五年级奥数学练习试卷思维培训资料
- 格式:doc
- 大小:462.50 KB
- 文档页数:6
第三讲 数论之数的整除性卷Ⅰ1. 熟练掌握整除性质及特殊数的整除特征;答案:因为432165a a a a a a 能被5整除,所以4a 是5;由于165432a a a a a a 、321654a a a a a a 和543216a a a a a a 分别能被2、4、6整除,因此1a 、3a 、5a 是偶数,取值为2、4、6,进而知道2a 、6a 是1和3;上述能被4整除的那个六位数的末两位32a a 应是4的倍数,而2a 是奇数,所以3a 只能为2和6.根据上面的分析,为使原六位数最大,1a 可取最大的数字6,2a 取1、3中的大数3,这样其余各数分别是3a =2,4a =5,5a =4,6a =1,所以最大值为632541.教学目标专题精讲数的整除性质:[性质1] 如果a 能被b 整除,b 能被c 整除,那么a 一定能被c 整除.例如,48能被16整除,16能被8整除,那么48一定能被8整除.[性质2] 如果a 、b 都能被c 整除,那么(a ±b ) 也一定能被c 整除. 例如,21与15都能被3整除,那么21+15及21-15都能被3整除.[性质3] 如果c 能分别被两个互质的自然数a 、b 整除,那么c 一定能被ab 整除. 例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除.①一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……②一个数各位数数字和能被3整除,这个数就能被9整除;一个数各位数数字和能被9整除,这个数就能被9整除;③如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.④如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.⑤部分特殊数的分解:111=3×37;1001=7×11×13;11111=41×271;10001=73×137;10101=3×7×13×37;1995=3×5×7×19;1998=2×3×3×3×37;2007=3×3×223;2008=2×2×2×251;2007+2008=4015=5×11×73.(一)整除的性质【例1】(2005全国小学数学奥赛)某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是多少?分析:可以表示成连续9个自然数的和说明该数能被9整除,可以表示成连续10个自然数的和说明该数能被5整除,可表示成连续11个自然数的和说明该数能被11整除,因此该数是[9,5,11]=495,因此符合条件的最小自然数是495.注意:本题易错答案为990,提醒同学们注意.(拓展)一个各位数字均不为零的三位数能被8整除,将其百位数字、十位数字、个位数字分别划去后可以得到3个两位数(例如,按此方法由247将得到47、27、24).已知这些两位数中一个能被5整除,另一个能被6整除,还有一个能被7整除.那么原来的三位数是多少?分析:那个能被5整除的两位数的个位数字是0或5,且应是原三位数的十位数字或个位数字.注意到各位数字均不为零且本身是偶数,故必须有原三位数的是十位数字是5.三位数能被8整除意味着末两位数应能被4整除.在51~59之间只有52、56是4的倍数,但52不是5、6、7中任何一个数的倍数,故题设中的三位数个位数字一定是6.由上述分析可知,百位数字和6组成的两位数是6的倍数,可能为36、66、96,则得到三个三位数:356、656、956,经检验只有656是8的倍数.【例2】(第14届迎春杯考题)1)从1~3998这3998个自然数中,有多少个能被4整除?(2)从1~3998这3998个自然数中,有多少个数的各位数字之和能被4整除?分析:(1)第一问比较简单,3998÷4=999…6所以1~3998中有996个能被4整除的(2)考虑数字和,如果一个一个找规律我们会发现规律是不存在的,因此我们考虑分组的方法,我们补充2个数,0000和3999,此外所有的一位两位三位数都在前面加上0补足4位,然后对这4000个数做如下分组:(0000,1000,2000,3000),(0001,1001,2001,3001),(0002,1002,2002,3002),…(0999,1999,2999,3999),共1000组,容易发现每一组恰好有个数字和是4的倍数,因此共有1000个数字和是4的倍数,但注意到我们补充了一个0000进去.所以原来的3998个数里,有999个数字和是4的倍数.【例3】在1、2、3、4……2007这2007个数中有多少个自然数a能使2008+a能被2007-a整除?分析:如果2008+a 能被2007-a 整除,那么2008+a 2007-a 为自然数,2008+a 2008200712007-a 2007a++=-也是自然数, 4015能被(2007-a )整除,所以4015=5×11×73,4015的约数中小于2007的数有1、5、11、73、55、365、803, 所以当a 取2006、2002、1996、1934、1952、1642、1204能使2008+a 能被2007-a 整除.【例4】 已知两个三位数abc 与def 的和abc def +能被37整除,证明:六位数abcdef 也能被37整除.分析:abcdef =abc ×1000+def =abc ×999+(abc +def ),因为999能被37整除,所以abc ×999能被37整除,而(abc +def )也能被37整除,所以其和叶能被37整除.(前铺)已知□△×△□×□〇×☆△=□△□△□△,其中□、△、〇、☆分别表示不同的数字,那么四位数〇△□☆是多少?分析:因为□△□△□△=□△10101⨯,所以在题述等式的两边同时约去□△即得△□×□〇×☆△=10101.作质因数分解得37137310101⨯⨯⨯=,由此可知该数分解为3个两位数乘积的方法仅有371321⨯⨯.注意到两位△□的十位数字和个位数字分别和另外的两位数□〇和☆△中出现,所以△□=13,□〇=37,☆△=21.即〇=7,△=1,□=3,☆=2,所求的四位数是7132.(前铺)证明:形如abcabc 的六位数一定能被7,11,13整除. 分析:1001,100171113abcabc abc =⨯=⨯⨯,所以得证.(拓展)若4b+2c+d=32.试问abcd 能否被8整除?请说明理由.分析:由能被8整除的特征知,只要后三位数能被8整除即可.10010bcd b c d =++,有(42)9688(12)bcd b c d b c b c -++=+=+,所以abcd 能被8整除.(拓展)已知a ,b 是整数,求证a+b,ab 、a-b 这三个数之中,至少有一个是3的倍数.分析:若a,b 之一是3的倍数,则ab 是3的倍数;若a,b 都不是3的倍数:1)a=b=3k+1或3k-1 (都余1或都余2),则a-b 是3的倍数; 2)a,b 一个是3k+1 一个是3k-1 (一个余1,一个余2),则a+b 是3的倍数; 所以a+b,ab,a-b 这三个数之中,至少有一个是3的倍数.(拓展)五位数abcde 是9的倍数,其中abcd 是4的倍数,那么abcde 的最小值是_______.分析:1)若a、b、c、d、e不同的字母代表相同的数值时,abcde=abcd×10+e=(abcd+e)+ abcd ×9,因为abcde是9的倍数,所以(abcd+e)是9的倍数,要abcde最小,我们希望abcd和e都能取最小,这样和也就最小.abcd是4的倍数,所以最小是1000,要让(abcd+e)是9的倍数,e最小是8,所以abcde最小值是10008.2)若a、b、c、d、e不同的字母代表不同的数值时,abcd是4的倍数,所以最小是1024,但e为2,矛盾,所以abcd最小是1028,即abcde最小值是10287.(二)整除的特征【例5】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?分析:乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.5,15=5×3,20=5×4,25=5×5,30=5×6,35=5×7,40=5×8,45=5×9,50=5×5×2,55=5×11,发现只有25、50、75、100、……这样的数中才会出现多个5,写到55时共出现11+1+1=13个因数5,所以至少应当写到55,最多可以写到59.[前铺] 从50到100的这51个自然数的乘积的末尾有多少个连续的0?分析:首先,50、60、70、80、90、100中共有7个0.其次,55、65、85、95和任意偶数相乘都可以产生一个0,而75乘以偶数可以产生2个0,50中的数字5乘以偶数又可以产生1个0,所以一共有++147=+个0.124[巩固] 11个连续两位数的乘积能被343整除,且乘积的末4位都是0,那么这11个数的平均数是多少?343=,则可知,在11个连续的两位数种,至多只能有2个数是7的倍数,所以其中有一分析:因为37个必须是49的倍数,那就只能是49或98.又因为乘积的末4位都是0,就是说这连续的11个自然数应该“含有”4个5.连续的11个自然数中至多只能有3个是5的倍数,至多只能有1个是25的倍数,所以其中有一个必须是25的倍数,那么就只能是25、50或75.所以这11个数是40,41,42,43,44,45,46,47,48,49,50,它们的平均数即为它们的中间项45.[拓展] 975×935×972×□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?分析:积的最后4个数字都是0,说明乘数里至少4个2和4个5.975=5×5×39,935=5×187,972=2×2×243,共有3个5,2个2,方框内至少是2×2×5=20 答:在方框内最小应填20.卷Ⅱ【例6】 已知四十一位数55…55□99…99(其中5和9各20个)能被7整除,那么中间方格内的数字是多少?分析:因为555555和999999都是7的倍数,如果原数是能被7整除,那么由5个205555□ 9个209999=5个205555□99999910999969个14+⨯知 5个205555□ 9个149999也能被7整除;又 5个205555□9个149999可以表示成 5555552910⨯+ 5个145555□ 9个149999,说明 5个145555□9个149999也能被7整除, 相当于将原数的前后分别去掉555555和999999后整除性不变,依次下去,得到55□99.因此□44是7的倍数,□3是7的倍数,所以得□=6.[前铺1] 已知10□8971能被13整除,求□中的数.分析:10□8-971=1008-971+□0=37+□0.上式的个位数是7,若是13的倍数,则必是13的9倍,由13×9-37=80,推知□中的数是8.[前铺2] 在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?分析:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除.[巩固1] 在六位数11□□11中的两个方框内各填入一个数字,使得这个六位数能够被17和19整除,那么方框中的两位数是多少?分析:(法1)这个六位数能够被17和19整除,那么也应当能被17×19=323整除,因为119911减去某个数□□00就可能是323的倍数.119911=323×371+78,说明119911应当减去的四(三)位数满足□□00除以323也余78,也就是满足□□22除以323应当能够除尽.说明□□22是4522,那么□□00是4600,因此所求的六位数是119911-4600=115300.[巩固2] 应当在如下的问号“?”的位置上填上哪一个数码,才能使得所得的整数可被7整除?(其中数码6和5各重复了50次)666...66?555 (55)分析:可在“?”的位置上填上2或9.事实上,111111(6个1)可被7整除,因此如果将我们的数的头和尾各去掉48个数码,并不改变其对7的整除性,于是还剩下66?55.从中减去63035,并除以10,即得3?2.此时不难验证,具有此种形式的三位数中,只有322和392可被7整除.所以?上填2或9.[拓展] 应当在如下的“□□”的位置上填上哪两个数码,才能使得所得的整数可被63整除?(其中数码2和7都重复了25次.222...22□□77 (777)分析:63=7×9,所以中间□□两个数的和能被9整除,又111111(6个1)可被7整除,所以去掉首尾24个数字后,剩下的2□□7,也能被7整除,2007=7×286+5,所以□□5也能被7整除,□□5-35能被7整除,所以两位数□□被7除余3,在两位数中被7除余3,且能被9整除的只有45. □□中所填的数是45.【例7】 (★★全国小学数学奥林匹克)200820082008200808n 个能被99整除,那么,n 的最小值为多少?分析:由于99=9×11,所以200820082008200808n 个能被11和9整除,200820082008200808n 个中奇位数减偶位数的差为(8-2)n+8=6n+8,当n=6、17、28……时,(3n+1)是11的倍数,所以n 的最小值是6.200820082008200808n 个各位数字之和为(2+8)×n+8=10n+8,所以当n=1、10、19、28……等数时,能被9整除,所以n 的最小值为28.[前铺] 如果200520052005200501n 个能被11整除,那么n 的最小值是 .分析:200520052005200501n 个中奇数位减偶数位的差为(5-2)n +1=3n +1,当n=7时,(3n +1)是11的倍数,所以n 的最小值是7.【例8】 (奥数网原创题)已知多位数55…5599…99□□(其中5和9各n 个)能被7整除,那么当n取值为什么时,方格内的数字的不同的情况数为定值,并求出这个定值?分析:由例题1知当n=6k (k 为自然数),100÷7=14…2,所以共有15种不同的情况;当n ≠6k (k 为自然数),情况不定.[前铺1] 如果六位数1992□□能被105整除,那么它的最后两位数是多少?分析:199300÷105余10,199300-10=199290,即它的最后两位数是90.[前铺2] 已知200520052005□□是72的倍数,求末两位数是多少?分析:72=8×9,因为被9整除,所以末两位数字和是被9除余6的,因为被8整除,注意到百位是奇数,所以末两位被8除余4,满足这2个条件的2位数就只有60.[拓展] 已知多位数□□55…5599…99(其中5和9各n 个)能被77整除,那么方格内的数字是多少?分析:由例题知当n=6k (k 为自然数),100÷77=1…23,方格内的数字是77;当n ≠6k (k 为自然数),情况不定.【例9】 (奥数网原创题)已知四十一位数55…55□7□99…99(其中5和9各19个)能被77整除,那么方格内的数字分别是多少?分析:由上题知可化为5□7□9能被7整除,50709÷77=658…43,所以□0□0+43=7 k (k 为自然数),即□0□0+1=7 k (k 为自然数),又21+□+□=11 k (k 为自然数),所以□+□=10,设第一个□为x ,则第二个□为(10-x ),有1000x+10(10-x )+1=7 k (k 为自然数),,所以x=6,即第一个□为6,所以第二个□为4,即所求的数为56749.[前铺1] 五位数329A B 能被72整除,问:A 与B 各代表什么数字?分析:已知329A B 能被72整除.因为72=8×9,8和9是互质数,所以329A B 既能被8整除,又能被9整除.根据能被8整除的数的特征,要求29B 能被8整除,由此可确定B =6.再根据能被9整除的数的特征,329A B 的各位数字之和为A +3+2+9+B =A +3-f -2+9+6=A +20,因为l ≤A ≤9,所以21≤A +20≤29.在这个范围内只有27能被9整除,所以A =7.[前铺2] 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除.分析:分别由能被9,25和8整除的数的特征,很难推断出这个七位数.因为9,25,8两两互质,由整除的性质知,七位数能被 9×25×8=1800整除,所以七位数的个位,十位都是0;再由能被9整除的数的特征,推知首位数应填4.这个七位数是4735800.[拓展1] 买28支价格相同的钢笔共付人民币9□.2□元.已知□处数字相同,请问每支钢笔多少元?分析:∵9□.2□元=9□2□分,28=4×7,∴根据整除“性质2”可知4和7均能整除9□2□.4|2□可知□处能填0或4或8.因为79020,79424,所以□处不能填0和4;因为7|9828,所叫□处应该填8.又∵9828分=98.28元,98.28÷28=3.51(元),即每支钢笔3.51元.[拓展2] 仓库有两个箱子,其中一个装了74个大杯子,另一个装了75个小杯子.地上有两个价格牌,一个写着总价“132.××元”,另一个写着“总价123.××元”.已知这两个价格牌原来贴在箱子上,但现在已经弄不清楚哪个价格牌贴在哪个箱子上了,唯一知道的是大杯子的单价比小杯子的贵,那么小杯子的单价是多少元?分析:设大杯子和小杯子的价格分别为S 和s .如果s ×75=132.××,S ×74=123.××,因为S >s ,所以s >132.××-123.×× > 8元.可是如此小杯子的总价格大于8×75=300元,不符合题目要求.所以123.××是小杯子的总价钱.由此可得出123××是75=3×25的倍数,则××可以为00、25、50、75,经实验12300和12375是75的倍数.相应的s 分别为:12300÷75=1.64元、12375÷75=1.65元.【例10】 求最小的自然数,它的各位数字之和等于56,它的末两位数是56,它本身还能被56所整除.分析:所求的数写成100a +56的形式.由于100a +56能被56整除,所以a 能被14整除,所以a 应是14的倍数.而且a 的数字和等于56-5-6=45.具有数字和45的最小偶数是199998,但这个数不能被7整除.接下来数字和为45的偶数是289998和298998,但前者不能被7除尽,后者能被7整除,所以本题的答数就是29899856.[前铺] 求最小的偶数,它的各位数数字之和为40.分析:各位数数字之和为40的数,至少有5位,万位上的数至少为4,否则,各位数数字之和最多为3+9+9+9+9=39,当万位数上的数为4是,这个数只能是49999,不是偶数,所以最小的偶数只能是59998.[拓展]在五位数中,能被11整除且各位数字和等于43,这样的数有多少?分析:因为5×8=40,5个数字的和等于43时,其中至少有3个9,并且只有以下两种情况.(1) 数字中4个9、1个7,则奇数位数字和减去偶数位数字和只能是3×9-(9+7)=11,这样的书有99979和97999,(2) 数字中3个9,一个7,则奇数位数字和减去偶数位数字的和只可能是3×9-2×8=11,这样的数有98989.数的整除性是数论中最基本的内容,在数论问题中经常被用到,而奇偶性质是数的整除性中的特殊情形,有关奇偶数性质的运用将在下一讲中详细教授.练习三专题展望1. (例1)有些数既能表示成3个连续自然数的和,又能表示成4个连续自然数的和;还能表示成5个连续自然数的和,例如:30满足上述要求,因为30=9+10+11;30=6+7+8+9;30=4+5+6+7+8.请你找出700至1000之间,所有满足上述要求的数,并简述理由.分析:3个连续自然数的和,一定能够被3整除;4个连续自然数的和,一定能够被2整除,且除以2所得的商是奇数,也就是说它不能被4整除,也即除以4所得余数为2;5个连续自然数的和,一定能够被5整除.3、4、5的最小公倍数是60.60以内满足上述三个条件的数是30,所以60的整数倍加上30就可以满足条件.700=60×11+40,所以第一个符合题意的数是750=60×12+30,最大的一个数是990=60×16+30,共计16-12+1=5个数,分别为750、810、870、930、960.关键是让学生把该问题转化到整除问题,也可简单复习连续自然数求和与项数的关系.2. (例3)在1,2,3,……,1995,这1995个数中找出所有满足下面条件的数a 来:(1995+a )能整除1995×a. 分析:1995a 1995+a ⨯是自然数,所以1995a 199519951995-=1995+a 1995+a⨯⨯也是自然数,即1995+a 是1995×1995的约数.因为:1995×1995=32×52×72×192,,它在1995与2×1995之间的约数有 32×192=3249,7×192=2527,3×72×19=2793, 52×7×19=3325,32×5×72=2205,3×52×72=3675, 于是a 的值有6个,即3249-1995=1254,2527-1995=532,2793-1995=798, 3325-1995=1330,2205-1995=210,3675-1995=1680.3. (例4)已知p 、q 都是大于1的整数,并且qp 12-和p q 12-都是整数,那么p +q 的值是多少?分析:根据对称性,不妨设p q ≥,于是21q p-为大于0、小于2的整数,只能等于1.由于21q p -=,可将21p q -化为34q-,这样3q =,5p =,所以8p q +=.4. (例5)把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末53位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?分析:1到10的乘积里会出现2×5和10两次末尾添零的情况,估算从200开始,是49个0,还要扩大至220时加4个0,所以最小的数应该是220,而最大应该是224.5. (例6)二百零一位数11…1□22…2(其中1和2各有100个)能被13整除,那么中间方格内应填什么数?分析:由111111被13整除,而100=6×16+4,故原来被13整除的算式即变为13|1111□2222;还可变为13|333-1□2,即可知方格应填1.6. (例7)已知数022983298329832983个 n 能被18整除,那么n 的最小值是多少?分析:13n+2=9k ,所以k=6 时,n=4位最小值.人生要学会遗忘人生在世,忧虑与烦恼有时也会伴随着欢笑与快乐的.正如失败伴随着成功,如果一个人的脑子里整天胡思乱想,把没有价值的东西也记存在头脑中,那他或她总会感到前途渺茫,人生有很多的不如意.所以,我们很有必要对头脑中储存的东西,给予及时清理,把该保留的保留下来,把不该保留的予以抛弃.那些给人带来诸方面不 利的因素,实在没有必要过了若干年还值得回味或耿耿于怀.这样,人才能过得快乐洒脱一点.众所周知,在社会这个大家庭里,你要想赢得别人的尊重,你首先必须尊重别人,多记住别人的优点,而学会遗忘别人的过失.其次,一个人要学会遗忘自己的成绩,有些人稍微做了一点成绩就骄傲起来,沾沾自喜,这显然是造成失败的一个原因.成绩只是过去,要一切从零开始,那样才能跨越人生新的境界.同时,一个人自己对他人的帮助,应该看作是一件微不足道小事,以至于遗忘.这样,你的处事之道方能获得他人的赞许.人生需要反思,需要不断总结教训,发扬优点,克服缺点.要学会遗忘,用理智过滤去自己思想上的杂质,保留真诚的情感,它会教你陶冶情操.只有善于遗忘,才能更好地保留人生最美好的回忆.成长故事。
第十讲列方程解应用题小新去动物园看猩猩,有的猩猩在洞中,有的在外面玩耍。
他就问管理员叔叔共有多少只猩猩,管理员叔叔开心的答道:“头数加只数,只数减头数,头数乘只数,只数除头数,把四个得数相加恰好是100 .”那么聪明的你知道一共有多少只猩猩吗?呵呵!认真学习今天的好方法,你就可以准确、快速的解答出上面的问题了!内容概述在小学数学中,列方程解应用题与用算术方法解应用题是有密切联系的。
它们都是以四则运算和常见的数量关系为基础,通过分析题里的数量关系,根据四则运算的意义列式解答的。
但是,两种解答方法的解题思路却不同。
由于数量关系的多样性和叙述方式的不同,用算术方法解答应用题,时常要用逆向思考,列式比较困难,解法的变化也比较多。
用列方程的方法解答应用题,由于引进了字母表示未知数,可以使未知数直接参与运算,使题目中的数量关系更加清楚,把未知数当成已知数来用,使我们很容易理清数量关系,正确解决问题。
特别是在解比较复杂的或有特殊解法的应用题时,用方程往往比较容易。
类型Ⅰ:列简易方程解应用题【例1】 (清华附中培训试题)(难度系数:★★)解下列方程: (1)357x x +=+ (2)452x x -=- (3)12(3)7x x +-=+(4)132(23)5(2)x x --=--(5)5118()2352x x ⎡⎤⨯⨯-=⎢⎥⎣⎦(6)1123x x+-= (7)527x y x y +=⎧⎨+=⎩(8)2311329x y x y +=⎧⎨+=⎩分析:(1)375,22,21.1x x x x x -=-===移项得:注意把“同类”放在等号的同侧,移项过程中注意变号;化简得:等式两边同时除以可得:把代入原式满足等式.以下各题不再写检验步骤,请教师强调学生答案要检验.(2)2541.x x x -=-=, (3)16277730.x x x x +-=+-==,, (4)13465219471974123 4.x x x x x x x x -+=-+-=--==,,-=,,(5)511154104101104()410.35236333333x x x x x x x x x x ⎡⎤⎡⎤⨯⨯-=⨯-=-=-===⎢⎥⎢⎥⎣⎦⎣⎦,,,,, (6)31263326 3.x x x x x +=+-==()-,,请教师强调学生在解答时要注意:移项变号、同类放在等式一边、(4)中去括号时每一项都要发生相应变化、(6)中每一项都同时扩大6倍、(5)中可以先简化运算的一定要先化简。
第三讲 数论之数的整除性数的整除性是数论的基础内容,学生能否熟练掌握该内容对以后进一步深入学习数论至关重要. 本讲需要教授的内容有:1、掌握并熟练运用能被2、3、4、5、6、9、11等整除的自然数性质,这类知识在(Ⅰ、Ⅱ类)题中运用很多.2、训练对自然数的快速分解,记住并会运用几个特殊数(111、1001等)的分解情况对于解决(Ⅲ类)有很大的帮助.3、精英班、竞赛班的学生还应该掌握分式的化简方法.数论研究的是奇数、偶数、素数、合数,这些最简单的数——整数及其内部关系,但是从这些简单的数中诞生了“费马大定理”、“哥德巴赫猜想”和“朗兰兹纲领”这样的难题,它们吸引数学家们花费数十年、甚至整世纪努力研究,本讲我们将学习一些最基本的数论知识.想挑战吗在下面的方框中各填一个数字,使六位数 11□□11能被17和19整除,那么方框中的两位数是 .答案:17×19=323,而110011÷323余数为191,若□□00+191被323整除,商的个位为7,从而十位是1,□□00+191=5491,方框中的数为53.你还记得吗?教学目标①一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……②一个数各位数数字和能被3整除,这个数就能比9整除;一个数各位数数字和能被9整除,这个数就能被9整除;③如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.④如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.以上规律仅在十进制数中成立.⑤部分特殊数的分解:111=3×37;1001=7×11×13;11111=41×271;10001=73×137;1995=3×5×7×19;1998=2×3×3×3×37;2007=3×3×223;2008=2×2×2×251;2007+2008=4015=5×11×73. 10101=3×7×13×37.Ⅰ整除与数字谜题【例1】(★★★)要使26ABCD6能被36整除,而且所得的商最小,那么A、B、C、D分别是多少?分析:因为36=4×9,所以D6能被4整除,从而D只可能是1,3,5,7,9.要使商最小,A、B、C应尽可能小,先取A=0,B=1,又2+6+6+A+B+C+D=14+A+B+C+D=15+C+D,所以15+C+D是9的倍数,C=3,D=9时,取得最小值.[拓展]要使26ABCD6能被36整除,而且所得的商最大,那么A、B、C、D分别是多少?分析:先取A=9,则B=8,31+C+D是9的倍数,所以B+C=5或14,由于,B+C≤7+6=13,所以B+C=5,B=5,C=0时,取得最大值.【例2】(★★★祖冲之杯小学数学邀请赛)一个数的20倍减1能被153整除,这样的自然数中最小的是 .分析:设这样的数为x,则20x-1=153a,a是整数,即20x=153a+1,因为20x的末位数一定是0,所以a最小取3,从而x最小是23.[巩固](这一类型的题虽然也被分入Ⅰ类,但非常特殊,应当注意).一个数的20倍加7能被59整除,这样的自然数最小的是多少?分析:20x=59a-7,59a个位是7,所以a的个位是3,a=3时,x不能取整数,a=13时,x=38.【例3】(★★★★)求最小的自然数,它的各位数字之和等于56,它的末两位数是56,它本身还能被56所整除.分析:所求的数写成100a+56的形式.由于100a+56能被56整除,所以a能被14整除,所以a应是14的倍数.而且a的数字和等于56-5-6=45.具有数字和45的最小偶数是199998,但这个数不能被7整除.接下来数字和为45的偶数是289998和298998,但前者不能被7除尽,后者能被7整除,所以本题的答数就是29899856.[前铺]:求最小的偶数,它的各位数数字之和为40.分析:各位数数字之和为40的数,至少有5位,万位上的数至少为4,否则,各位数数字之和最多为3+9+9+9+9=39,当万位数上的数为4是,这个数只能是49999,不是偶数,所以最小的偶数只能是59998.[拓展]在五位数中,能被11整除且各位数字和等于43,这样的数有多少?分析:因为5×8=40,5个数字的和等于43时,其中至少有3个9,并且只有以下两种情况.(1)数字中4个9、1个7,则奇数位数字和减去偶数位数字和只能是3×9-(9+7)=11,这样的书有99979和97999,(2)数字中3个9,一个7,则奇数位数字和减去偶数位数字的和只可能是3×9-2×8=11,这样的数有98989.【例4】(★★★★)在1,2,3,……,1995,这1995个数中找出所有满足下面条件的数a来:(1995+a)能整除1995×a.分析:1995a1995+a⨯是自然数,所以1995a199519951995-=1995+a1995+a⨯⨯也是自然数,即1995+a是1995×1995的约数.因为:1995×1995=32×52×72×192,,它在1995与2×1995之间的约数有32×192=3249,7×192=2527,3×72×19=2793,52×7×19=3325,32×5×72=2205,3×52×72=3675,于是a的值有6个,即3249-1995=1254,2527-1995=532,2793-1995=798,3325-1995=1330,2205-1995=210,3675-1995=1680.Ⅱ整除与数字组合【例5】目前日期的流行记法是采用6位数字,即将表示年份的后两位数字记在最左边,中间两个数字表示记载最左边,中间两个数字表示月份,最末两位数字表示日份(遇有月或日是个位数,前面加一个0.例如2008年8月8日记作080808),那么在今年(07年)365个日期中能被45整除的日期有多少个?分析:45=9×5,所以这个六位数只能是07***5或07***0,其中千位只能是0或1,十位上只能是0、1、2,对于07***5,千位、百位、十位上数字和为6或15、24,由于千位只能是0或1,十位上只能是0、1、2,所以三位数字之和不可能为15、24,如果为6,那么有070605、070515、070425三种情况;对于07***0,千位、百位、十位上数字和为2或11或20,由于千位只能是0或1,十位上只能是0、1、2,所以三位数字之和不可能为20,如果为11,那么只有070920、070830两种情况.如果三位数字之和为2,那么只有070110、071010两种情况,所以在今年(07年)365个日期中能被45整除的日期有7个.称为“十全数”,例如,3 785 942 160就是一个十全数.现已知一个十全数能被1,2,3, (18)除,并且它的前四位数是4876,那么这个十全数是.分析:这个十全数能被10整除,个位数必为0;能被4整除,十位数必为偶数,末两位只能是20.设这个十全数为4876abcd20.由于它能被11整除,必有b+d-(a+c)=10,所以b、d是9和5;a、c是3和1,这个十全数只能是4 876 391 520,4 876 351 920,4 876 193 520,4 876 153 920中的一个.经检验,它是4 876 391 520.【例7】(★★俄罗斯数学奥林匹克)为了打开银箱,需要先输入密码,密码由7个数字组成,它们不是2就是3.在密码中2的数目比3多,而且密码能被3或4所整除.试求出这个密码.分析:密码中的2比3要多,所以2可能有4、5、6或7个.当2有4个时,密码的数字和为17;当2有5个时,数字和为16;当2有6个时,数字和为15;当2有7个时,数字和为14.我们知道如果一个数能被3整除,那么它的数字和也能被3整除,所以2应当有6个,这样3就只能有1个.另外,一个数能被4整除,那么它的末两位数也应当能被4整除,所以末两位数必定是为32.所以,密码是2222232.[拓展] 为了打开银箱,需要先输入密码,密码由7个数字组成,它们不是1、2就是3.在密码中1的数目比2多,2的数目比3多,而且密码能被3或16所整除.试问密码是多少?分析:密码由7为数字组成,如果有一个3的话,那么至少有二个2,如果有三个2,那么1至少有四个,总共至少有1+3+4=8个数字,所以2只有二个,1有4个,如此,各数位数字和为4+4+3=11,不是3的倍数,所以密码中只有1、2,由1、2组成的四位数中只有2112能被16整除(从个位向高数位推得),所以密码的后四位是2112,所以前三位数字和是3的倍数,只有111和222(2多于1,排除)满足条件,所以这个密码是1112112.【例8】(★★★)用1,9,8,8这四个数字能排成几个被11除余8的四位数?分析:现在要求被11除余8,我们可以这样考虑:这样的数加上3后,就能被11整除了.所以我们得到“一个数被11除余8”的判定法则:将偶位数字相加得一个和数,再将奇位数字相加再加3,得另一个和数,如果这两个和数之差能被¨除尽,那么这个数是被11除余8的数;否则就不是.要把1,9,8,8排成一个被11除余8的四位数,可以把这4个数分成两组,每组2个数字.其中一组作为千位和十位数,它们的和记作A;另外一组作为百位和个位数,它们之和加上3记作B.我们要适当分组,使得能被11整除.现在只有下面4种分组法:偶位奇位(1) 1,8 9,8(2) 1,9 8,8(3) 9,8 1,8(4) 8,8 1,9经过验证,第(1)种分组法满足前面的要求:A=1+8=9,B=9+8+3=20,B-A=11能被11除尽.但其余三种分组都不满足要求.根据判定法则还可以知道,如果一个数被11除余8,那么在奇位的任意两个数字互换,或者在偶位的任意两个数字互换得到的新数被11除也余8.于是,上面第(1)分组中,1和8任一个可以作为千位数,9和8中任一个可以作为百位数.这样共有4种可能的排法:1988,1889,8918,8819.[拓展] 用1、2、3、4、5、6这6个数字能组成多少个被11除余5的六位数?分析:1+2+3+4+5+6=21,六位数被11除余5的话,奇数位数字和减去偶数位的数字和再减去5能被11整除,21只能分拆成13和8两个差为5的数字,所以组成的六位数的奇数位的和为13,偶数位的数字和为8,1到6这6个数字能组成13的只有6+4+3和6+5+2两种.对于其中任意一种,例如奇数位数字分别为6、4、3,偶数位数字分别为1、2、5,这种情况下的六位数一共有3×3=9种,同理另一种情况也有9种,所以用1、2、3、4、5、6这6个数字能组成18个被11除余5的六位数.【例9】(★★★★)已知一个6位数abcdef ,将它的前三位整体移到末尾变成defabc ,然后将两个六位数相加,已知这两个4位数的和是以下5个数的一个:①1460470;②460459;③1460459;④1460472;⑤1460466,这个和到底是多少?分析:这个和可以表示为:(a+d )×100100+(b+e )×10010+(c+f )×1001,所以这个和是1001的倍数,所以这个和是7、11、13的倍数[前铺]一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?分析:设这个4位数是abcd ,则新的4位数是bcda .两个数的和为abcd +bcda =1001×a+1100×b+110×c+11×d,是11的倍数.在所给的5个数中只有9867是11的倍数,故正确的答案为9867.Ⅲ 多位数整除【例10】(★★★香港圣公会小学数学奥林匹克)下面这个199位整数:19910010010011001位被13除,余数是多少?分析:100100能被13整除,每六位能被13整除,所以余数是1[拓展]199100000位被13除余多少?分析:19910010010011001位-199100000位=19610010011001位显而易见19610010011001位也是1001的倍数,所以也是13的倍数,所以199100000位与19910010010011001位被13除所得的余数相同,余数是1.[拓展](★★★)49100200300470080090080074003002001共位…………被7除的余数为多少?分析:原式=1001001001001001001001001×1001001001001001001001001,由【例10】的方法1001001001001001001001001被7除余1,所以49100200300470080090080074003002001共位…………被7除的余数为1.【例11】200820082008200808n 个能被99整除,那么,n 的最小值为多少?分析:由于99=9×11,所以200820082008200808n 个能被11和9整除,200820082008200808n 个中奇位数减偶位数的差为(8-2)n+8=6n+8,当n=6、17、28……时,(3n+1)是11的倍数,所以n 的最小值是6.200820082008200808n 个各位数字之和为(2+8)×n+8=10n+8,所以当n=1、10、19、28……等数时,能被9整除,所以n 的最小值为28.[前铺](★★全国小学数学奥林匹克)如果200520052005200501n 个能被11整除,那么n 的最小值是 .分析:200520052005200501n 个中奇数位减偶数位的差为(5-2)n +1=3n +1,当n=7时,(3n +1)是11的倍数,所以n 的最小值是7.【例12】(★★★★)应当在如下的问号“?”的位置上填上哪一个数码,才能使得所得的整数可被7整除?(其中数码6和5各重复了50次)666...66?555 (55)分析:可在“?”的位置上填上2或9.事实上,111111(6个1)可被7整除,因此如果将我们的数的头和尾各去掉48个数码,并不改变其对7的整除性,于是还剩下66?55.从中减去63035,并除以10,即得3?2.此时不难验证,具有此种形式的三位数中,只有322和392可被7整除.所以?上填2或9.[拓展]应当在如下的问号“?”的位置上填上哪个数码,才能使得所得的整数可被41整除?(其中数码2和6都重复了36次)222...22?66 (666)分析:11111=41×271,所以我们可以将数的头和尾各去掉35个数码,并不改变对41的整除性,于是还剩下2?6,在200到300之间只有246能被41整除,并且个位数字为6.所以“?”上应填入4.[拓展] 应当在如下的“□□”的位置上填上哪两个数码,才能使得所得的整数可被63整除?(其中数码2和7都重复了25次.222...22□□77 (777)分析:63=7×9,所以中间□□两个数的和能被9整除,又111111(6个1)可被7整除,所以去掉首尾24个数字后,剩下的2□□7,也能被7整除,2007=7×286+5,所以□□5也能被7整除,□□5-35能被7整除,所以两位数□□被7除余3,在两位数中被7除余3,且能被9整除的只有45. □□中所填的数是45.数的整除性是数论中最基本的内容,在数论问题中经常被用到,而奇偶性质是数的整除性中的特殊情形,有关奇偶数性质的运用将在下一讲中详细教授.1、(★例1)六位数20□□08能被49整除,□□中的数是 .分析:方法一:20□□08被49除商4081余39,所以□□00+39能被49整除,□□39除以49应当商至少为11,49×11=539,所以□□中的数应该为05,当然5+49=54也成立,□□中的数可以为05也可以输542、(★★★例1)某个7位数1993□□□能够同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数依次是什么?分析:2、3、4、5、6、7、8、9的最小公倍数是2520. 1993000÷2520=790 (2200)2520-2200=320,所以最后两位数是3、2、0.3、(★★★例2)一个数的40倍减1能被97整除,这样的自然数中最小的是 .分析:设这样的数为x ,则40x-1=97a ,a 是整数,即40x=97a +1,因为40x 的末位数一定是0,40x-1的末尾数一定是9,所以a 最小取7,从而x 最小是17.4、(★★★例12)已知39393939……中39一共重复了20次.那么这个数被37除得的余数是多少? 分析:10101=3×7×13×37,所以393939是37的倍数.所以这个40位数裁掉前36位数后剩下的四位数与原来的数同余,所以只要求出3939被37除后的余数.3939=37×106+17,所以余数为17. 练习三专题展望5、(★★★★例4)在1、2、3、4……2007这2007个数中有多少个自然数a能使2008+a能被2007-a 整除?分析:如果2008+a能被2007-a整除,那么2008+a2007-a为自然数,2008+a2008200712007-a2007a++=-也是自然数,4015能被(2007-a)整除,所以4015=5×11×73,4015的约数中小于2007的数有1、5、11、73、55、365、803,所以当a取2006、2002、1996、1934、1952、1642、1204能使2008+a能被2007-a整除.时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系.可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢?我们仔细研究一下,就知道这两种量是紧密联系着的.原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了.譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的.因为历法需要的精确度较高,时间的单位"小时"、角度的单位"度"都嫌太大,必须进一步研究它们的小数.时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍.以1/60作为单位,就正好具有这个性质.譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60……数学上习惯把这个1/60的单位叫做"分",用符号"′"来表示;把1分的1/60的单位叫做"秒",用符号"″"来表示.时间和角度都用分、秒作小数单位.这个小数的进位制在表示有些数字时很方便.例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数.这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天.数学知识。
第四讲 奇数与偶数本讲需要学生掌握并熟练运用以下知识. 1、奇数与偶数的四则运算性质(掌握并熟练运用);2、利用奇偶数的性质巧妙运用反证法等数学方法(掌握并熟练运用).奇数与偶数问题一般分为两类,一类(Ⅰ)主要考查运用奇数与偶数的四则运算性质的能力,这一类题往往有常规解法,通常只要经过简单的逻辑判断便能得出答案,教师在讲授这类题型时应该着重强调奇数与偶数的四则运算性质在这一类题中的运用,另一类题(Ⅱ)条件隐含,需要特殊的逻辑思维过程,奇偶数有时候仅仅作为一种判断模型,这类题说简单很简单,说难很难,完全靠学生悟性,教师应当注重思维引导.想挑战吗?奇数与偶数作为数学概念非常简单和浅显,但奇数与偶数在解题过程中的妙用却有很多,学会这些妙用,首先应该复习一下奇数与偶数的一些性质:① 偶数±偶书=偶数;偶数±奇数=奇数;奇数±偶数=奇数;奇数±奇数=偶数.② 偶书×偶数=偶数;偶数×奇数=偶数;奇数×偶数=偶数;奇数×奇数=奇数.③偶数个偶数相加减还是偶数;偶数个奇数相加减也是偶数;奇数个偶数相加减还是偶数;奇数个奇数相加减还是奇数;专题精讲 教学目标 有一只蚂蚁停在某个正方体的一个顶角上,每一天,这只蚂蚁都从正方体的一个顶角爬过一条棱到达另一个端点,那么这只蚂蚁是否有可能在10天后恰好到对顶角? 分析:不可能,蚂蚁如果要爬到对顶点,必须竖直棱、横向棱、纵向棱都爬奇数次,而3个奇数的和为奇数,所以不可能在10天后恰好到达对顶角.也可以对正方体的 8个顶点进行相间染色,用染色的方法进行解释.【例1】(★)能否从、四个3,三个5,两个7中选出5个数,使这5个数的和等于28.分析:因为3,5,7都是奇数,而且5个奇数的和还是奇数,不可能等于偶数22,所以不能.[巩固]:能否从1、3、5、7、9、11、13、15这8个数中选出3个数来,使它们的和为24?分析:不能,奇数个奇数相加的和为奇数不可能为偶数.【例2】是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=27043?分析:不存在.如果(a-b)、(b-c)中有一个偶数则原式不成立,如果(a-b)、(b-c)为奇数,那么a-c=(a-b)+(b-c)为偶数还是不成立.[拓展]是否存在自然数a、b、c,使得(5a-3b)(5b-3c)(25a-9c)=36342?分析:不存在,(25a-9c)=5(5a-3b)+3(5b-3c),所以如果(5a-3b)、(5b-3c)为奇数,那么(25a-9c)为偶数,所以(5a-3b)、(5b-3c)、(25a-9c)三个数中不可能都是奇数,所以不存在符合条件的a、b、c.[拓展]是否存在自然数a、b、c、d,使得(a-b)(b-c)(c-d)(a-d)=36342?分析:不存在.因为(a-d)=(a-b)+(b-c)+(c-d),所以如果(a-b)、(b-c)、(c-d)、(a-d)这四个数中有三个数是奇数,那么第四个数一定也是奇数,所以(a-b)、(b-c)、(c-d)、(a-d)中偶数不可能单独出现,所以这四个数的积要么是4的倍数,要么是奇数,而36342既不是4的倍数,也不是奇数,所以不可能存在自然数a、b、c、d使等式成立.【例3】(★★★)用代表整数的字母a、b、c、d写成等式组:a×b×c×d-a=2001a×b×c×d-b=2003a×b×c×d-c=2005a×b×c×d-d=2007试说明:符合条件的整数a、b、c、d是否存在.分析:a、b、c、d中如果有一个偶数,那么以偶数作为减数的等式等号左边值应该为偶数,与右边的奇数出现矛盾,如果a、b、c、d都是奇数,那么四条式子的等号左边都是偶数,四条等式都不成立.【例4】(★★★)(圣彼得堡数学奥林匹克)沿着河岸长着8丛植物,相邻两丛植物上所结的浆果数目相差1个.问:8丛植物上能否一共结有225个浆果?说明理由.分析:任何相邻两丛植物上所结的浆果数目相差1个,所以任何相邻两丛植物上所结浆果数目和都是奇数.这样一来,8丛植物上所结的浆果总数是4个奇数之和,必为偶数,所以不可能结有225个浆果.[拓展] 能否将1~16这16个自然数填入4×4的方格表中(每个小方格只填一个数),使得各行之和及各列之和恰好是8个连续的自然数?如果能填,请给出一种填法;如果不能填,请说明理由.分析:不能.将所有的行和与列和相加,所得之和为4×4的方格表中所有数之和的2倍.即为(1+2+3+…+15×16)×2=16×17.而8个连续的自然数之和设为k+(k+1)+(k+2)+(k+3)+(k+4)+(k+5)+(k+6)+(k+7)=8k+28若4×4方格表中各行之和及各列之和恰好是8个连续的自然数,应有8k+28=16×17,即2k+7=4×17 ①显然①式左端为奇数,右端为偶数,得出矛盾.所以不能实现题设要求的填数法.【例5】(★★★)有7只正立的茶杯,要求全部翻过来.规定每次翻动其中6只.试问此事能否办成?若茶杯是10只,每次只翻动7只,又能否把正立的茶杯全部翻过来?分析:(1)每一次操作都只能改变偶数个茶杯的放置状态,被翻过来的茶杯永远是偶数,所以不能将所有正立的茶杯翻过来.(2)能,将10个杯子编号后,分四次将所有杯子全部翻过来.第一次翻编号为1、2、3、7、8、9、10的杯子,第二次翻编号为4、5、6、7、8、9、10的杯子,第三次翻编号为1、2、3、4、5、7、8的杯子,第三次翻编号为1、2、3、4、5、9、10的杯子.[拓展] 有7面时钟,都指向12点,现在做一些操作,每次将其中六面钟往前或往后拨6小时,那么是否有可能将这7面钟都归于6点?分析:这道题与原题无任何区别,过渡到下一拓展.[拓展]有9面时钟,其中有3面指向12点,有三面指向3点,另外三面指向6点,现在做一些操作,每次将其中两面钟往前或往后拨3小时,那么是否有可能将这9面钟都归于6点?分析:不可能,不妨将一面种往前或往后拨3小时称为一个操作,那么将这9面钟归于6点,需要经过奇数个操作,但是,每次都要进行两个操作,因此不可能经过若干次偶数个操作完成技术个操作.【例6】(★★★奥数网原创)36盏灯排成6×6的方阵,这36盏灯中只有9盏灯是亮着的,现在作一些操作,每次操作拉一下同一行或同一列灯的开关,请问能否经过若干次操作,使这36盏灯全部亮.分析:不能,每一次改变6盏灯的状态,无论这6盏灯原来的状态如何,等只能增加或减少偶数盏亮着的灯,所以无论拉多少次都不能将这36盏灯全部亮.[拓展]如果36盏灯当中有两盏灯是亮着的,那么是否有可能经过若干次操作,使这36盏灯全部亮.分析:不能,如果两盏灯是亮着,而且经过若干次操作,使这36盏灯全部亮的话,那么原来亮着得灯要拉偶数下,原来不亮的灯要拉奇数下,两盏灯若在同一行(或同一列),那么该行(或该列)被拉的次数,与这两盏灯所在的列(或行)被拉的次数同奇偶,与其他列(或行)被拉的次数的奇偶性质相反,那么其他行(或列)被拉的次数无论是奇数还是偶数,都不能使该行所有灯同熄同亮,若两盏原来两着的灯【例7】有大、小两个盒子,其中大盒内装1001枚白棋子和1000枚同样大小的黑棋子,小盒内装有足够多的黑棋子。
综合评价(五)一 精学精练1.填空1)95分=( )小时 1250千克=( )吨(填分数)2)0.28立方分米=( )升=( )毫升 1.2立方米=( )立方分米 3)的分数单位是,它有41个这样的分数单位,这个带分数是( ),一个带分数19减去( )个这样的分数单位后结果是最小的合数。
4)一条路,修了它的,表示把( )看成单位“1”把它平均分成( )份,修27了的长度是这样的( )份。
5)12的因数有( ),其中( )是质数,( )是合数。
6)一个数去除28,42和56正好都能整除,这个数最大是( )。
7)。
45千米可以看作1千米的()(),也可以看作4千米的()() 8)中,能化成有限小数的是( )。
1715、512、2316、2130 9)甲乙两个数的最大公因数是6,最小公倍数是144,已知甲数是18,乙数是( )。
10)两个完全相同的长方体,长5厘米,宽4厘米,高3厘米,拼成一个表面积最大的长方体,拼成后的长方体的表面积比原来两个长方体的表面积之和减少( )平方厘米。
答案:1) , 。
2)0.28 ,280 ,1200 。
3) ,5 。
4)这条路,7 ,2 。
5)17121144591、2、3、4、6、12 ,2、3 ,4、6、12 。
6)14 。
7) 。
8) 45 ,152316、2130 。
9)48。
(解析:两个数的乘积=它们的最大公因数×最小公倍数) 10)24 。
2.判断1)两个数的公因数一定比这两个数都小。
( )2)如果两个数的最小公倍数是两个不同质数的积,这两个数一定是互质数。
( )3)一个正方体的表面积是6平方厘米,如果这个正方体的棱长都扩大2倍,那么它的表面积也扩大2倍,是12平方厘米。
( )4)任何一个奇数加上1以后,一定能被2整除。
( )答案:1)×。
2)√。
3)×。
4)√。
二 活学活用1.印刷厂原计划12天装订图书271万册,前5天装订了109万册,后来改进操作方法每天可以装订27万册,这样可以提前几天完成任务?答案: 1天2.水果店运进20筐苹果,卖出255千克以后,还剩9筐零20千克,求每筐苹果多少千克?答案:25千克3.植物园绿化环境,种植常绿树求植物园共植134万株,种植的果树比常绿树多215万株,树多少万株?答案:万株57104.把一块长25厘米,宽20厘米的长方形铁皮,从4个角上剪去边长5厘米的正方形,所剩下的部分正好焊接成一个无盖的长方体铁盒,如果在这个长方体铁盒的里面涂上油漆,油漆的面积是多少平方厘米?答案:400平方厘米5.一个长方体铜块,长2.8分米,宽1.2分米,高0.5分米,每立方分米的铜重8.9千克,10块这样的铜块重多少千克?答案:149.52千克。
简易方程(三)一、精学精练1.判断①含有未知数的式子叫方程。
()②方程一定是等式,等式一定是方程。
()③x=2.4是方程3.4×4+x=15的解。
()④解方程2.6x-0.4x=72可以整理为2.2x=72。
()⑤方程6x+83=12x可以理解为12x+6x=83。
()⑥5+7.2=x是方程。
()⑦方程6x+6=18的解是2。
()⑧x=0是方程。
()⑨a×a=2×a。
()答案:①×。
(含有未知数的等式叫方程)②×。
(方程是等式,但等式不一定是方程。
)③×。
(方程3.4×4+x=15的解是x=1.4 )④√。
⑤×。
⑥√。
⑦√。
⑧√。
⑨×。
(a×a=a2)2.解下列方程x-3.7=8.5 x+3×0.7=6.5 9.1+x=12.56x-x=41.6 2.6+2x=19.3 x-12=63答案:x=12.2 ,x=4.4 ,x=3.4 ,x=8.32 ,x=8.35 ,x=75 。
二、活学活用1.列方程,并求方程的解:①一个数的3倍减去90的差是15,求这个数。
答案:3x-90=15,x=35②x与16.5的差的4倍是13.6,求x。
答案:4(x-16.5)=13.6,x=19.9③一个数的3倍减去40除以2.5的商,差是29,求这个数。
答案:3x-40÷2.5=29,x=15④比x的2倍多2.8的数是17.2,求x。
答案:2x+2.8=17.2,x=7.2⑤x的4倍比它的3.5倍多10.8,求x。
答案:4x-3.5x=10.8,x=21.6⑥一个数与32的和的一半是96,求这个数。
答案:(x+32)÷2=96,x=160⑦一个数的8倍比这个数的5倍多15,求这个数。
答案:8x-5x=15,x=5⑧一个数的5倍比2.8除以0.7的商多3,求这个数。
答案:5x-2.8÷0.7=3,x=1.4。
第二讲立体图形(一)卷Ⅰ(一)巧解复杂的组合图形表面积【例1】用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?【例2】边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米?【例3】(奥数网原创题)按照上题的堆法一直堆到N层(N>3),要想使总表面积恰好是一个完全平方数,则N的最小值是多少?(二)表面积的最值问题【例4】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【例5】边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【例6】用10块长7厘米,宽5厘米,高3厘米的长方体积木堆成一个长方体,这个长方体的表面积最小是多少?【例7】要把12件同样的长a、宽b、高h的长方体物品拼装成一件大的长方体,使打包后表面积最小,该如何打包?(1)当b=2h时,按图几打包?(2)当b<2h时,按图几打包?(3)当b>2h时,按图几打包?卷Ⅱ(三)立体图形的切、拼、挖【例8】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为1/2厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为1/4厘米,那么最后得到的立体图形的表面积是多少平方厘米?【例9】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【例10】有一个棱长为 5 cm的正方体木块,从它的每个面看都有一个穿透的完全相同的孔(右上图),求这个立体图形的内、外表面的总面积.【例11】如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下侧面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下侧面的洞口是直径为4厘米的圆,求此立体图形的表面积.【例12】如图,用455个棱长为1 的小正方体粘成一个大的长方体,若拆下沿棱的小正方体,则余下371个小正方体,问:所堆成的大长方体的棱长各是多少?拆下沿棱的小正方体后的多面体的表面积是多少?(三)展开图【例13】在小于16 的自然数中选出6个不同的数,分别写在正方体的6个面上,要求各组相对的两个面上的数的乘积都相等,下图是正方体的展开图,并填上了1,请将其它数填上。
第二讲 圆与扇形内容概述这一讲我们一起研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。
基本公式:圆的面积=πr 2,圆的周长=2πr;例题精讲【例1】 求下列各图阴影部分的面积。
(π取3)分析:(1)22111122 1.542422ππ=-=∙∙-∙∙=阴影部分面积的大圆的小圆()(2)法1:如右图所示,过B 做BD 垂直于AC ,我们就容易得到BD=AD=DC ,所以BD=3,三角形ABC 的面积=3×6÷2=9, 阴影部分面积=扇形面积-三角形ABC 的面积=4.5×3-9=4.5 ;法2 :直角三角形的三边有一个特殊的关系,那就是著名的勾股定理:如右图所示,三角形ABC 是直角三角形,最长边是AC ,较短的两条边是AB 、BC ,那么有222AC AB BC =+。
反之,若三角形中有222AC AB BC =+,那么这个三角形就是直角三角形,且AC 边为最大边,所对的角是直角。
最经典的直角三角形三边为:3、4、5 (222534=+)。
在题目中,三角形ABC 是等腰直角三角形,所以有222AC AB BC =+,且AB=BC , 可得, 2222112AB 6AB 18ABC =AB BC AB 922⨯==∙∙=∙=,,三角形的面积, 阴影部分面积=扇形面积-三角形ABC 的面积=4.5×3-9=4.5 。
(3)22111114244=1022222ππ=--∙∙-∙∙-∙∙阴影部分面积大圆面积小圆面积三角形面积=(4)22314444+2416044π=+-∙∙=阴影部分面积正方形个圆个圆=(+)(5)阴影部分面积= 一 半小圆 + 一 半中圆 + 三角形 – 一 半大圆 ;因为5×5=4×4+3×3 ,三角形是直角三角形,面积为:3×4÷2=6 ,可得阴影部分面积=6。
第五讲 包含与排除1. 熟练掌握容斥原理的基本应用;2. 能够独立解决容斥原理与最值问题的综合应用;3.了解容斥原理与排列组合、德-摩根定律的综合应用.分析:无弟弟人数有38人,则有弟弟人数有10人,有弟弟无妹妹的有8人,有弟弟有妹妹的有2人,则无弟弟有妹妹的人数是4人,所以无弟弟无妹妹的是34人,即独生子女的有34人.包含排除法:① 若已知A 、B 、C 三部分的数量(如图),其中C 为重复部分,则图中的数量等于A+B-C.即:A ∪B=A+B- A ∩B ,其中A ∩B=C.② 若已知A 、B 、C 三部分的数量(如图), 则图中的数量等于A+B+C-(A 与B 重叠部分+ B 与C 重叠部分+ C 与A 重叠部分)+A 、B 、C 三者重叠的部分.即:A ∪B ∪C=A+B+C-(A ∩B+B ∩C+C ∩A )+ A ∩B ∩C.[评注] 韦恩图在包含与排除中运用广泛,但它只适用于三个圆和四个圆以下的情况,如果有四组不完全相关性质划分集合,根据乘法原理它们会将集合划分为2×2×2×2=16种类别.这是四个圆划分长方形无法办到的,圆办不到,不代表其他图形办不到,例如右图,粗实线能够分别穿越原来的8个区块将长方形分为8+8=16个部分.一般小学奥数题中最多出现三组不完全相关性质划分集合的情况,用韦恩图足够了.万一出现四组不完全相关性质的情况,不推荐使用韦恩图.教学目标CBACBA想挑战吗?48人中无弟弟的有38人,有弟弟无妹妹的有8人,无弟弟有妹妹的人数是有弟弟有妹妹人数的2倍,试问:这48人当中是独生子女的有几个?专题精讲(一)容斥原理的基本应用【例1】(2004年中央A类公务员考题)在桌面上放置着三个面积相等的纸片A、B、C,A和B的重叠面积为16 cm2,B和C重叠的面积为12 cm2,C和A重叠的面积为10 cm2,三张纸片共同重叠的面积为6 cm2,已知三张纸片一共覆盖了160 cm2,那么每张纸片的面积为多少?分析:将各种重叠、部分重叠的各部分凑成三张纸片的的面积和.可以由公式推倒,也可以靠对各部分面积的容斥关系和数量关系的理解,三张纸片的面积和=覆盖面积+重叠了两次部分的面积+2×重叠了三次部分的面积=覆盖面积+两两相互重叠的面积之和-重叠了三次的部分=160+16+12+10-6=192,所以每张纸片的面积为64cm2.[前铺] 在桌面上放置着三个两两重叠的近圆形纸片(如图,三个纸片等大),它们的面积都是100cm2,并知A、B两圆重叠的面积是20cm2,A、C两圆重叠的面积为45cm2,B、C两圆重叠的面积为31cm2,三个圆共同重叠的面积为15cm2,求盖住桌子的总面积.分析:(法1)直接套用公式:100×3-20-45-31+15=219cm2.套用公式的前提必须建立在对公式的理解的基础上,A、B、C三个圆的面积各包含了四块面积,例如A覆盖的部分包括,A与B 共有而C没有的;A与C共有的而B没有的,A、B、C三圆共有的;A独有的.这样如果将A、B、C的面积简单相加,A与B共有而B没有的;A与C共有的而B没有的;B与C共有的而A没有的;A、B、C三个部分的共有部分则被计算了3次,如果再将A、C两圆重叠的;B、C两圆重叠的;A、B两圆重叠的三部分各减去一遍,那么同时A、B、C三个部分的共有部分则被减了3次,此时得到的结果中A、B、C三个部分的共有部分没有被计算过,所以最后还要将这一部分加上.(法2)分别计算各区块的面积,A与B共有而C没有的=20-15=5,B与C共有的而A没有的=31-15=16,A与C共有的而B没有的=45-15=30.A独有的=100-5-30-15=50,B独有的=100-16-5-15=64,C独有的100-30-16-15=39.盖住桌子的总面积=15+5+16+30+50+64+39=219,事实上如果我们实现没有将各个区块算出来的话,盖住桌子的总面积=15+(20-15)+(31-15)+(45-15)+(100-15-(20-15)-(45-15))+(100-15-(20-15)-(31-15))+(100-15-(36-15)-(45-15))=100×3-20-45-31+15=219.[拓展] 将1~13这13个数字分别填入如图所示的由四个大小相同的圆分割成的13个区域中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少?分析:越是中间,被重复计算的越多,最中心的区域被重复计算四次,将数字案从大到小依次填写于被重复计算多的区格中,最大和为:13×4+(12+11+10+9)×3+(8+7+6+5)×2+(4+3+2+1)=240.【例2】(奥数网原创题)学而思学校有46名学生参加三项课外活动,其中24人参加了绘画小组,20人参加了合唱小组,参加朗诵小组的人数是既参加绘画小组又参加朗诵小组人数的3.5倍,又是三项活动都参加人数的7倍,既参加朗诵小组又参加合唱小组的人数相当于三项都参加人数的2倍,既参加绘画小组又参加合唱小组的有10人,求参加朗诵小组的人数.分析:设三项都参加的人数有X人,则参加朗诵小组的人数为7X人,参加绘画小组又参加朗诵小组的人数为2X人,参加朗诵小组又参加合唱小组的人数为2X人.有46-24-20-7X+2X+2X+10-X=0,解得X=3,所以参与朗诵小组的人数为21人.[前铺] 学而思举行各年级学生画展,其中18幅不是六年级的,20幅不是五年级的,现在知道五、六年级共展出22幅画,问:其他年级共展出多少幅画?分析:(法1)其他年级与五年级共展出18幅画,其他年级与六年级共展出20幅画,五年级六年级共展出22幅画,其他年级共展出(18+20-22)÷2=8幅.(法2)把五年级的画看成一个集合A,六年级的画看成一个集合B,其他年级的画看成一个集合C,它们的画加起来是集合I,那么我们知道:n(I)-n(A)=20,n(I)-n(B)=18,n(A)+n(B)=22,其他年级展出的画n(C)=n(I)-n(A)-n(B).把n(I)-n(A)=20,n(I)-n(B)=18两个式子相加得到:2n(I)-n(A)-n(B)=38,即2n(I)=n(A)+n(B)+38=22+38=60,n(I)=30.所以,n(C)=n(I)―n(A)―n(B)=30―22=8幅.[拓展] 五一班有28位同学,每人至少参加数学、语文、自然课外小组中的一个.其中仅参加数学与语文小组的人数等于仅参加数学小组的人数,没有同学仅参加语文或仅参加自然小组,恰有6个同学参加数学与自然小组但不参加语文小组,仅参加语文与自然小组的人数是3个小组全参加的人数的5倍,并且知道3个小组全参加的人数是一个不为0的偶数,那么仅参加数学和语文小组的人有多少人?分析:参加3个小组的人数是一个不为0的偶数,如果该数大于或等于4,那么仅参加语文与自然小组的人数则大于等于20,而仅参加数学与自然小组的人有6个,这样至少应有30人,与题意矛盾,所以参加3个小组的人数为2.仅参加语文与自然小组的人数为10,于是仅参加语文与自然、仅参加数学与自然和参加3个小组的认识一共是18人,剩下的10人是仅参加数学与语文以及仅参加数学的.由于这两个人数相等,所以仅参加数学和语文小组的有5人.【例3】(奥数网原创题)求不超过120的合数的个数分析:从120中去掉质数,再去掉“1”,剩下的即是合数.(法1)120以内:①既不是素数又不是合数的数有一个,即“1”;②素数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97、101、103、107、109、113、共30个.所以不超过120的合数有120-1-30=89(个)筛法:从小到大按顺序写出1-120的所有自然数:先划掉1,保留2,然后划掉2的所有倍数4,6,…120等;保留3,再划掉所有3的倍数6,9…117、120等;保留5,再划掉5的所有倍数10,15,…120;保留7,再划掉7的所有倍数,…这样,上面数表中剩下的数就是120以内的所有素数,这种方法是最古老的寻找素数的方法,叫做“埃斯托拉‘筛法’”)当n不很大时,计算1-n中的合数的个数困难不大;但当n很大时,利用筛法就很困难、很费时了,必须另觅他途.(法2)如果能找出1-n 中质数的个数m ,则n -1-m 就是不超过n 的合数的个数.由初等数论中定理:a 是大于1的整数.如果所有不大于√a 的质数都不能整除a ,那么a 是质数.因为120<121=112,√120<11,所以不超过120的合数必是2或3或5或7的倍数,所以只要分别计算出不超过120的2、3、5、7的倍数,再利用“容斥原理”即可,所以不超过120的合数共有89个.[前铺1] 求1至100的自然数中能被3或7整除的数的个数.分析:记 A :1到100中3的倍数,100÷3=33……1,有33个; B :1到100中7的倍数,100÷7=14……2,有14个;A ∩B:1到100中3和7的倍数,即21的倍数,100÷21=4……16,有4个.依据公式,1到100中3的倍数或7的倍数共有33+14-4=43个,则能被3或7整除的数的个数为43个.[前铺2](07年我爱数学夏令营)在1到2004的所有自然数中,既不是2的倍数,也不是3、5的倍数的数有多少个?分析:1到2004中是2的倍数的有1002个,3的倍数有668个,5的倍数有[2004/5]=400个,6的倍数有334个,10的倍数有[2004/10]=200个,15的倍数有[2004/15]=133个,30的倍数有[2004/30]=66个.所以不是2、3、5的倍数有2004-1002-668-400+334+200+133-66=535个.[巩固] 求在1~100的自然数中不是5的倍数也不是6的倍数的数有多少个?分析:“既不是5的倍数也不是6的倍数”的反面情况就是“是5的倍数或者是6的倍数”.记 A :1~100中5的倍数,100520÷=,有20个;B :1~100中6的倍数,4166100 =÷,有16个;B A :1~100中5和6的公倍数,即30的倍数,10330100 =÷,有3个.依据公式,1~100中5的倍数或6的倍数共有3331620=-+个,则既不是5的倍数也不是6的倍数的数有6733100=-个.[拓展1] 不超过201的自然数中,至少有两个数字相同的奇数有多少个? 分析:10~99中符合条件的数有5个(11、33、55、77、99),100~199中有三个数字都不同的有9×8=72个,偶数有50个,有三个数字都不同的偶数有5×8=40个,因此至少有两个数字相同的不同的奇数有100-72-50+40=18个,200和201都不符合条件.一共有23个符合条件.[拓展2] 有2000盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1,2,3,…,2000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的灯有多少盏?分析:教师可以先讲解前铺,但要区分例题与前铺的区别.三次拉完后,亮着的灯包括不是2、3、5的倍数的数以及是6、10、15的倍数但不是30的倍数的数.1~2000这2000个正整数中,2的倍数有1000个,3的倍数有666个,5的倍数有400个,6的倍数有333个,10的倍数有200个,15的倍数有133个,30的倍数有66个,亮着的灯一共有2000-1000-666-400+2×(333+200+133)-4×66=1002盏.【例4】 学而思举行数学擂台赛,共出A 、B 、C 三道题,有110人参加,每个人都至少答对一道题,已知答对A题的有52人,只答对A题的有16人;答对B题的有61人,只答对B题的有15人;答对C 题的有63人,只答对C题的有21人,问三道题都答对的有多少人?分析:结合题的条件,设仅答对AB的有X人,BC的有Z人,AC的有Y人,全答对的有W人,可得以下等式:16+X+Z+W=52……①15+X+Y+W=61……②21+Y+Z+W=63……③16+15+21+X+Y+Z+W=110…④②+①+③-④×2:解得W=8,即三道题都答对的人数为8.【例5】(2007中央B类公务员考题)某次考试有52人参加,共考5题,每题做错的人数统计如表:已知每人都至少做对一道题,做对一道题的有7人,5道题全对的有6人,做对2道题和3道题的人数一样多,那么做对4道题的人数是多少?分析:设做对2道题的和3道题的人数为X,做对4道题的人数有Y人.则根据人数和错题数的相关等量关系有以下两条等式:7+2X+Y+6=524×7+3X+2X+Y=4+6+10+20+39X=4Y=31所以做对4道题的有31人.(二)容斥原理与最值问题的综合应用容斥原理与最值问题的结合往往是小学生的难点,不仅是因为不等式的出现,还有分数、倍数关系的融合都会使题目复杂易错,更重要的是注意“至少”“最多”等所隐含的数学关系.【例6】1~100这100个自然数,A、B、C三个人都分别从某一个数开始按顺序往后数,已知A数了75个数,B数了60个数,C数了52个数,那么三个人共同数到的数最少有多少个?分析:三个人共同数到的数也必然是一段连续的数,这段数有X个.A,B,C三人中至多有一个人既数了小于这段数的数,又数了大于这段数的数.否则如果有两个人既数了小于这段数的数,又数了大于这段数的数,则第三人无论数了小于这段数的数,还是大于这段数的数,三人共同数的数都不止这X个.对于另外两个数数区间没有跨越这段数的人有不等式Y+Z-X≤100(Y和Z分别为两人所数的个数)X≥Y+Z-100≥60+52-100=12.[前铺] 学校组织一次数学竞赛,共出了一、二、三共三道大题,至少做对一道题的有40人,其中做对第一题的有15人,做对第二题的有20人,做对第三题的有25人,如果三道题都做对的只有2人,那么只对两道题的有多少人?只做对一道题的又有多少人?分析:假设只答对两道题的有X人,根据一、二、三道题总人数中扣去重复计算的人员数乘以被重复计算的次数等于做对一道题的人数,则有15+20+25-X-2×2=40,解得X=16,即只作对一道题的人数为15+20+25-2×16-3×2=22人.【例7】(人大附中考题)一次数学考试,小明答错题目占总数的19,小军答对7道题,两人都答对的题目是总数的16,问:小明答对多少道题?分析:设两人都答对的题的数目是X,由条件可知一共有6X道题,小明至少有(7-X)道题没答,又因为小明答错题目占总数的19,所以,小明没答的题有23X道.23X≤(7-X),得到X≥215,且X为3的倍数,所以只能为6,一共有题36道,小明答题36-36÷9=32题.[前铺] 某班在体育课上进行了成绩考核,这个班在100米自由泳、跳远、铅球三项测试中获优秀等级的人数分类统计如下:100米自由泳获得优秀的有21人,跳远获得优秀的有19人,铅球获得优秀的有20人.100米自由泳和跳远都获得优秀的有9人,跳远和铅球都获得优秀的有7人,铅球和100米自由泳都获得优秀的有8人.有5人没有获得任何一项优秀.试判断这个班的人数的取值范围.分析:该班人数表达为5+21+19+20-9-7-8+X,X为三项测试都优秀的人.考虑X的取值范围,0≤X≤7,即该班人数最多能有48人,最少有41人.[小笑话]1.公共汽车上老太太怕坐过站逢站必问.汽车到一站她就一个劲地用雨伞捅司机:"这是展览中心吗?""不是,这是排骨!"2.护士看到肝病病人在病房喝酒,就上前走过去叮嘱说:"小心肝!"病人微笑道:"小宝贝."【例8】(仁华考题)60人中有23的人会打乒乓球,34的人会打羽毛球,45的人会打排球,这三项运动都会的人有22人,问:这三项运动都不会的最多有多少人?分析:设只会打乒乓球和羽毛球的人有X,只会打乒乓球和排球的有Y人,只会打羽毛球和排球的有Z 人.则X、Y、Z有如下关系:40-(X+Y+22)≥045-(X+Z+22)≥048-(Y+Z+22)≥0将三条关系式相加,得到X+Y+Z≤33,而60人当中会至少一项运动的人数有40+45+48-(X+Y+Z)-2×22≥56人.60人当中三项都不会的人数最多4人.(当X、Y、Z分别取7、10、15时,不等式组成立).【例9】 希望小学的音乐兴趣小组有37人,其中有20人会手风琴,16人会钢琴,24人会电子琴,其中既会手风琴又会钢琴的有8人,既会电子琴又会钢琴的有10人,既会手风琴又会电子琴的有8人.请问:这三种琴都不会的人至多有多少人?分析:三种琴都不会的人有37-20-16-24+8+10+8-X 人,其中X 为三种琴都会的人数,考虑X 的取值范围, X 必须满足会指定乐器的学生人数必须为非负整数.于是有不等式组: X ≥0 8-X ≥0 10-X ≥0 8-X ≥020-8-8+X ≥0 16-8-10+X ≥0 24-8-10+X ≥037-20-16-24+8+10+8-X ≥0得到的X 取值范围为2≤X ≤3.当X 取2时三种琴都不会的人数得到最小值1.[前铺] 图书室有100本书,借阅者要在借书证上签名,已知这100本书中有甲签名的33本,有乙签名的44本,有丙签名的55本,其中同时有甲、乙签名的图书有29本,同时有甲、丙签名的图书有25本,同时有乙、丙签名的图书有36本,问:这批图书中有多少本没有被这三个人中的任何一个人借阅过?分析:设这批图书中被这三个人同时借阅过的有x 本,则有33+44+55-29-25-36+x=42+x 本书被人借过,因为同时有甲、丙签名的图书才有25本,所以x 的最大值是25,42+x 的最大值是67,100-67=33(本),即没有被这三个人中的任何一个人借阅过的至少有33本.[小笑话]1. 南非有一位渔民,有一件很烦心的心事:每当他停车离开后,总有野生狒狒把他的汽车后视镜和雨刷掰下来.后来,他想到一条妙计:狒狒很怕蛇,何不在车上放几条橡胶蛇吓唬吓唬它们呢?第二天一早,他就到玩具店买了12条长长的蛇,放在引擎盖和车顶上,几个小时后,他回到车边,发现车身上全是凹坑:一群狒狒正在一边怒气冲冲的朝那些“蛇”扔石头! 2. 沙僧参加数学考试,监考老师盯着他脖子上的珠子看了半天,冷笑道:“嘿嘿,把算盘伪装成这样了!休想作弊,快摘下来!”(三) 容斥原理与排列组合、德·摩根定律的综合应用(本部分例题根据近两年全国高中数学联赛改编)[信息提示] 集合的基本概念某些指定的对象集在一起就成为一个集合,也简称集,集合常常用大写字母表示,比如A ,B ,C 等等,在平面上集合也常用一个圆表示,集合中的每个对象叫做这个集合的元素,元素与集合只有两种关系,即元素属于集合或者不属于集合,元素一般用小写字母表示.元素a 属于集合A 记作a A ∈.元素a 不属于集合A 记作a A ∉或a A ∈.由所有属于集合A 且属于集合B 的元素所构成的集合,叫做A 与B 的交集,记作:A B (读作“A 交B ”).由所有属于集合A 或属于集合B 的元素所构成的集合,叫做A 与B 的并集,记作:AB (读作“A 并B ”).已知全集I ,集合A ,由于I 中所有不属于A 的元素组成的集合,叫做集合A 在集合I 中的补集,记作:A (读作“A 补”).如果我们用n (A )表示集合A 中元素的个数,那么可以叙述容斥原理如下: (1)()()()()n AB n A n B n A B =+-,若A B 是非空集合,称A ,B 两个集合是相容的,则()0n A B >,从而()()()n A B n A n B <+,特别地,若A B =∅(∅是空集,称A ,B 两个集合是不相容的即相斥的),则()0n AB =,这时有()()()n A B n A n B =+(2)()(I)()()()n AB n n A n B n A B =--+(I 是全集,A ,B 是I 的子集).(3)()()()()()()()()n A B C n A n B n C n A B n B C n C A n ABC =++---+(4)()()()()()()()n AB C n I n A n B n C n A B n B C =---++()()n CA n A B C +-【例10】 从6名运动员中选出4名参加4x100m 接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方法?分析:设全集U ={6人中任取4人参赛的排列},A={甲跑第一棒的排列,B={乙跑第四棒的排列},根据容斥原理得参赛方法共有:252)()()()(24353546=+--=+--A A A A B A B n A n n (种).【例11】 学而思五年级竞赛班的学生中,参加课外语文小组的有20人,参加数学小组的有22人,既参加语文又参加数学小组的有10人,既未参加语文又未参加数学小组的有15人,问共有多少学生? 分析:设U={学而思五年级竞赛班的学生},A={学而思五年级竞赛班参加语文小组的学生},B={学而思五年级竞赛班参加数学小组的学生},由容斥原理及德·摩根定律:)(4710222015)()()())(()()]([)(人=-++=-++=+=B A n B n A n B A C n B A n B A C n U n【例12】由数字1、2、3、4、5可以组成多少个无重复数字且2、3都与4不相邻的五位数.分析:设A={2与4相邻的五位数},B={3与4相邻的五位数},则原题即求)(B C A C n ,由容斥原理及德·摩根定律:.36)()()()()()()]([)(33224422442255=⋅+⋅-⋅-=+--=-==A A A A A A A B A n B n A n n B A n n B A C n B C A C n注:)(B A n 表示2与4相邻且3与4相邻的五位数的个数,那么4一定排在2与3之间,且2、3、4相邻,故有3322A A ⋅种排法.[字谜及脑筋急转弯]1. 十个人打架,八个人拉,六个人进屋把门叉(打一个字)——答案:校2. 乌龟和豆子赛跑,遇到一条河,乌龟游过去赢了.(猜一种蔬菜名)——答案:荷兰豆3. 一个小人,带个小帽,过个小桥,看着月亮,哼着小曲,吃着小豆(打一个繁体字)——答案:體(体)因为容斥原理的相关内容我们会在六年级继续学习.1. (例1)边长为6、5、2的三个正方形,如图所示,求它们的盖住部分的练习五专题展望面积.分析:边长为5的正方形与边长为6的正方形,共同盖住的部分面积为9; 边长为5的正方形与边长为2的正方形,共同盖住的部分面积为2; 边长为2的正方形与边长为6的正方形,共同盖住的部分面积为2; 三个正方形共同盖住的面积为1.它们一共盖住面积为25+36+4-9-2-2+1=53.2. (例3)求在1~100的自然数中不是5的倍数也不是6的倍数的数有多少个?分析:“既不是5的倍数也不是6的倍数”的反面情况就是“是5的倍数或者是6的倍数”.记 A :1~100中5的倍数,100520÷=,有20个;B :1~100中6的倍数,4166100 =÷,有16个;B A :1~100中5和6的公倍数,即30的倍数,10330100 =÷,有3个.依据公式,1~100中5的倍数或6的倍数共有3331620=-+个,则既不是5的倍数也不是6的倍数的数有6733100=-个.3. (例3)以105为分母的最简真分数共有多少个?分析:105=3×5×7,105以内的3的倍数有35个,5的倍数有21个,7的倍数有15个,3×5的倍数有7个,3×7的倍数有5个,5×7的倍数有3个,只有105是3、5、7的倍数,105以内与105互质的数一共有105-35-21-15+7+5+3-1=48个.4. (例4)在所有的三位自然数中,组成数字的三个数字既有大于5的数字,又有小于5的数字的自然数共有多少个?分析:所有三位的自然树中仅仅由不大于五的数字组成的数有5×6×6=180个数字,仅仅由不小于5的数字组成的数有5×5×5=125个,其中555各位书即不大于5,也不小于5,因此符合条件的三位数共有999-99-(180+125-1)=596个.5. (例8)某校有28名学生参加市运动会,参加跑步类项目的有15人,参加跳类项目的有13人,参加投掷类项目的有14人,既参加跑又参加跳项目的有4人,既参加跑又参加投掷项目的有6人,既参加跳又参加投掷项目的有5人,三种项目都参加的有2人,试说明,这个报名表有误.分析:按照赞加各个项目的详细人数,该校参加市运动会的人数为15+13+14-4-6-5+2=29人, 与实际参加人数不符,所以这个报名表有误.6. (例9)某班有45人,其中35人会中国象棋,30人会国际象棋,38人会围棋,40人会跳棋,那么这个班至少有多少人四项都会?分析:由题可知该班10人不会中国象棋,15人不会国际象棋,7人不会围棋,5人不会跳棋,所以最多可以有37人不全都会,至少有45-37=8人四项都会.成长故事好学不倦在一个漆黑的晚上,老鼠首领带领着小老鼠出外觅食,在一家人的厨房内,垃圾桶之中有很多剩余的饭菜,对于老鼠来说,就好像人类发现了宝藏.正当一大群老鼠在垃圾桶及附近范围大挖一顿之际,突然传来了一阵令它们肝胆俱裂的声音,那就是一头大花猫的叫声.它们震惊之余,更各自四处逃命,但大花猫绝不留情,不断穷追不舍,终于有两只小老鼠走避不及,被大花猫捉到,正要向它们吞噬之际,突然传来一连串凶恶的狗吠声,令大花猫手足无措,狼狈逃命.大花猫走后,老鼠首领施施然从垃圾桶后面走出来说:"我早就对你们说,多学一种语言有利无害,这次我就因而救了你们一命."温馨提示:"多一门技艺,多一条路."不断学习实在是成功人士的终身承诺11。
第二讲 立体图形(一)1掌握常见立体图形表面积的求法.2掌握几类典型组合立体图形表面积的求法.3鼓励学生多思考,勤动手,多画图,注重“数形结合以此来培养学生的空间想象能力.对于长、正方体等简单的立方体和其体积、表面积的计算方法,都是相对比较简单的,今天我们一起将这部分内容掌握后着重对其进行拓展研究. 如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.1.在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) 2.长方体的表面积和体积的计算公式是: 长方体的表面积:S 长方体=2(ab +bc +ac ); 长方体的体积:V 长方体=abc .3.正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:S 正方体=6a 2,V 正方体=a 3.专题精讲教学目标在墙角处有若干个体积都等于1的正方体堆成如图的立体图形(每个正方体都可独立地搬走,但如果抽走下面的正方体,上面的正方体就会自动落下去),有人希望搬走其中部分正方体,但从上面和前面用平行光线照射时,在墙面及地面上的影子不变,则最多可以搬走多少个小正方体?答案:留下靠墙及地面上的正方体,其余均可搬走共1+3+6=10块. 想挑战吗?Ⅰ、涂色与简单的表面积计算:【例1】右图是4×5×6正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小正方体各有多少块?分析:三面涂红色的只有8个顶点处的8个立方体;两面涂红色的在棱长处,共(4-2)×4+(5-2)×4+(6-2)×4=36块;一面涂红的表面中间部分:(4-2)×(5-2)×2+(4-2)×(6-2)×2+(5-2)×(6-2)×2=52块.【例2】(小数报数学竞赛决赛)右图是一个表面被涂上红色的棱长为lO厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?分析:10×10×6=600(平方厘米).【例3】(05年清华附培训试题)将一个表面积涂有红色的长方体分割成若干个棱长为1厘米的小正方体,其中一面都没有红色的小正方形只有3个,求原来长方体的表面积是多少平方厘米?分析:长:3+1+1=5厘米;宽:1+1+1=3厘米;高:1+1+1=3厘米;所以原长方体的表面积是:(3×5+3×5+3×3)3×2=78平方厘米.[拓展]右图是由27块小正方体构成的 3×3×3的正方体.如果将其表面涂成红色,则在角上的8个小正方体有三面是红色的,最中央的小方块则一点红色也没有,其余18块小方块中,有12个两面是红的,6个一面是红的.这样两面有红色的小方块的数量是一面有红色的小方块的两倍,三面有红色的小方块的数量是一点红色也没有的小方块的八倍.问:由多少块小正方体构成的正方体,表面涂成红色后会出现相反的情况,即一面有红色的小方块的数量是两面有红色的小方块的两倍,一点红色也没有的小方块是三面有红色的小方块的八倍?分析:对于由n3块小正方体构成的n×n×n正方体,三面涂有红色的有8块,两面涂有红色的有12×(n -2)块,一面涂有红色的有6×(n-2)2块,没有涂色的有(n-2)3块.由题设条件,一点红色也没有的小方块是三面涂有红色的小方块的八倍,即(n-2)3=8×8,解得n=6.【例4】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?分析:原来正方体的表面积为5×5×6=150.现在立体图形的表面积截了两个面向我们的侧面,它们的面积为(3×2)×2=12,所以减少的面积就是12.[前铺]如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?分析:我们从三个方向(前后、左右、上下)考虑,新几何体的表面积仍为原立方体的表面积:10×10×6=600.[拓展] 在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?分析:对于和长方体相关的立体图形表面积,一般从上下、左右、前后3个方向考虑.变化前后的表面积不变:50×50×6=15000(平方厘米).【例5】(北京市第十二届迎春杯)一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?分析:截去一个小正方体,表面积不变,只有在截去的小正方体的面相重合时,表面积才会减少,所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是:15×15×6-7×7×2=1252.想想为什么不是15×15×6-7×7-8×8 ?Ⅱ、巧解复杂的组合图形表面积【例6】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?分析:原正方体的表面积是4×4×6=96(平方厘米).每一个面被挖去一个边长是1厘米的正方形,同时又增加了5个边长是1厘米的正方体作为玩具的表面积的组成部分.总的来看,每一个面都增加了4个边长是1厘米的正方形.从而,它的表面积是:96+4×6=120平方厘米.[拓展]:如右图,一个边长为3a厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长.分析:原来正方体的表面积为:6×3a×3a=6×9a2(平方厘米),六个边长为a的小正方形的面积为(减少部分):6×a×a=6a2(平方厘米);挖成的每个长方体空洞增加的侧面积为:a×a×4×2=8a2(平方厘米);根据题意可得:54a2-6a2+3×8a2=2592,解得a2=36(平方厘米),故a=6厘米.【例7】如右图所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?分析:4×4+(1×1+2×2+4×4)×4=100(平方米).[前铺]如图,在一个棱长为5分米的正方体上放一个棱长为4分米的小正方体,求这个立体图形的表面积.分析:我们把上面的小正方体想象成是可以向下“压缩”的,“压缩”后我们发现:小正方体的上面与大正方体上面中的阴影部分合在一起,正好是大正方体的上面.这样这个立体图形的表面积就可以分成这样两部分:上下方向:大正方体的两个底面;四周方向(左右、前后方向):小正方体的四个侧面,大正方体的四个侧面.上下方向:5×5×2=50(平方分米);侧面:5×5×4=100(平方分米),4×4×4=64(平方分米).这个立体图形的表面积为:50+100+64=214(平方分米).【例8】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为1/2厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为1/4厘米,那么最后得到的立体图形的表面积是多少平方厘米?分析:我们仍然从3个方向考虑.平行于上下表面的各面面积之和:2×2×2=8(平方厘米);左右方向、前后方向:2×2×4=16(平方厘米),1×1×4=4(平方厘米),1/2×1/2×4=1(平方厘米),1/4×1/4×4=1/4 (平方厘米),这个立体图形的表面积为:8+16+4+1+1/4=29又1/4 (平方厘米).【例9】把19个棱长为1厘米的正方体重叠在一起,按右图中的方式拼成一个立体图形.求这个立体图形的表面积.分析:从上下、左右、前后观察到的的平面图形如下面三图表示.因此,这个立体图形的表面积为:2个上面+2个左面+2个前面.上表面的面积为:9平方厘米,左表面的面积为:8平方厘米,前表面的面积为:10平方厘米.因此,这个立体图形的总表面积为:(9+8+10)×2=54(平方厘米).[拓展]边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米?分析:这个图形的表面积是俯视面、左视面、上视面得到的图形面积的2倍. 该立体图形的上下、左右、前后方向的表面面积都是15平方厘米,该图形的总表面积为90立方厘米.Ⅲ、立体图形的分割与拼组【例10】(首师大附小升初考试分班试题)一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?分析:锯一次净增加两个面,锯的总次数转化为增加的面数的公式为:锯的总次数×2=增加的面数,原正方体表面积:1×1×6=6(平方米)一共据了多少次(2-1)+(3-1)+(4-1)=6次,6+1×1×2×6=18(平方米).【例11】如右图,一个正方体形状的木块,棱长l米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?分析:我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1×l=1(平方米),所以表面积增加了9×2×1=18(平方米).原来正方体的表面积为6×1=6(平方米),所以现在的这些小长方体的表积之和为6+18=24(平方米).【例12】用6块右图所示(单位:cm)的长方体木块拼成一个大长方体,有许多种拼法,其中表面积最小的是多少平方厘米?最大是多少平方厘米?分析:最小:66cm2;最大:(1×2+1×3+2×3)×2×6-1×2×5×2=112.[拓展]有一个棱长为 5 cm的正方体木块,从它的每个面看都有一个穿透的完全相同的孔(右上图),求这个立体图形的内、外表面的总面积.分析:将此带孔的正方体看做由八个8cm3的正方体(8个顶点)和12个1cm3的正方体(12条棱)粘成的.每个正方体有两个面粘接,减少表面积4cm2,所以总的表面积为:(4×6)×8+6×12-4×12=216(cm2).[拓展]边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?分析:三个正方体两两拼接时,最多重合3个正方形面,其中边长为3的正方体与其它两个正方体重合的面积不超过边长为3的正方形,边长为5和边长为8的正方体的重合面面积不超过边长为5的正方形,三个正方形表面积和为6×3×3+6×5×5+6×8×8-2×2×3×3-2×5×5=502.立体图形的相关知识(表面积、体积等)我们会在五年级春季和六年级继续学习.1. (例1)一个5×6×7正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小正方体各有多少块?分析:三面涂红色的只有8个顶点处的8个立方体;两面涂红色的在棱长处,共(5-2)×4+(6-2)×4+(7-2)×4=48块; 一面涂红的表面中间部分:(5-2)×(6-2)×2+(5-2)×(7-2)×2+(6-2)×(7-2)×2=94块.2. (例6)如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?分析: 大立方体的表面积是20×20×20×6=2400平方厘米.在角上挖掉一个小正方体后,外面少了3个面,但厘米又多出3个面;在棱上挖掉一个小正方体后,外面少了2个面,但里面多出4个面;在面上挖掉一个小正方体后,外面少了1个面,但里面多出5个面.所以,最后的情况是挖掉了三个小正方体,反而多出了6个面,可以计算出每个面的面积:(2454-2400)÷6=9平方厘米,说明小正方体的棱长是3厘米.3. (例6)一个正方体的棱长为3厘米,在它的前、后、左、右、上、下各面中心各挖去一个棱长为1厘米的正方体做成一种玩具,求这个玩具的表面积.分析:挖去六个小正方体后,大正方体的中心部分即与其主体脱离,这时得到的新玩具是镂空的.把这个玩具分成20部分,8个“角”和12条“梁”,每个“角”为棱长1厘米的小正方体,它外露部分的面积为:12×3=3(平方厘米),则8个“角”外露部分的面积为:3×8=24(平方厘米).每条“梁”为棱长1厘米的小正方体,它外露部分的面积为:12×4=4(平方厘米),则12条“梁”外露部分的面积为: 4×12=48(平方厘米).这个玩具的表面积为:24+48=72(平方厘米). 练习二专题展望4. (例9)用棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?分析:该图形的上、左、前三个方向的表面分别由9、7、7块正方形组成.该图形的表面积等于(9+7+7)×2=46个小正方形的面积,所以该图形表面积为46平方厘米.5. 有30个边长为1米的正方体,在地面上摆成右上图的形式,然后把露出的表面涂成红色.求被涂成红色的表面积.分析:4×4+(1+2+3+4)×4=56(米2)6. (例12)(我爱数学夏令营活动试题)有三个大小一样的正方体,将接触的面用胶粘接在一起成左图的形状,表面积比原来减少了16平方厘米.求所成形体的体积.分析:三个小正方体拼接成图中的样子,减少了小正方体的4个侧面正方形的面积,表面积减少了16平方厘米,每个正方形侧面为16÷4=4平方厘米,每个正方体棱长为2厘米,三个小正方体体积(即所成形体的体积)是3×23=24立方厘米.蛋型拼板.一种蛋形图板,可以分割成如下图所示的九块板,利用这九块板可以拼成各种各样的图形.国外称之为“魔蛋”.用蛋形拼板拼成的几种动物的造型.你会拼吗?拼拼看.数学知识三角板拼图.用四块形状、大小完全一样的直角三角形纸板(如右图),拼拼搭搭(不能重叠),能出现许多边长不同的正方形.你会拼吗?拼拼看.。
义务教育基础课程小学教学资料
第一讲 直线型面积(一)
卷Ⅰ
把图中的十字形纸在不剪断的情况下,做成一个长方形(可以使用剪刀和浆糊).
想
挑 战
吗
【例1】 如右图,在平行四边形ABCD 中,直线CF 交AB 于E ,交DA 延长
线于F ,若S △ADE=1,求△BEF 的面积.
【例2】 如图,长方形ABCD 的面积是2平方厘米,EC=2DE ,F 是DG 的中
点.四边形EFGC 的面积是多少平方厘米?
【例3】 如图,长方形ABCD 中,BE:EC=2:3,DF:FC=1:2,三角形DFG
的面积为2平方厘米,求长方形ABCD 的面积.
【例4】 如图,在平行四边形ABCD 中,BE=EC ,CF=2FD .求阴影面积与空
白面积的比.
专题精讲
G
F E
D C
B
A
G
F
E
D C
B
A
F
E D
C
B
A
卷Ⅱ
【例5】 (奥数网原创题)如图,60AOB BOC ∠=∠=,在射线
OB 上任取一点P ,使得OP=6,过P 点能做几条直线交射线OA 、OC 于M 、N ,使得OM 、ON 均为正整数.
【例6】 奥数网原创题) 如图,已知三角形ABC 面积为1,延长AB 至D ,
使BD AB =;延长BC 至E ,使2CE BC =;延长CA 至F ,使3AF AC =,求三角形DEF 的面积.
【例7】 如图,已知AE=
15AC ,CD=14BC ,BF=16AB ,那么DEF ABC
三角形的面积三角形的面积等于多少?
【例8】 (奥数网原创题)如图,在△ABC 中,延长BD=AB ,CE=
1
2
BC ,F 是AC 的中点,若△ABC 的面积是2,则△DEF 的面积是多少?
F E
D
C
B A
F
E
D
C
B
A
F
E
D
C
B
A
【例9】 (奥数网原创题)如图,平行四边形ABCD ,BE=AB ,
CF=2CB ,GD=3DC ,HA=4AD ,平行四边形ABCD 的面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.
【例10】 如图,四边形EFGH 的面积是66平方米,EA AB =,CB BF =,
DC CG =,HD DA =,求四边形ABCD 的面积.
H
G
F
E
D C
B
A
H
G F
E
D C B
A
卷Ⅲ
【例11】(全国华罗庚金杯数学邀请赛)2002年在北京召开了国际数学家大会,大会会标如图所示,它是由四个完全一样的直角三角形和一个小正方形拼成
一个大正方形,如果小正方形面积是1平方米,大正方形面积是5平方米,
那么直角三角形中,最短的直角边长度是几米?
【例12】(2004全国华罗庚金杯数学邀请赛)如图,P是正方形ABCD外面一点,PB=12厘米,△APB的面积是90平方厘米,△CPB的面积是48平方厘米.
请问:正方形ABCD的面积是多少平方厘米?
【例13】如图所示,直角三角形PQR的直角边为5厘米,9厘米.问:图中3个正方形面积之和比4个三角形面积之和大多少?
【例14】如图,阴影正方形的顶点分别是大正方形EFGH各边的中点,分别以大正方形各边的一半为直径向外作半圆,再分别以阴影正方形的各边为直径向
外作半圆,形成8个“月牙形”,这8个“月牙形”的总面积为5平方厘
米.问大正方形EFGH的面积是多少平方厘米?
1. 如图,
1,5,4,,ABC
S
BC BD AC EC DG GS SE AF FG ======,
求FGS
S
.
2. (例1、5)如图所示,正方形ABCD 边长为8厘米,E 是AD 的中点,F 是
CE 的中点,G 是BF 的中点,三角形ABG 的面积是多少平方厘米?
3. (例3)如右图,正方形ABCD 的边长为l ,E 、F 分别是BC 、DC 的中点,求四
边形MECN 的面积为多少?
4. (例3)如图,长方形ABCD 中,E 为AD 中点,AF 与BE 、BD 分别交于G 、
H ,已知AH=5cm ,HF=3cm ,求AG .
5. (例11)(2004全国华罗庚金杯数学邀请赛)如图,智能机器猫从平面上的
O 点出发,按下列规律行走:由O 向东走12厘米到1A ,由1A 向北走24厘米到2A ,由2A 向西走36厘米到3A ,由3A 向南走48厘米到4A ,……依此规律到达的6A 点与O 点的距离是多少厘米? 练习一
G
F
E
D C
B
A H
G
F E D
C
B
A
S
G
F E D
C
B
A
6.(例13)(2005全国华罗庚金杯数学邀请赛)如图1,长方形的长为8,宽为4,将长方形沿一条对
角线折起压平,如图2所示,求重叠部分(阴影部分)的面积.
数学知识
拼图欣赏
七巧板是我国传统的启智游戏之一,又名智慧板.它是由正方形、平行四边形和三角形等七块简单几何图板组成,可以拼出各种各样的几何图形和许许多多美丽而有趣的图案.拼简单几何图形:
拼各种造型:
你能拼成其他动物的造型吗?拼拼看.。