(n-1)d)$4. 等比数列前n项和公式:设等比数列的首项为$a_1$,公比为$r$,前n项和为$S_n$,若$r\neq1$,则$S_n$可以通过以下公式计算:$S_n=\frac{a_1(1-r^n)}{1-r}$5. 平方差公式:对于任意实数$a$和$b$,有以下公式成立:$(a+b)^2=a^2+2ab+b^2$$(a-b)^2=a^2-2ab+b^2$6. 三角函数的和差化积公式:$\sin(A\pm B)=\sin A\cos B\pm\cos A\sin B$$\cos(A\pm B)=\cos A\cos B\mp\sin A\sin B$7. 二项式展开公式:对于任意实数$a$和$b$,以及正整数$n$,有以下公式成立:$(a+b)^n=\sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^{k}$,其中$\binom{n}{k}=\frac{n!}{k!(n-k)!}$表示组合数8. 正弦定理:对于任意三角形ABC,边长分别为$a$,$b$,$c$,以及对应的内角分别为$A$,$B$,$C$,有以下公式成立:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$9. 余弦定理:对于任意三角形ABC,边长分别为$a$,$b$,$c$,以及对应的内角分别为$A$,$B$,$C$,有以下公式成立:$c^2=a^2+b^2-2ab\cos C$10. 三角函数的倒数关系:$\sin(\frac{\pi}{2}-A)=\cos A$$\cos(\frac{\pi}{2}-A)=\sin A$。
高考必记数学公式汇总1. 一元一次方程:ax + b = 0-解的公式:x=-b/a2. 一元二次方程:ax^2 + bx + c = 0- 解的公式:x = (-b ± √(b^2 - 4ac)) / (2a)3.三角函数:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正切定理:tanA = a/b4.平面几何:-点到直线的距离:d=,Ax+By+C,/√(A^2+B^2)-平行线的性质:两条直线的斜率相等-垂直线的性质:两条直线的斜率的乘积等于-15.统计与概率:-高斯分布:P(x)=(1/(√(2π)σ))*e^(-((x-μ)^2/(2σ^2))) - 期望值计算:E(x) = ∑(xi * P(xi))- 方差计算:Var(x) = ∑((xi - E(x))^2 * P(xi))6.矩阵:-矩阵乘法:若A是一个mxn的矩阵,B是一个nxp的矩阵,那么它们的乘积C是一个mxp的矩阵,其中C的第i行第j列元素为A的第i行与B的第j列的乘积之和。
7.三角函数补充:- 反正弦函数:sin^(-1)(x)- 反余弦函数:cos^(-1)(x)- 反正切函数:tan^(-1)(x)8.指数与对数函数:-指数函数的性质:a^m*a^n=a^(m+n)- 对数函数的性质:log(a) * log(b) = log(a*b)9.数列与数学归纳法:-等差数列通项公式:an = a1 + (n-1)d-等差数列求和公式:Sn = (n/2)(a1 + an)-等比数列通项公式:an = a1 * r^(n-1)-等比数列求和公式:Sn=a1*(1-r^n)/(1-r)10.导数与微分:- 基本导数公式:(常数)' = 0,(x^n)' = nx^(n-1),(e^x)' = e^x,(sinx)' = cosx,(cosx)' = -sinx-链式法则:(f(g(x)))'=f'(g(x))*g'(x)11.不等式与绝对值:-绝对值不等式性质:,a*b,=,a,*,b,a+b,≤,a,+,b- 一次不等式:ax + b > 0 (a ≠ 0)- 二次不等式:ax^2 + bx + c > 0 (a ≠ 0)这些是高考中常见的一些数学公式,掌握并熟练运用它们可以帮助你在数学考试中提高得分。
数学高考常用公式1. 一次函数的标准方程:y = kx + b2. 一次函数的斜截式方程:y = mx + n3. 二次函数的标准方程:y = ax^2 + bx + c4. 二次函数的顶点坐标公式:x = -b / (2a), y = c - (b^2 / 4a)5. 二次函数的轴对称线方程:x = -b / (2a)6. 三角函数的和差化简公式:sin(A + B) = sinAcosB + cosAsinB, cos(A + B) = cosAcosB - sinAsinB7. 三角函数的倍角化简公式:sin2A = 2sinAcosA, cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A8. 三角函数的半角化简公式:sin(A / 2) = ±√[ (1 - cosA) / 2 ], cos(A / 2) = ±√[ (1 + cosA) / 2 ]9. 两角和的正弦公式:sin(A + B) = sinAcosB + cosAsinB10. 两角和的余弦公式:cos(A + B) = cosAcosB - sinAsinB11. 两角差的正弦公式:sin(A - B) = sinAcosB - cosAsinB12. 两角差的余弦公式:cos(A - B) = cosAcosB + sinAsinB13. 正弦定理:a / sinA = b / sinB = c / sinC14. 余弦定理:c^2 = a^2 + b^2 - 2abcosC15. 面积公式:S = 1/2ab sinC16. 等差数列前n项和公式:Sn = (n / 2)(a1 + an)17. 等差数列通项公式:an = a1 + (n - 1)d18. 等比数列前n项和公式:Sn = a1(1 - q^n) / (1 - q)19. 等比数列通项公式:an = a1q^(n - 1)20. 圆的周长公式:C = 2πr21. 圆的面积公式:S = πr^2。
高考数学常用公式(2004.11.10)1.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == .2.U U A B A A B B A B C B C A =⇔=⇔⊆⇔⊆ U A C B ⇔=Φ U C A B R ⇔=3.()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card C A card A B C ---+ .4.二次函数的解析式的三种形式 ①一般式2()(0)f x a x b x c a =++≠;② 顶点式2()()(0)f x a x h k a =-+≠;③零点式12()()()(0)f x a x x x x a =--≠.5.设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]1212()()0(),f x f x f x a b x x ->⇔-在上是增函数;[]1212()()()0x x f x f x --<⇔[]1212()()0(),f x f x f x a b x x -<⇔-在上是减函数.设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.6.函数()y f x =的图象的对称性:①函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.②函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.7.两个函数图象的对称性:①函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.②函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称.③函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.8.分数指数幂m na=0,,a m n N *>∈,且1n >).1m nm naa-=(0,,a m n N *>∈,且1n >).9. log (0,1,0)b a N b a N a a N =⇔=>≠>.10.对数的换底公式 log log log m a m N N a=.推论 log log m na a nb b m =.11.11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).12.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式 1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-.13.等比数列的通项公式1*11()n nn a a a qq n N q-==⋅∈; 其前n 项的和公式11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.14.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),11(),1111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 15.分期付款(按揭贷款) 每次还款(1)(1)1nn ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ).16.同角三角函数的基本关系式 22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.17.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩ 212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩18.和角与差角公式sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±= ;tan tan tan()1tan tan αβαβαβ±±= .22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 19.二倍角公式 sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-.20.三角函数的周期公式 函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 21.正弦定理2sin sin sin a b cR A B C ===. 22.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.23.面积定理(1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===.(3)OAB S ∆=24.三角形内角和定理 在△ABC 中,有()222C A B A B C C A B πππ+++=⇔=-+⇔=-222()C A B π⇔=-+. 25.平面两点间的距离公式,A B d=||AB ==11(,)x y ,B 22(,)x y ).26.向量的平行与垂直 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 a b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.27.线段的定比分公式 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 28.三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 29.点的平移公式 ''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ (图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP的坐标为(,)h k ).30.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈ (5)b a b a b a +≤+≤- 31.极值定理 已知y x ,都是正数,则有(1)如果积xy 是定值p ,那么当y x =时和y x +有最小值p 2;(2)如果和y x +是定值s ,那么当y x =时积xy 有最大值241s . 32.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.33.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.34.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩. 35.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>; ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩36.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ).37.直线的四种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)一般式 0Ax By C ++=(其中A 、B 不同时为0).38.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212,l l k k b b ⇔=≠ ;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222A B C l l A B C ⇔=≠ ;②1212120l l A A B B ⊥⇔+=; 39.夹角公式 2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)12211212tan A B A B A A B B α-=+(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π.40.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).41. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).42.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.43.椭圆22221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(22x c a e PF -=. 44.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.45.抛物线px y 22=上的动点可设为P ),2(2y py或或)2,2(2pt pt P P (,)x y ,其中22y px = .46.二次函数2224()24b ac b y ax bx c a x a a-=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a--=.47.直线与圆锥曲线相交的弦长公式AB =1212||||AB x x y y ==-=-(弦端点A ),(),,(2211y xB y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).48.圆锥曲线的两类对称问题:(1)曲线(,)0F x y =关于点00(,)P x y 成中心对称的曲线是00(2-,2)0F x x y y -=. (2)曲线(,)0F x y =关于直线0Ax By C ++=成轴对称的曲线是22222()2()(,)0A Ax By C B Ax By C F x y A B A B++++--=++. 49.“四线”一方程 对于一般的二次曲线220Ax Bxy Cy Dx Ey F +++++=,用0x x 代2x ,用0y y 代2y ,用002x y xy +代xy ,用02x x +代x ,用02y y+代y 即得方程 0000000222x y xy x x y yAx x B Cy y D E F ++++⋅++⋅+⋅+=,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.50.共线向量定理 对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .51.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++, 则四点P 、A 、B 、C 是共面⇔1x y z ++=.52. 空间两个向量的夹角公式 cos 〈a ,b 〉a =123(,,)a a a ,b=123(,,)b b b ).53.直线AB 与平面所成角sin||||AB m arc AB m β⋅= (m为平面α的法向量). 54.二面角l αβ--的平面角cos ||||m n arc m n θ⋅= 或cos ||||m narc m n π⋅-(m ,n 为平面α,β的法向量).55.设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.56.若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+ (当且仅当90θ= 时等号成立).57.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB = =.58.点Q 到直线l 距离h =(点P 在直线l 上,直线l 的方向向量a =PA ,向量b =PQ ).59.异面直线间的距离 ||||CD n d n ⋅=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).60.点B 到平面α的距离 ||||AB n d n ⋅= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈).61.异面直线上两点距离公式 d (两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =).62. 2222123l l l l =++222123cos cos cos 1θθθ⇔++=(长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、)(立几中长方体对角线长的公式是其特例). 63. 面积射影定理 'cos S S θ=(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 64.欧拉定理(欧拉公式) 2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F)65.球的半径是R ,则其体积是343V R π=,其表面积是24S R π=. 66.分类计数原理(加法原理)12n N m m m =+++ .67.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯ .68.排列数公式 mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).69.排列恒等式 (1)1(1)m m n n A n m A -=-+;(2)1m m n n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n nA A mA -+=+. 70.组合数公式 mn C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ,m ∈N *,且m n ≤). 71.组合数的两个性质(1) m n C =m n n C - ;(2) m n C +1-m n C =mn C 1+72.组合恒等式(1)11mm n n n m C C m --+=;(2)1m m n n n C C n m -=-;(3)11mm nn n C C m--=; (4)∑=nr rn C=n2;(5)1121++++=++++r n r n r r r r r r C C C C C .73.排列数与组合数的关系是:m mn nA m C =⋅! . 74.二项式定理 n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; 二项展开式的通项公式:rr n r n r b a C T -+=1)210(n r ,,,=. 75.等可能性事件的概率()mP A n=. 76.互斥事件A ,B 分别发生的概率的和P(A +B)=P(A)+P(B). 77.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ).78.独立事件A ,B 同时发生的概率P(A ·B)= P(A)·P(B).79.n 个独立事件同时发生的概率 P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ).80.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k k n kn nP k C P P -=- 81.离散型随机变量的分布列的两个性质:(1)0(1,2,)i P i ≥= ;(2)121P P ++= . 82.数学期望1122n n E x P x P x P ξ=++++83.数学期望的性质:(1)()()E a b aE b ξξ+=+;(2)若ξ~(,)B n p ,则E np ξ=. 84.方差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+ 85.标准差σξ=ξD .86.方差的性质(1)()22()D E E ξξξ=-;(2)()2D a b a D ξξ+=;(3)若ξ~(,)B n p ,则(1)D np p ξ=-.87.正态分布密度函数()()()2226,,x f x x μ--=∈-∞+∞式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差. 88.标准正态分布密度函数()()22,,x f x x -=∈-∞+∞.89.对于2(,)N μσ,取值小于x 的概率()x F x μσ-⎛⎫=Φ⎪⎝⎭. ()()()12201x x P x x P x x x P <-<=<<()()21F x F x =-21x x μμσσ--⎛⎫⎛⎫=Φ-Φ ⎪ ⎪⎝⎭⎝⎭.90.回归直线方程 y a bx =+,其中()()()1122211n ni i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑. 91.相关系数 ()()niix x y y r --=∑ ()()niix x y y --=∑.|r|≢1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.92.特殊数列的极限 (1)0||1lim 11||11nn q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k tt t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩不存在 .(3)()111lim11nn a q a S qq→∞-==--(S 无穷等比数列}{11n a q - (||1q <)的和).93.0lim ()x x f x a →=⇔0lim ()lim ()x x x x f x f x a -+→→==.这是函数极限存在的一个充要条件.94.函数的夹逼性定理 如果函数f(x),g(x),h(x)在点x 0的附近满足:(1)()()()g x f x h x ≤≤;(2)0lim (),lim ()x x x x g x a h x a →→==(常数),则0lim ()x x f x a →=.本定理对于单侧极限和∞→x 的情况仍然成立.95.两个重要的极限 (1)0sin lim 1x x x →=;(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭(e=2.718281845…).96.)(x f 在0x 处的导数(或变化率或微商)00000()()()limlim x x x x f x x f x y f x y x x=∆→∆→+∆-∆''===∆∆. 97.瞬时速度00()()()lim lim t t s s t t s t s t t tυ∆→∆→∆+∆-'===∆∆.98.瞬时加速度00()()()lim lim t t v v t t v t a v t t t∆→∆→∆+∆-'===∆∆.99.)(x f 在),(b a 的导数()dy df f x y dx dx ''===00()()lim lim x x y f x x f x x x ∆→∆→∆+∆-==∆∆.100.函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 101.几种常见函数的导数 (1) 0='C (C 为常数). (2) '1()()n n x nx n Q -=∈. (3) x x cos )(sin ='. (4) x x sin )(cos -='.(5) x x 1)(ln =';e a xxa log 1)(log ='. (6) x x e e =')(; a a a x x ln )(='.102.复合函数的求导法则 设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x 处有导数,且'''x u xy y u =⋅,或写作'''(())()()x f x f u x ϕϕ=. 103.可导函数)(x f y =的微分dx x f dy )('=.104.,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈)105.复数z a bi =+的模(或绝对值)||z =||a bi +106.复数的四则运算法则(1)()()()()a bi c di a c b d i +++=+++; (2)()()()()a bi c di a c b d i +-+=-+-; (3)()()()()a bi c di ac bd bc ad i ++=-++; (4)2222()()(0)ac bd bc ada bi c di i c di c d c d+-+÷+=++≠++. 107.复平面上的两点间的距离公式12||d z z =-=(111z x y i =+,222z x y i =+).108.向量的垂直 非零复数1z a bi =+,2z c di =+对应的向量分别是1OZ ,2OZ,则12OZ OZ ⊥ ⇔12z z ⋅的实部为零⇔21z z 为纯虚数⇔2221212||||||z z z z +=+⇔2221212||||||z z z z -=+⇔1212||||z z z z +=-⇔0ac bd +=⇔12z iz λ= (λ为非零实数).109.实系数一元二次方程的解 实系数一元二次方程20ax bx c ++=,①若240b ac ∆=->,则1,2x =②若240b ac ∆=-=,则122b x x a ==-;③若240b ac ∆=-<,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根240)x b ac =-<.高 中 数 学基本知识·基本思想·基本方法一、集合与简易逻辑1.必须弄清集合的元素是什么,是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ;2.数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题;4.判断命题的真假要以真值表为依据。