中考数学总复习分式
- 格式:ppt
- 大小:858.50 KB
- 文档页数:25
2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。
考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。
中考数学总复习《分式综合》专项测试卷(带参考答案)(考试时间:90分钟,试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题,每小题3分,共30分)。
1.(2023•鄞州区一模)要使分式有意义,则x的取值范围是()A.x≠﹣1B.x≠1C.x≠±1D.x≠02.(2023•济南二模)计算的结果正确的是()A.B.C.D.3.(2023•唐山一模)若÷运算的结果为整式,则“□”中的式子可能是()A.y﹣x B.y+x C.2x D.4.(2023•温州二模)化简的结果为()A.a B.a﹣1C.D.a2﹣a5.(2023•振兴区校级一模)若x,y的值均扩大到原来的3倍,则下列分式的值一定保持不变的是()A.B.C.D.6.(2023•靖宇县一模)某生产车间生产m个机械零件需要a小时完成,那么该车间生产200个同样的零件需要的时间()A.小时B.小时C.小时D.小时7.(2023•永修县三模)若a≠b,则下列分式化简正确的是()A.B.C.D.8.(2023•竞秀区二模)在复习分式的化简运算时,老师把甲、乙两位同学的解答过程分别展示如下.则()甲:=……①乙:=……=……②=……③=1……④①=……②=……③=1……④A.甲、乙都错B.甲、乙都对C.甲对,乙错D.甲错,乙对9.(2023•利辛县模拟)若2m=5,5n=2,则的值为()A.B.1C.D.210.(2023•安徽模拟)已知实数x,y,z满足++=,且=11,则x+y+z 的值为()A.12B.14C.D.9二、填空题(本题共6题,每小题2分,共12分)11.(2023•碑林区校级模拟)若分式的值为0,则x 的值为.12.(2023•惠安县模拟)计算20+3﹣1的结果等于.13.(2023•长岭县模拟)计算结果是.14.(2023•广饶县校级模拟)若+=3,则的值为.15.(2023•鹿城区校级模拟)计算:=.16.(2023•宁波模拟)对于任意两个非零实数a、b,定义新运算“*”如下:,例如:.若x*y=2,则的值为.三、解答题(本题共7题,共58分)。
分式、分式方程及一元二次方程复习考点攻略考点01 一元一次方程相关概念1.等式的性质:(1)等式两边都加上(或减去)同一个数或同一个整式.所得的结果仍是等式. (2)等式两边都乘以(或除以)同一个不等于零的数.所得的结果仍是等式.2.一元一次方程:只含有一个未知数.并且未知数的次数为1.这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠. 【注意】x 前面的系数不为0.3.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 4. 一元一次方程的求解步骤:步骤 解释去分母 在方程两边都乘以各分母的最小公倍数 去括号 先去小括号.再去中括号.最后去大括号移项 把含有未知数的项都移到方程的一边.其他项都移到方程的另一边 合并同类项 把方程化成ax b =-的形式系数化成1在方程两边都除以未知数的系数a .得到方程的解为bx a=-【注意】解方程时移项容易忘记改变符号而出错.要注意解方程的依据是等式的性质.在等式两边同时加上或减去一个代数式时.等式仍然成立.这也是“移项”的依据.移项本质上就是在方程两边同时减去这一项.此时该项在方程一边是0.而另一边是它改变符号后的项.所以移项必须变号. 【例 1】若()2316m m x --=是一元一次方程,则m 等于( )A .1B .2C .1或2D .任何数【答案】B【解析】根据一元一次方程最高次为一次项.得│2m −3│=1.解得m =2或m =1. 根据一元一次方程一次项的系数不为0,得m −1≠0,解得m ≠1.所以m =2. 故选B.【例 2】关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程.则其解为_____.【答案】2x =或2x =-或x =-3.【解析】解:关于x 的方程21120m mx m x +﹣(﹣)﹣=如果是一元一次方程.211m ∴﹣=.即1m =或0m =.方程为20x ﹣=或20x --=.解得:2x =或2x =-.当2m -1=0.即m =12时.方程为112022x --=解得:x =-3. 故答案为x =2或x =-2或x =-3. 【例 3】解方程:221123x x x ---=- 【答案】27x =【解析】解: 221123x x x ---=-()()6326221x x x --=-- 636642x x x -+=-+ 634662x x x -+=-+ 72x = 27x =考点02 二元一次方程组相关概念1.二元一次方程:含有2个未知数.并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组:由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量.其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法:(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来.并代入另一个方程中.消去一个未知数.化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数.化二元一次方程组为一元一次方程.5. 列方程(组)解应用题的一般步骤:(1)审题;(2)设出未知数;(3)列出含未知数的等式——方程;(4)解方程(组);(5)检验结果;(6)作答(不要忽略未知数的单位名称)6. 一元一次方程(组)的应用:(1)销售打折问题:利润=售价-成本价;利润率=利润成本×100%;售价=标价×折扣;销售额=售价×数量.(2)储蓄利息问题:利息=本金×利率×期数;本息和=本金+利息=本金×(1+利率×期数);贷款利息=贷款额×利率×期数.(3)工程问题:工作量=工作效率×工作时间. (4)行程问题:路程=速度×时间.(5)相遇问题:全路程=甲走的路程+乙走的路程.(6)追及问题一(同地不同时出发):前者走的路程=追者走的路程.(7)追及问题二(同时不同地出发):前者走的路程+两地间距离=追者走的路程. (8)水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度. (9)飞机航行问题:顺风速度=静风速度+风速度;逆风速度=静风速度-风速度. 【例 4】已知-2x m -1y 3与12x n y m +n 是同类项.那么(n -m )2 012=______【答案】1【解析】由于-2x m -1y 3与12x n y m +n 是同类项.所以有由m -1=n .得-1=n -m .所以(n -m )2 012=(-1)2 012=1.【例5】如图X2-1-1.直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).(1)求b 的值.(2)不解关于x .y 的方程组请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.【答案】(1)2.(2)⎩⎪⎨⎪⎧x =1,y =2.(3)见解析【解析】解:(1)当x =1时.y =1+1=2.∴b =2.(2)⎩⎪⎨⎪⎧x =1,y =2. (3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1.b ).∴当x =1时.y =m+n =b =2.∴ 当x =1时.y =n +m =2.∴直线l 3:y =nx +m 也经过点P .【例6】家电下乡是我国应对当前国际金融危机.惠农强农.带动工业生产.促进消费.拉动内需的一项重要举措。
○热○点○考○点○解○读一、整式1.单项式与多项式单独的一个数或一个字母也是单项式.2.合并同类项合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变,例如:合并同类项3x 2y 和4x 2y 为3x 2y +4x 2y =(3+4)x 2y =7x 2y .3.整式的运算(1)整式的加减运算实际就是合并同类项.(2)整式的乘法:()()a b m n am an bm bn ++=+++.(3)整式的除法:单项式除以单项式时,把系数、相同字母的幂分别相除,作为商的因式,对于只在被除式中含有的字母,则照抄下来;多项式除以单项式时,用多项式的每一项分别除以单项式,再把所得的商相加.(4)乘法公式①平方差公式:22()()a b a b a b +-=-.②完全平方公式:222()2a b a ab b ±=±+.4.幂的运算性质(1)同底数幂相乘法则:m n m n a a a +⋅=(,m n 为整数,0a ≠)(2)幂的乘方法则:()m n mn a a =(,m n 为整数,0a ≠)(3)积的乘方法则:()n n n ab a b =(n 为整数,0ab ≠)整式、分式、二次根式、因式分解常识必背语言叙述:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.5.用十字相乘法分解因式利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式(2)对于二次项系数不是1的二次三项式(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数,使,,且,那么.一个式子是分式需满足的三个条件:q px x ++2))(()(2b x a x ab x b a x ++=+++c bx ax ++22121,,,c c a a a a a =⋅21c c c =⋅21b c a c a =+1221c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=易错易混2.约分(1)分式约分时,要注意不注意符号导致的错误.(2)要注意约分不彻底导致的错误.(3)约分时需注意分式的分子、分母都是乘积形式时才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,再约分.(4)约分的结果是整式或最简分式.(5)分式的约分是恒等变形,约分前后分式的值不变.3.分解因式要彻底.方法必知1.同类项(1)几个项是不是同类项,一看所含字母是否完全相同.二看相同字母的指数是否相同.“二同”缺一不可.(2)同类项与单项式的系数无关,与字母顺序无关,几个常数项也是同类项.(3)同类项不一定是两项,也可以是三项,四项……但至少为两项.2.合并同类项(1)合并同类项时,注意合并的只是系数,字母部分不变,不要漏掉.(2)合并同类项时,注意各项系数的符号,尤其系数为负数时,不要遗漏负号,同时不要丢项.(3)如果两个同类项的系数互为相反数,合并同类项的结果为0.3.整式的加减的最后结果的要求:(1)不能含有同类项,即要合并到不能再合并为止;(2)一般按照某一字母的降幂或升幂排列;(3)不能出现带分数,带分数必须要化为假分数.4.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来5.约分时需要注意的问题:(1)如果分子、分母中至少有一个是多顶式,就应先分解因式,然后找出分子、分母的公因式,再约分.(2)注意发现分式的分子和分母的一些隐含的公因式,如a﹣5与5﹣a表面虽不相同,但通过提取“﹣”可发现含有公因式(a﹣5).(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面.通分时确定了分母乘什么,分子也必须随之乘什么,要防止只对分母变形而忽略了分子,导致变形前后分式的值发生变化而出错.6.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.7.因式分解(1)因式分解是针对多项式而言的,一个单项式本身就是数与字母的积,不需要再分解因式;(2)因式分解的结果是整式的积的形式,积中几个相同因式的积要写成幂的形式;(3)因式分解必须分解到每一个因式都不能再分解为止;(4)因式分解与整式乘法是方向相反的变形,二者不是互为逆运算.因式分解是一种恒等变形,而整式乘法是一种运算.8.提公因式法(1)多项式的公因式提取要彻底,当一个多项式提取公因式后,剩下的另一个因式中不能再有公因式.(2)提公因式后括号内的项数应与原多项式的项数一样.(3)若多项式首项系数为负数时,通常要提出负因数.9.十字相乘法这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.◇以◇练◇带◇学1.(鞍山)下列运算正确的是( )A .222(4)8ab a b =B .22423a a a +=C .642a a a ÷=D .222()a b a b +=+2.(攀枝花)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:其中,图形的面积关系能正确解释相应的代数恒等式的有( )A .1个B .2个C .3个D .4个3.(邵阳)下列计算正确的是( )A .623a a a =B .235()a a =C .22()()a ba ba b a b +=+++D .01()13-=4.(内蒙古)下列运算正确的是( )A+=B .236()a a -=C .11223a a a+=D .21133b ab a b÷=5.(成都)若23320ab b --=,则代数式2222(1)ab b a ba a b---÷的值为 .6.x 的取值范围是 .7.(扬州)分解因式:24xy x -= .8.(内蒙古)分解因式:34x x -= .9.(盐城)先化简,再求值:2(3)(3)(3)a b a b a b +++-,其中2a =,1b =-.10.(滨州)先化简,再求值:22421()244a a a a a a a a -+-÷---+,其中a 满足211(6cos6004a a --⋅+︒=.1.(官渡区校级模拟)按一定规律排列的式子:a ,32a ,54a ,78a ,916a ,⋯,则第2024个式子为( )A .202320252a B .20244047(21)a -C .202340472a D .202440492a 2.(济南一模)下列运算正确的是( )A .22a b ab+=B .2222a b a b a b-=C .238()a a =D .84222a a a ÷=3.(金山区二模)单项式22a b -的系数和次数分别是( )A .2-和2B .2-和3C .2和2D .2和34.(龙岗区模拟)下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .2234(3)218ab ab a b -⋅=-D .326(2)3ab ab b ÷-=-5.(中山市校级一模)下列各式从左到右的变形,因式分解正确的是( )A .2()a a b a ab+=+B .23()3a ab a a b +-=+-C .22282(4)ab a a b -=-D .228(2)(4)a a a a --=+-6.(钱塘区一模)下列因式分解正确的是( )A .241(41)(41)a a a -=+-B .225(5)(5)a a a -+=+-C .22269(3)a ab b a b --=-D .22816(8)a a a -+=-7.(新乡一模)化简2422a a a ---的结果是( )A .2a +B .2a -C .12a +D .12a -8.(东莞市校级模拟)分式23x x --的值为0时,x 的值是( )A .0x =B .2x =C .3x =D .2x =或3x =9.(碑林区校级一模)先化简,再求值:2[(2)(2)(2)](4)a b b a b a a --+-÷,其中12a =,2b =.10.(龙湖区校级一模)先化简,再求值:2344(111x x x x -+-÷++,其中3x =.1.按一定规律排列的单项式:3x ,54x -,79x ,916x -,⋯,第n 个单项式是( )A .1221(1)n n n x ---B .1221(1)n n n x ++-C .1221(1)(1)n n n x ---+D .1221(1)(1)n n n x ++-+2.下列运算正确的是( )A .22(4)16x x -=-B .325x y xy +=C .432x x x ÷=D .2224()xy x y =3.下列语句正确的是( )A .5-不是单项式B .a 可以表示负数C .25a b -的系数是5,次数是2D .221a ab ++是四次三项式4.下列因式分解正确的一项是( )A .222()x y x y +=+B .24(2)(2)x x x -=+-C .2221(1)x x x --=-D .242(2)xy x xy x +=+5.要使分式11x x -+有意义,则x 应满足的条件是( )A .1x ≠-B .1x ≠C .1x <-D .1x >-6.下列二次根式中,属于最简二次根式的是( )AB C D7.计算:0|1tan 60|(2024-︒+.8.先化简,再求值:2344(111x x x x -+-÷++,其中3x =.9.先化简,再求值:2(2)(4)a a a -++,其中a =.10.先化简,再求值:(2)(2)4()a b a b a a b -+--,其中2a =-,1b =.1.【答案】C【分析】根据积的乘方,合并同类项,同底数幂的除法法则,完全平方公式进行计算,逐一判断即可解答.【解答】解:A 、222(4)16ab a b =,故A 不符合题意;B 、22223a a a +=,故B 不符合题意;C 、642a a a ÷=,故C 符合题意;D 、222()2a b a ab b +=++,故D 不符合题意;故选:C .2.【答案】D【分析】观察各个图形及相应的代数恒等式即可得到答案.【解答】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .3.【答案】D【分析】分别根据分式的加减法则、幂的乘方与积的乘方法则、零指数幂的运算法则对各选项进行逐一计算即可.【解答】解:A 、633a a a=,原计算错误,不符合题意;B 、236()a a =,原计算错误,不符合题意;C 、221()()a b a b a b a b+=+++,原计算错误,不符合题意;D 、01()13-=,正确,符合题意.故选:D .4.【答案】D【分析】根据二次根式的加法、幂的乘法与积的乘方以及分式的运算的计算方法解题即可.【解答】解:A +=≠B .2366()a a a -=-≠,故该选项不正确,不符合题意;C .11123222223a a a a a a+=+=≠,故该选项不正确,不符合题意;21131.333b a D ab a ab b b ÷=⨯=,故该选项正确,符合题意;故选:D .5.【答案】23.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:2222(1ab b a b a a b---÷2222(2)a ab b a b a a b--=⋅-222()a b a b a a b-=⋅-()b a b =-2ab b =-,23320ab b --= ,2332ab b ∴-=,223ab b ∴-=,∴原式23=.故答案为:23.6.【答案】3x >.【分析】根据记二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:30x ->,解得:3x >,故答案为:3x >.7.【分析】原式提取x ,再利用平方差公式分解即可.【解答】解:原式2(4)(2)(2)x y x y y =-=+-,故答案为:(2)(2)x y y +-8.【分析】应先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【解答】解:34x x -,2(4)x x =-,(2)(2)x x x =+-.故答案为:(2)(2)x x x +-.9.【分析】依据题意,利用平方差公式和完全平方公式将原式进行化简,再将a ,b 的值代入计算即可求解.【解答】解:2(3)(3)(3)a b a b a b +++-2222699a ab b a b =+++-226a ab =+.当2a =,1b =-时,原式22262(1)=⨯+⨯⨯-812=-4=-.10.【答案】244a a -+,1.【分析】将括号里面通分运算,再利用分式的混合运算法则计算,结合负整数指数幂的性质、特殊角的三角函数值化简,整体代入得出答案.【解答】解:原式2421[(2)(2)a a a a a a a -+-=÷---224(2)(2)(1)[](2)(2)a a a a a a a a a a -+--=÷---22244(2)a a a a a a a ---+=÷-24(2)4a a a a a --=⋅-2(2)a =-244a a =-+, 211()6cos6004a a --⋅+︒=,2430a a ∴-+=,243a a ∴-=-,∴原式341=-+=.1.【答案】C【分析】由题目可得式子的一般性规律:第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,即可得出答案.【解答】解:式子的系数为1,2,4,8,16, ,则第n 个式子的系数为:12n -;式子的指数为1,3,5,7,9, ,则第n 个式子的指数为:21n -,∴第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,故选:C .2.【答案】B【分析】根据合并同类项法则、幂的乘方法则、单项式除以单项式法则分别判断即可.【解答】解:A 、2a 与b 不是同类项,不能合并,故此选项不符合题意;B 、2222a b a b a b -=,故此选项符合题意;C 、236()a a =,故此选项不符合题意;D 、84422a a a ÷=,故此选项不符合题意;故选:B.3.【答案】B【分析】数字与字母的积叫做单项式,其中数字因数叫做单项式的系数,所有字母的指数之和叫做单项式的次数;由此计算即可.【解答】解:单项式22a b -的系数和次数分别是2-和3,故选:B .4.【答案】D【分析】根据整式相关运算法则逐项判断即可.【解答】解:235a a a ⋅=,故A 错误,不符合题意;a 与22a 不能合并,故B 错误,不符合题意;2234(3)218ab ab a b -⋅=,故C 错误,不符合题意;326(2)3ab ab b ÷-=-,故D 正确,符合题意;故选:D .5.【答案】D【分析】根据因式分解的定义逐个判断即可.【解答】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形不属于因式分解,故本选项不符合题意;C .22282(4)2(2)(2)ab a a b a b b -=-=+-,分解不彻底,从左到右的变形不属于因式分解,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意.故选:D .6.【答案】B【分析】根据平方差公式和完全平方公式逐个判断即可.【解答】解:A .241(21)(21)a a a -=+-,故本选项不符合题意;B .225(5)(5)a a a -+=+-,故本选项符合题意;C .22269(3)a ab b a b -+=-,故本选项不符合题意;D .22816(4)a a a -+=-,故本选项不符合题意;故选:B .7.【答案】A【分析】根据分式的加减法运算法则计算即可.【解答】解:2244(2)(2)22222a a a a a a a a a --+-===+----,故选:A .8.【分析】分式的值为零时:分子等于零且分母不为零.据此求得x 的值.【解答】解:依题意得:20x -=,解得2x =.经检验当2x =时,分母30x -≠,符合题意.故选:B .9.【答案】2a b -,1-.【分析】先利用平方差公式和完全平方公式进行计算,再根据多项式除以单项式的法则进行计算,最后把12a =,2b =代入计算即可.【解答】解:原式2222[44(4)](4)a ab b b a a =-+--÷2222(444)(4)a ab b b a a =-+-+÷2(84)(4)a ab a =-÷2a b =-,当12a =,2b =时,原式12212=⨯-=-.10.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.1.【答案】B【分析】根据单项式的数字系数的符号,数字系数和指数的变化规律即可得出结果.【解答】解:在上述单项式中,可以发现:奇数项的数字系数的符号为正,偶数项的数字系数的符号为负,∴可得:第n 个单项式的数字系数的符号为:1(1)n --或1(1)n +-,单项式的数字系数为:1,4,9,16, ,∴第n 个单项式的数字系数为:2n ,单项式的指数为:3,5,7,9, ,∴第n 个单项式的指数为:21n +,∴第n 个单项式是1221(1)n n n x ++-,故选:B .2.【答案】D【分析】根据整式的运算法则逐项分析判断即可.【解答】解:A 、22(4)816x x x -=-+,原计算错误,不符合题意;B 、3x 与2y 不是同类项,不能合并,故原计算错误,不符合题意;C 、43x x x ÷=,原计算错误不符合题意;D 、2224()xy x y =,正确,符合题意;故选:D .3.【答案】B【分析】根据单项式的定义可判断A ,根据字母表示数的意义可判断B ,根据单项式系数和次数的定义可判断C ,根据多项式的项和次数的定义可判断D ,进而可得答案.【解答】解:A 、5-是单项式,故本选项错误,不符合题意;B 、a可以表示负数,故本选项正确,符合题意;C 、25a b -的系数是5-,次数是3,故本选项错误,不符合题意;D 、221a ab ++是二次三项式,故本选项错误,不符合题意;故选:B .4.【答案】B【分析】根据因式分解的定义进行判断即可.【解答】解:A 、222()x y x y +≠+不符合因式分解的定义,故本选项不符合题意;B 、24(2)(2)x x x -=+-符合因式分解的定义,且因式分解正确,故本选项符合题意;C 、2221(1)x x x --≠-,不符合因式分解的定义,故本选项不符合题意;D 、242(2)xy x x y +=+,原因式分解错误,故本选项不符合题意;故选:B .5.【分析】先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【解答】解:由题意,得10x +≠,解得1x ≠-,故选:A .6.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式,进而得出答案.【解答】解:A =,不是最简二次根式,故此选项错误;B ,是最简二次根式,故此选项正确;C 2=,不是最简二次根式,故此选项错误;D =故选:B .7..【分析】根据二次根式的混合运算法则和零指数幂与特殊的三角函数值等知识点计算即可.【解答】解:原式11=---+11=-+=.8.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.9.【答案】224a +,原式8=.【分析】先利用完全平方公式,单项式乘多项式的法则进行计算,然后把a 的值代入化简后的式子进行计算,即可解答.【解答】解:2(2)(4)a a a -++22444a a a a=-+++224a =+,当a =224224448=⨯+=⨯+=+=.10.【答案】24ab b -,原式9=-.【分析】先利用平方差公式,单项式乘多项式的法则进行计算,然后把a ,b 的值代入化简后的式子进行计算,即可解答.【解答】解:(2)(2)4()a b a b a a b -+--222444a b a ab=--+24ab b =-,当2a =-,1b =时,原式24(2)11819=⨯-⨯-=--=-.。
计算专题——分式综合 九年级数学中考复习1.阅读下列材料学习“分式方程及其解法”的过程中,老师提出一个问题:若关于x 的分式方程14ax =-的解为正数,求a 的取值范围.经过独立思考与分析后,小明和小聪开始交流解题思路,小明说:解这个关于x 的方程,得到方程的解为4x a =+,由题目可得40a +>,所以4a >-,问题解决.小聪说:你考虑的不全面,还必须0a ≠才行. (1)请回答: 的说法是正确的,正确的理由是 . 完成下列问题: (2)已知关于x 的方程233m xx x-=--的解为非负数,求m 的取值范围; (3)若关于x 的方程322133x nx x x --+=---无解,求n 的值.2.阅读下列材料:关于x 的方程11x c x c +=+的解是1211,(x c x x c==,2x 表示未知数x 的两个实数解,下同);22x c x c +=+的解是122,x c x c ==;33x c x c +=+的解是123,x c x c==. 请观察上述方程与解的特征,比较关于x 的方程(0)m mx c m x c+=+≠与它们的关系,猜想它的解是 .由上述的观察、比较、猜想,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解.请用这个结论解关于x 的方程: (1)1265x x +=; (2)2211x a x a +=+--; (3)2131462a a x x a+++=-.3.我们把形如(mnx m n m x+=+,n 不为零),且两个解分别为1x m =,2x n =的方程称为“十字分式方程”. 例如65x x +=为十字分式方程,可化为2323x x ⨯+=+,12x ∴=,23x =. 再如78x x +=-为十字分式方程,可化为(1)(7)(1)(7)x x-⨯-+=-+-. 11x ∴=-,27x =-.应用上面的结论解答下列问题: (1)若107x x+=-为十字分式方程,则1x = ,2x = . (2)若十字分式方程45x x -=-的两个解分别为1x a =,2x b =,求1b aa b++的值. (3)若关于x 的十字分式方程232321k k x k x --=--的两个解分别为1x ,212(3,)x k x x >>,求124x x +的值.4.新定义:对非负实数x “四舍五入”到个位数的值记为x <> 即:当n 为非负整数时,如果1122n x n -+,则x n <>=. 反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+ 例如:00.480<>=<>=,0.64 1.491<>=<>=,22<>=, 3.5 4.124<>=<>=,⋯ 试解决下列问题: 填空:①π<>= (π为圆周率);②如果13x <->=,则实数x 的取值范围为 ;③若关于x 的不等式组24130x x a x -⎧-⎪⎨⎪<>->⎩的整数解恰有4个,求a 的取值范围;④关于x 的分式方程112221m x x x -<>+=--有正整数解,求m 的取值范围; ⑤求满足65x x <>=的所有非负实数x 的值.5.定义:若分式M 与分式N 的和等于它们的积,即M +N =MN ,则称分式M 与分式N 互为“关联分式”.如21x x +与21x x -,因为()222422111(1)11x x x x x x x x x x x +==⋅+-+-+-所以21xx +与21xx -互为“关联分式”,其中一个分式是另外一个分式的“关联分式”. (1)分式221a + 分式221a -的“关联分式”(填“是”或“不是”); (2)求分式()02aab a b≠-的“关联分式”; (3)若分式224ab a b -是分式22aa b+的“关联分式”,ab ≠0,求分式222a b ab -的值.6.阅读材料:对于非零实数a ,b ,若关于x 的分式()()x a x b x--的值为零,则解得1x a =,2x b =.又因为2()()()()x a x b x a b x ab abx a b x x x---++==+-+,所以关于x 的方程()ab x a b x +=+,的解为1x a =,2x b =.(1)理解应用:方程22233x x +=+的解为:1x = ,2x = ;(2)知识迁移:若关于x 的方程35x x+=的解为1x a =,2x b =,求22a b +的值;(3)拓展提升:若关于x 的方程41k x x =--的解为1x ,2x ,且121x x =,求k 的值.7.由完全平方公式222()2a b a ab b -=-+可知,222()2a b a b ab +=-+,而2()0a b -,所以,对所有的实数a ,b 都有:222a b ab +,且只有当a b =时,才有等号成立:222a b ab +=. 应用上面的结论解答下列问题:(1)计算21()x x-= ,由此可知221x x + 2(填不等号);(2)已知m ,n 为不相等的两正数,试比较:(1%)(1%)m n ++与(1%)(1%)22m n m n++++的大小;(3)试求分式24224x x x -+的最大值.8.如果两个分式M 与N 的和为常数k ,且k 正整数,则称M 与N 互为“和整分式”,常数k 称为“和整值”.如分式1x M x =+,11N x =+,111x M N x ++==+,则M 与N 互为“和整分式”,“和整值” 1k =.(1)已知分式72x A x -=-,22696x x B x x ++=+-,判断A 与B 是否互为“和整分式”,若不是,请说明理由;若是,请求出“和整值” k ; (2)已知分式342x C x -=-,24G D x =-,C 与D 互为“和整分式”,且“和整值” 3k =,若x 为正整数,分式D 的值为正整数t .①求G 所代表的代数式; ②求x 的值;(3)在(2)的条件下,已知分式353x P x -=-,33mx Q x-=-,且P Q t +=,若该关于x 的方程无解,求实数m 的值.9.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如21,11x x x x -+-这样的分式就是假分式;再如:232,11xx x ++这样的分式就是真分式类似的,假分式也可以化为带分式(即:整式与真分式的和的形式).如:1(1)221111x x x x x -+-==-+++;再如:2211(1)(1)1111111x x x x x x x x x -++-+===++----. 解决下列问题:(1)下列分式中属于“真分式”的有 ;(填序号)①2x ;②211x x -+;③211x x x -+-(2)将假分式22x x +化为带分式的形式;(3)如果211x x -+的值为整数,求x 的整数值.10.对于形如kx m x+=的分式方程,若k ab =,m a b =+,容易检验1x a =,2x b =是分式方程ab x a b x +=+的解,所以称该分式方程为“易解方程”.例如:23x x+=可化为1212x x ⨯+=+,容易检验11x =,22x =是方程的解,∴23x x +=是“易解方程”:又如65x x +=-可化为(2)(3)23x x --+=--,容易检验13x =-,22x =-是方程的解,∴65x x+=-也是“易解方程”.根据上面的学习解答下列问题: (1)判断56x x+=-是不是“易解方程”,若是“易解方程”,求该方程的解1x ,212()x x x <;若不是,说明理由.(2)若1x m =,2x n =是“易解方程” 34x x -=的两个解,求11m n+的值; (3)设n 为自然数,若关于x 的“易解方程” 223352n nx n x ++=+-的两个解分别为1x ,212()x x x <,求211x x -的值.答案版: 1【解答】解:(1)分式方程的解不能是增根,即不能使分式的分母为0,∴小聪说得对,分式的分母不能为0;(2)233m xx x-=--, 233m xx x +=--, 2(3)m x x +=-, 6x m =+,解为非负数,60m ∴+,即6m -,又30x -≠,63m ∴+≠,即3m ≠-,6m ∴-且3m ≠-;(3)322133x nx x x --+=---, 322(3)x nx x -+-=--, (1)2n x -=,原方程无解, 10n ∴-=或3x =,①当10n -=时,解得1n =; ②当3x =时,解得53n =; 综上所述:当1n =或53n =时原方程无解. 2. 【解答】解:11x c x c +=+的解是121,x c x c==; 22x c x c +=+的解是122,x c x c ==; 33x c x c +=+的解是123,x c x c==; ∴(0)m m x c m x c +=+≠的解是1x c =,2mx c=,故答案为:1x c =,2m x c=; (1)1265x x +=, 1155x x ∴+=+, 15x ∴=,215x =; (2)2211x a x a +=+--, 221111x a x a ∴-+=-+--, 11x a ∴-=-或211x a -=- 1x a ∴=,211a x a +=-; (3)2131462a a x x a +++=-, 2131223a a x x a ++∴+=-, 112323x a x a∴+=++-,112323x a x a∴-+=+-, 23x a ∴-=或123x a-=, 132a x +∴=,2312a x a +=.3.【解答】(1)解:方程107x x+=-是十字分式方程,可化为: (2)(5)(2)(5)x x-⨯-+=-+-, 12x ∴=-,25x =-,故答案为:2-,5-. (2)解:十字分式方程45x x-=-的两个解分别为:1x a =,2x b =, 4ab ∴=-,5a b +=-,∴1b a a b++ 221b a ab+=+,2()21a b ab ab +-=+, 2()21a b ab +=-+, 2(5)14-=--, 294=-. (3)解:方程232321k k x k x --=--是十字分式方程,可化为: (23)1(23)1k k x k k x --+=+--, 当3k >时,2330k k k --=->, 关于x 的十字分式方程232321k k x k x --=--的两个解分别为:1x ,212(3,)x k x x >>,1123x k ∴-=-,21x k -=, 122x k ∴=-,21x k =+ ,∴124224222(1)2111x k k k x k k k +-+++====+++. 4. 【解答】解:①由题意可得:3n <>=; 故答案为:3, ②13x <->=, 2.51 3.5x ∴-<, 3.5 4.5x ∴<; 故答案为:3.5 4.5x <; ③解不等式组得:1x a -<<>, 由不等式组整数解恰有4个得,23a <<>, 故2.5 3.5a <; ④解方程得22x m =-<>, 2m -<>是整数,x 是正整数,21m ∴-<>=或2, 21m -<>=时,2x =是增根,舍去. 22m ∴-<>=, 0m ∴<>=, 00.5m ∴<. ⑤0x ,65x 为整数,设65x k =,k 为整数, 则56x k =, 56k k ∴<>=, 151262k k k ∴-+,0k , 03k ∴, 0k ∴=,1,2,3 则0x =,56,53,52. 5. 【解答】解:(1)+ = = = =, ∴分式是分式的“关联分式”;故答案为:是;(2)设分式的“关联分式”为N,则有,∴,∴,∵ab≠0,∴,∴分式的“关联分式”为;(3)∵分式是分式的“关联分式”,∴∵ab≠0,∴b2=8a2∴,∴.6.【解答】解:(1)abx a bx+=+的解为1x a=,2x b=,∴222233xxx x+=+=+的解为3x=或23x=,故答案为:3,23;(2)35xx+=,5a b∴+=,3ab=,222()225619a b a b ab∴+=+-=-=;(3)41k xx=--可化为2(1)40x k x k-+++=,121x x=,41k∴+=,3k∴=-.7. 【解答】解:(1)4222121()x x x x x -+-=, 2212x x ∴+, 故答案为:42221x x x -+,; (2)(1%)(1%)1%%%%m n m n m n ++=+++⋅, 2(1%)(1%)12%(%)2222m n m n m n m n ++++++=+⋅+,2222()()24242m n m mn n m n mn mn +--=++-=, 又m n ≠, (1%)(1%)(1%)(1%)22m n m n m n ++∴++<++; (3)当0x =时,242024x x x =-+, 当0x ≠时,242222211442422x x x x x x x ==-+-++-,()22242242,x x x x x +==当时等号成立, ∴2421124422x x x =-+-, ∴224212,242x x x x =-+当时的最大值为. 8. 【解答】解:(1)72x A x -=-,22696x x B x x ++=+-, ∴2227697(3)732(2)2262(3)(2)222x x x x x x x x A B x x x x x x x x x -++-+-+-+=+=+=+==-+--+----.A ∴与B 是互为“和整分式”,“和整值” 2k =; (2)①342xC x -=-,24GD x =-, ∴2(34)(2)328(2)(2)(2)(2)(2)(2)x x G x x G C D x x x x x x -++-++=+=-+-+-+, C 与D 互为“和整分式”,且“和整值” 3k =, 223283(2)(2)312x x G x x x ∴+-+=-+=-, 2231232824G x x x x ∴=---+=--;②22(2)24(2)(2)2G x D x x x x -+===--+--,且分式D 的值为正整数t .x 为正整数, 21x ∴-=-或22x -=-, 1(0x x ∴==舍去); (3)由题意可得:2212t D ==-=-, ∴353233x mx P Q x x --+=+=--, ∴35323x mx x --+=-, (3)226m x x ∴--=-, 整理得:(1)4m x -=-, 方程无解, 10m ∴-=或方程有增根3x =, 解得:1m =, 当10m -≠,方程有增根3x =, ∴431m -=-, 解得:73m =, 综上:m 的值为:1或73. 9. 【解答】解:(1)由题意可得:①是“真分式”;②③都是“假分式”. 故答案为:①; (2)2244(2)(2)4422222x x x x x x x x x -++-+===-+++++; (3)212(1)332111x x x x x -+-==-+++, 211x x -+的值为整数, ∴31x +的值为整数, 3∴是(1)x +的倍数, x ∴的整数值为4-、2-、0、2. 10.【解答】解:(1)56x x +=-是“易解方程”,理由: 56x x +=-可化为(5)(1)51x x --+=--, 51-<-, ∴56x x +=-是“易解方程”. ∴方程的解为15x =-,21x =-; (2)1x m =,2x n =是“易解方程” 34x x -=的两个解,3mn ∴-=,4m n =+, 则114433n m m n mn ++===--; (3)设2y x =-,方程可化为(23)23n n y n n y ++=++,2232332n n x n x +-+=+-是“易解方程”, n ∴和23n +是这个方程的解, n 为自然数, 23n n ∴<+, ∴必有12x n -=,2223x n -=+, 12x n ∴=+,225x n =+, ∴21125122x n x n -+-==+.。
中考数学总复习《分式与二次根式》专项练习题-附带参考答案一、选择题:(本题共8小题,共40分.)1.计算(﹣ 13 )﹣2的值,正确的是( )A .19B .﹣ 19C .9D .﹣92.下列各数中,化为最简二次根式后能与√3合并的是( )A .√18B .√12C .√23D .√293.使代数式√x−3x−4有意义的x 的取值范围是( )A .x >3B .x ≥3C .x >4D .x ≥3 且x ≠44.下列运算中错误的是( )A .√2 + √3 = √5B .√2 × √3 = √6C .√8 ÷ √2 =2D .(−√3)2 =35.若分式 |x|−1x 2−3x+2 的值为0,则x 的值为( )A .-1B .0C .1D .±16.如果分式xy 2x−3y 中的x ,y 都扩大为原来的2倍,那么分式的值( )A .扩大为原来的2倍B .扩大为原来的4倍C .不变D .不能确定7.若先化简 (1+2p−2)÷p 2−pp 2−4 ,再求值,且 p 是满足 −3<p <3 的整数,则化简求值的结果为()A .0或 −12 或-2或4B .-2或 −12C .-2D .−128.若√x −1+√x +y =0 ,则x 2005+y 2005 的值为: ( )A .0B .1C .-1D .2二、填空题:(本题共5小题,共15分.)9.化简: 4a−4b 3ab ⋅15ab 2a −2b 2÷1a = .10.若分式 x 2−x−2x 2+2x+1 的值为 0 ,则 x 的值等于 .11.计算 √48−√27 的结果等于 .12.已知 1a −1b =12 ,则 ab a−b 的值是13.对于分式 ,当x= 时,分式 x 2−2x−3x−3 无意义;当x= 时,分式值为零.三、解答题:(本题共4题,共45分.)14.化简:(a ﹣1+1a−3)÷a2−4a−3;15.先化简,再求值:222414816a a a a a ---÷+++,其中2a =.16.(1)计算:(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(3a+1−a +1)÷a 2−4a 2+2a+1,其中a 从﹣1,2,3中取一个你认为合适的数代入求值.17. 先化简,再求值:(1x -y +2x 2-xy )÷x +22x ,其中实数x ,y 满足y =x -2-4-2x +1.参考答案:1.C2.B3.D4.A5.A6.A7.D8.A9.20ab a+b10.211.√312.﹣213.3;-114.原式=[(a−1)(a−3)a−3+1a−3]÷(a+2)(a−2)a−3 =(a 2−4a+3a−3+1a−3)•a−3(a+2)(a−2) =(a−2)2a−3•a−3(a+2)(a−2) =a−2a+2;15.解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++; 把22a 代入得:原式=2222=--+ 16.(1)(12)﹣2﹣|√2−3|+2tan45°﹣(2020﹣π)0=4+√2−3+2×1﹣1=4+√2−3+2﹣1=2+√2;(2)(3a+1−a +1)÷a 2−4a 2+2a+1=3−(a−1)(a+1)a+1×(a+1)2(a+2)(a−2) =−(a+2)(a−2)a+1=﹣a ﹣1要使原式有意义,只能a =3则当a =3时,原式=﹣3﹣1=﹣4.17.略。
中考数学专题复习四--分式方程和不等式(组)(总6页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除中考数学专题复习(四)分式方程和不等式(组)【知识梳理】1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列;(2)检验所求的解是否 . 5.易错知识辨析:(1)去分母时,不要漏乘没有分母的项.(2)解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.(3)如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.6.不等式的有关概念:用连接起来的式子叫不等式;使不等式成立的的值叫做不等式的解;一个含有的不等式的解的叫做不等式的解集.求一个不等式的的过程或证明不等式无解的过程叫做解不等式.7.不等式的基本性质:(1)若a <b ,则a +c c b +; (2)若a >b ,c >0则ac bc (或ca cb ); (3)若a >b ,c <0则ac bc (或c a cb ). 8.一元一次不等式:只含有 未知数,且未知数的次数是 且系数 的不等式,称为一元一次不等式;一元一次不等式的一般形式为 或ax b <;解一元一次不等式的一般步骤:去分母、 、移项、 、系数化为1.9.一元一次不等式组:几个 合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的 ,叫做由它们组成的不等式组的解集.10.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知a b <)x a x b <⎧⎨<⎩的解集是x a <,即“小小取小”; x a x b >⎧⎨>⎩的解集是x b >,即“大大取大”;x a x b >⎧⎨<⎩的解集是a x b <<,即“大小小大中间找”; x a x b <⎧⎨>⎩的解集是空集,即“大大小小取不了”.11.易错知识辨析:(1)不等式的解集用数轴来表示时,注意“空心圆圈”和“实心点”的不同含义.(2)解字母系数的不等式时要讨论字母系数的正、负情况.如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <); 当0a <时,b x a <(或b x a>); 当0a <时,b x a <(或b x a>). 12.求不等式(组)的特殊解:不等式(组)的解往往有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.13.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②设:设未知数(一般求什么,就设什么为x );③找:找出能够表示应用题全部含义的一个不等关系;④列:根据这个不等关系列出需要的代数式,从而列出不等式(组);⑤解:解所列出的不等式(组),写出未知数的值或范围;⑥验:检验所求解是否符合题意;⑦答:写出答案(包括单位).14.易错知识辨析:判断不等式是否成立,关键是分析不等号的变化,其根据是不等式的性质.【真题回顾】一、选择题1.(2010年山东菏泽全真模拟1)下列运算中,错误..的是( ) A.(0)a ac c b bc =≠ B.1a b a b--=-+2(4)4-= D.x y y x x y y x --=++ 2.(2010年江西省统一考试样卷)若分式21x x +有意义,则x 的取值范围是( )A .x >1B .x >-1C .x ≠0D .x ≠-13.(2009年孝感)关于x 的方程211x a x +=- 的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a≠0 C .a <-1 D .a <-1且a≠-24.(2011.鸡西)分式方程)2)(1(11+-=--x x m x x 产生增根,则m 的值是( ) A. 0和3 B. 1 C. 1和-2 D. 35.(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8 B.7 C .6 D .5二、填空题1.(2010年西湖区月考)若分式22221x x x x --++的值为0,则x 的值等于 2.(2010年江苏省泰州市中考模拟题)使代数式43--x x 有意义的x 的取值范围是 . 3.(2009年滨州)解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 4.(2011襄阳)已知关于x 的分式方程1131=-+-xx m 的解是正数,则m 的取值范围为 5.(2010新疆乌鲁木齐)在数轴上,点A 、B 对应的数分别为2 ,15+-x x ,且A 、B 两点关于原点对称,则x 的值为 。
分式性质的拓展应用考点培优练习考点直击1.分式定义:形如AB的式子叫分式,其中A,B是整式,且B中含有字母.(1) B=0时,分式无意义; B≠0时,分式有意义.(2) 分式的值为0:A=0,B≠0时,分式的值等于0.(3)分式的约分:把一个分式的分子与分母的公因式约去叫作分式的约分.方法是把分子、分母因式分解,再约去公因式.(4)最简分式:一个分式的分子与分母没有公因式时,叫作最简分式.分式运算的最终结果若是分式,一定要化为最简分式.(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫作分式的通分.(6)最简公分母:各分式的分母所有因式的最高次幂的积.(7)有理式:整式和分式统称有理式.2.分式的基本性质:(1)AB =A⋅MB⋅M(M是不为0的整式);(2)AB =A÷MB÷M(M是不为0的整式);(3)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.例题精讲例1若实数a,b,c满足条件1a +1b+1c=1a+b+c,则a,b,c中( )A.必有两个数相等B.必有两个数互为相反的数C.必有两个数互为倒数D.每两个数都不等【思路点拨】首先把等式去分母得到b²c+bc²+a²c+ac²+a²b+ab²+2abc=0,用分组分解法将上式左边分解因式得(a+b)(b+c)(a+c)=0,,从而得到a+b=0或b+c=0或a+c=0,根据相反数的定义即可选出选项.举一反三1 (湖北中考)已知分式x+y1−xy的值是a,如果用x,y的相反数代入这个分式所得的值为b,则a,b ( )A. 相等B.互为相反数C.互为倒数D.乘积为−1举一反三2 下列分式从左到右的变形一定正确的是 ( )A.b+xa+x =baB.b2a=b22abC.x−yx+y =y−xx+yD.−x−yx+y=−1举一反三3 要使1x+2=x−3x2−x−6成立,必须满足 ( )1A. x≠-2B.x≠−2且x≠3C. x≠3D.以上都不对例2 (南京统考)已知三个数x,y,z满足xyx+y =−2,yzy+z=43,xzx+z=−43,求xyzxy+yz+zx的值.【思路点拨】分式的分子是单项式,分母是多项式时,可以通过对等号两边同时取倒数来帮助运算.举一反三 4 已知代数式x⁴−x²+6x−8的值等于1,求代数式xx+1的值.举一反三5 已知xx2+x+1=13,求分式x2x4+x2+1的值.举一反三6 已知1x −1y=3,求分式2x−3xy−2yx−2xy−y的值.例3【探索】(1)若3x+4x+1=3+mx+1,则m=;(2) 若5x−3x+2=5+mx+2,则m= .【总结】若ax+bx+c =a+mx+c(其中a,b,c 为常数),则m=.【应用】利用上述结论解决:若代数式4x−3x−1的值为整数,求满足条件的整数x的值.举一反三7 已知x+1x =3,求x2x4+x2+1的值.11举一反三8 (西安统考)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数,如:83=6+23=2+23=223.在分式中,我们定义:对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如x−1x+1,x2x−1这样的分式就是假分式;再如3x+1,2xx2+1这样的分式就是真分式.类似的,假分式也可以化为带分式(即整式与真分式的和的形式).如x−1x+1=(x+1)−2x+1=1−2x+1;再如x2x−1=x2−1+1x−1=(x+1)(x−1)+11=x+1+1x−1.解决下列问题:(1) 分式2x是 (填“真分式”或“假分式”);(2)将假分式x−1x+2化为带分式:;(3)如果分式2x−1x+1的值为整数,那么整数x的值为 .过关检测基础夯实1.下列各式中2x ,a+2b2,a+bπ,a+1a,(x−1)(x+2)x+2,a+√bb,分式的个数是 ( )A. 2B. 3C.4D. 52.使分式x−1x2−3x+2有意义的x 的取值范围是 ( ) A. x≠1 B. x≠2C. x≠1且x≠2D.x可为任何数3.若分式x2−4x+3(x−1)(x−2)的值为0,则( )A. x=1或x=3B. x=3C. x=1D. x≠1且. x≠24.下列约分正确的是 ( )A.a9a3=a3 B.x+1x+1=0 C.x2+2x+1x+1=x+1 D.a2+b2a+b=a+b5.a5,n2m,12π,ab+1,a+b3,y5−1z中,分式有个.6.当分式1x−3有意义时,则 x 满足的条件是 .7.若分式x+1x−1的值为 0,则 x 的值是8.利用分式的基本性质填空:(1)3a5xy =()10axy(a≠0);(2)a+2a2−4=1().9.约分:(1)a3b3a2b+ab ;(2)x2−2x+1(x2+1)2−4x2.10. 通分: 2m−3,12(m+3).能力拓展11. 当分式62x−3的值为整数时,自然数x 的取值可能有 ( )A.3个B. 4个C.6 个D.8个12. 如果分式a2a+b中的a,b都同时扩大2倍,那么该分式的值 ( ) A. 不变 B. 缩小 2倍C. 扩大 2倍D. 扩大 4 倍13. 设xyz≠0,且3x+2y—7z=0,7x+4y—15z=0,则4x2−5y2−6z2x2+2y2+3z2=¯.14.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则a−23b12a+2b=15.x 取何值时,下列分式有意义:(1)x+22x−3;(2)6(x+3)|x|−12;(3)x+6x2+1.16. (1) 已知分式2x2−8x−2,x取何值时,分式的值为0?(2)x 为何值时,分式x2+23x−9的值为正数?17.已知实数a,b满足, 6ᵃ=2010,335ᵇ=2 010,求1a +1b的值.综合创新18. 设 a +b +c = abc(abc≠0),化简: a (1−b 2)(1−c 2)+b (1−c 2)(1−a 2)+c (1−a 2)(1−b )2aℎc= .19.若 x²+x −1=0,则x 4+(x−1)2−1x (x−1)的值为 .20.(舟山中考)给定下面一列分式(其中x≠ 0):x 3y,−x 5y2,x 7y3,−x 9y 4,⋯(1)把任意一个分式除以前面一个分式,你发现了什么规律? (2)根据你发现的规律,试写出给定的那列分式中的第7个分式.4 分式性质的拓展应用【例题精讲】 1. B 解析: 1a+1b+1c=1a+b+c,去分母并整理得 b²c +bc²+a²c +ac²+a²b + ab²+2abc =0,即 (b²c +2abc +a²c )+(bc²+ac²)+(a²b +ab²)=0,∴c(a + b)²+c²(a +b )+ab (a +b )=0,(a +b ). (ac +bc +c²+ab )=0,(a +b )(b +c )⋅(a+c)=0,即a+b=0或b+c=0或a+c=0,则a ,b ,c 中必有两个数互为相反数.2. --4 解析:由已知条件可得x+y xy= −12,y+zyz=34,z+xzx=−34,即 1x+ 1y=−12,1y+1z=34,1z+1x=−34,三式相加得 2x+2y+2z=−12,∴1x+ 1y+1z=−14,∴xy+yz+zxxyz=−14, ∴xyz xy+yz+zx=−4.3.【探索】(1)1 (2)-13【总结】b-ac 【应用】x=2或x=0 解析:【探索】(1)将已知等式整理得3x+4x+1=3x+3+m x+1,即3x+4=3x+3+m,解得m=1;(2) 将已知等式整理得5x−3x+2=5x+10+m x+2,即5x-3=5x+10+m,解得:m=-13.【应用】4x−3x−1=4(x−1)+1x−1=4+1x−1,:x 为整数且4x−3x−1为整数,∴x-1=±1,∴x=21或x=0.【举一反三】1.B 解析:根据题意,用x ,y 的相反数代入这个 分 式,即 b =−x−y1−(−x )(−y )= −x+y 1−xy=−a,所以a ,b 互为相反数.2. D 解析:当a≠0且x=0时,等式才能成立,A 错误;当b≠0时,从左到右的变形才能成立,B 错误;分式从左不能变形到右,C 错误;−x−y x+y=−(x+y )x+y=−1,D 正确.3. B 解析:x+2≠0,解得x≠--2,又∵x²-x--6≠0,(x+2)(x -3)≠0,解得x≠-2且x≠3,则x≠-2且x≠3时,等式成立.4.7±√136解析: ∵x⁴−x²+6x −8=1, ∴x⁴−x²+6x −9=0,∴x⁴−(x −3)²= ,∴(x²+x −3)(x²−x +3)=0,∴x²+(x--3=0或 x²−x +3=0.当 x²−x +3=0时,方程无解;当 x²+x −3=0时,x=−1±√132.当 x =−1+√132时, xx+1=−1+√132−1+√132+1√131+√13= 7−√136;当 x =−1−√132时,xx+1=−1−√132−1−√132+1√131−√13=7+√136. 5. 13解析:由x x 2+x+1=13整理变形得1x+1+1x=13,从而得 x +1x=2.而 x 2+x 2x 4+x 2+1=1x 2+1+1x2,1x 2=(x +1x)2−2=2, 故x2x4+x2+1=13.6. 35解析:∵1x−1y=3,∴y−x=3xy,∴x−y=−3xy,∴2x+3xy−2yx−2xy−y=2(x−y)+3xy(x−y)−2xy=2×(−3xy)+3xy−3xy−2xy=−3xy−5xy=35.7. 18解析:将x+1x=3两边同时乘x,得x2+1=3x,x2x4+x2+1=x2(x2+1)2−x2=x29x2−x2=18.8.(1) 真分式(2)1−3x+2(3)2或-4或0或-2解析:(3)2x−1x+1=2x+2−3x+1=2−3x+1.所以当x+1=3或-3或1或-1时,分式的值为整数.解得x=2或x=-4或x=0或x=-2.【过关检测】1. B 解析: a+2b2,a+bπ的分母中均不含有字母,因此它们是整式,而不是分式;a+√bb的分子不是整式,因此不是分式.2. C 解析: ∵x²−3x+2≠0即(x-1)(x-2)≠0,∴x-1≠0且x-2≠0,∴x≠1且x≠2.3. B 解析:∵分式x2−4x+3(x−1)(x−2)的值为0,∴x²−4x+3=0且(x--1)(x--2)≠0,∴x=3.4. C 解析:原式=a⁶,A错误;原式=1,B错误;该分式是最简分式,不需要约分,D错误.5.3 解析: n2m ,ab+1,y5−1z为分式.6. x≠3解析:由题意得x--3≠0,解得x≠3.7.-1 解析:由分式x+1x−1的值为0,得x+1=0且x-1≠0,解得x=-1.8.(1) 6a² (2)a-29.(1) 原式=a3b3ab(a+1)=a2b2a+1(2) 原式=(x−1)2(x2+1+2x)(x2+1−2x)=(x−1)2(x+1)2(x−1)2=1(x+1)210.2m−3=4(m+3)2(m+3)(m−3)12(m+3)=m−32(m+3)(m−3)11. B 解析:要使62x−3的值为整数,则2x-3只能取±1,±2,±3,±6,而x 是自然数,分析知2x-3可取±1或±3,对应得x为0,1,2,3.12. C 解析:∵分式a2a+b 中的a,b都同时扩大2倍, ∴(2a)22a+2b=2a2a+b,∴该分式的值扩大2倍.13.−116解析:∵xyz≠0,∴x≠0且y≠0且z≠0,{3x+2y−7z=0circle17x+4y−15z=0circle2②--①×2得7x-6x--15z+14z=0,∴x=z,将x=z代入①得3z+2y-7z=0,解得y=2x= 2z,原式=4z2−5×4z2−6z2z2+2×4z2+3z2=−22z212z2=−116.14.6a−4b3a+12b 解析a−23b12a+2b=6(a−23b)6(12a+2b)=6a−4b3a+12b.15.(1)x≠32(2)x≠±12 (3) x 为任意实数解析:(1)要使x+22x−3有意义,则2x-3≠0,解得x≠32.当x≠32时, x+22x−3有意义.(2)要使6(x+3)|x|−12有意义,则|x|-12≠0,解得x≠±12.当x≠±12时, 6(x+3)|x|−12有意义.(3)要使x+6x2+1有意义,则x²+1≠0.x为任意实数,x+6x2+1有意义.16.(1) -2 (2)x>3解析:(1)由2x2−8x−2=0,得2x²−8=0且x--2≠0,解得x=-2.当x=-2时,分式的值为0.(2)x2+23x−9的值为正数,得3x-9>0,解得x>3.当x>3时,分式x2+23x−9的值为正数.17. 1 解析: ∵6ᵃ=2010,335ᵇ=2010,∴6ᵃᵇ=2010ᵇ,335ᵃᵇ=2010ᵃ,∴6ᵃᵇ×335ᵃᵇ=2010ᵇ⁺ᵃ,(6×335)ᵃᵇ=2010ᵃ⁺ᵇ,∴ab=a+b,∴1a +1b=a+bab=1.18.4 解析:分子=a(1−b²−c²+b²c²)+b(1−c²−a²+a²c²)+c(1−a²−b²+a²b²)=(a+b+c)−ab(a+b)−bc(b+c)-ac(c+a)+abc(ab+ac+bc).∵a+b+c=abc,∴分子=abc-ab(abc-c)-bc(abc-a)-ac(abc-b)+abc(ab+ac+bc)=abc-abc(ab-1+bc-1+ac-1)+abc(ab+ac+bc)=abc+3abc=4abc.∴原式=4abcabc=4.19. 3 解析: ∵x²+x−1=0,∴x²=−(x−(1),x2+x=1,∴x4+(x−1)2−1x(x−1)=[−(x−1)]2+(x−1)2−1x(x−1)=2x2−4x+1x2+x−2x=2(1−x)−4x+11−2x=3(1−2x)1−2x=3.20.(1)任意一个分式除以前面一个分式恒等于−x2y(2)观察这一列分式:①发现分母上是y¹,y²,y³,…,故第7 个式子的分母是y⁷.②发现分子上是x³, x⁵,x⁷,…,i故第7个式子的分子是:x¹⁵.③再观察符号,发现第偶数个分式为负,第奇数个分式为正.综上,第 7 个分式应该是x15y7.。