数据结构数据结构复习提纲(新)
- 格式:doc
- 大小:62.50 KB
- 文档页数:5
数据结构复习要点(整理版)数据结构复习要点(整理版)数据结构是计算机科学中非常重要的一门课程,它涉及到各种数据的存储和组织方式,对于编程和算法的理解都至关重要。
本文将整理常见的数据结构复习要点,帮助读者回顾和加深对数据结构的理解。
一、线性结构线性结构是最简单的数据结构之一,它包括线性表、栈、队列等。
线性表是具有相同数据类型的一组元素的有限序列,它可以分为顺序表和链表。
顺序表是一种用连续的存储单元依次存储线性表的元素的数据结构,而链表则是通过每个元素中存储下一个元素的地址来实现线性关系。
栈和队列是线性结构的特殊形式。
栈是一种先进后出(LIFO)的数据结构,它可以通过顺序栈或链栈来实现。
队列是一种先进先出(FIFO)的数据结构,它可以通过顺序队列或链队列来实现。
二、树形结构树形结构是一种非线性结构,它具有层次关系,由节点和边组成。
常见的树形结构包括二叉树、二叉搜索树、平衡二叉树和哈夫曼树。
二叉树是每个节点最多只有两个子节点的树,它可以是空树、只有一个根节点的树或者一个根节点连接两棵不相交的二叉树。
二叉搜索树是一种特殊的二叉树,它的左子树上所有节点的值小于根节点的值,右子树上所有节点的值大于根节点的值。
平衡二叉树是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1,这样可以保证在最坏情况下的查找效率。
哈夫曼树是一种特殊的二叉树,它的叶子节点代表字符,而各节点的权值表示字符出现的频率,通过构造哈夫曼树可以实现数据的压缩编码。
三、图形结构图形结构是一种包含节点和边的非线性数据结构,它由顶点集合和边集合组成。
图形结构可以分为无向图和有向图,每个节点可以有一个或多个相邻节点。
图形结构的常见算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索是一种通过递归或栈实现的搜索算法,它先访问起始节点的一个邻接节点,再依次访问该节点的未被访问过的邻接节点,直到所有节点都被访问过。
广度优先搜索则是一种通过队列实现的搜索算法,它先访问起始节点的所有邻接节点,再依次访问这些邻接节点的邻接节点,以此类推,直到所有节点都被访问过。
数据结构复习提纲复习内容:基本概念掌握:数据结构,逻辑结构,存储结构;数据类型;算法;T(n),S(n)的理解。
要学习的数据结构定义形式:n(n〉=0)个数据元素的有限集合.将约束:1、数据元素本身.2、数据元素之间的关系。
3、操作子集。
大多有两种存储(表示、实现)方式:1、顺序存储。
2、链式存储.一、线性结构:1、线性表:n(n〉=0)个相同属性的数据元素的有限序列。
12种基本操作.顺序表:9种基本操作算法实现.单链表:11种基本操作算法实现。
(重点:插入、删除)顺序表与单链表之时间性能、空间性能比较.循环链表:类型定义与单链表同。
算法实现只体现在循环终止的条件不同。
双向链表:重点插入、删除算法。
2、操作受限的线性表有:栈、队列。
栈:顺序栈;链栈(注意结点的指针域指向)。
(取栈顶元素、入栈、出栈)队列:循环队列(三个问题的提出及解决);链队列(注意头结点的作用).(取队头元素、入队、出队。
链队列中最后一个元素出队)3、数据元素受限的线性表有:串、数组、广义表。
串:定长顺序存储;堆分配存储.块链存储(操作不方便)数组:顺序存储。
特殊矩阵的压缩存储;稀疏矩阵(三元组表示、十字链表)广义表:长度、深度.取表头(可以是原子也可以是子表);取表尾(肯定是子表)。
链式存储。
二、树型结构:1、树:n(n>=0)个数据元素的有限集合.这些数据元素具有以下关系:……。
(另有递归定义。
)术语;存储(双亲表示、孩子表示、孩子双亲表示、孩子兄弟表示)。
2、二叉树:n(n〉=0)个数据元素的有限集合。
这些数据元素具有以下关系:……。
(另有递归定义)5个性质(理解、证明;拓展)。
遍历二叉树(定义、序列给出、递归算法、非递归算法);遍历二叉树应用:表达式之前序表达式、后序表达式、中序表达式转换。
线索二叉树(中序线索二叉树)。
树森林与二叉树的转换。
树与森林的遍历.赫夫曼树及其应用:定义、构造、赫夫曼编码。
三、图形结构:n(n〉=0)个数据元素的有限集合。
数据结构复习资料复习提纲知识要点归纳数据结构复习资料:复习提纲知识要点归纳一、数据结构概述1. 数据结构的定义和作用2. 常见的数据结构类型3. 数据结构与算法的关系二、线性结构1. 数组的概念及其特点2. 链表的概念及其分类3. 栈的定义和基本操作4. 队列的定义和基本操作三、树结构1. 树的基本概念及定义2. 二叉树的性质和遍历方式3. 平衡二叉树的概念及应用4. 堆的定义和基本操作四、图结构1. 图的基本概念及表示方法2. 图的遍历算法:深度优先搜索和广度优先搜索3. 最短路径算法及其应用4. 最小生成树算法及其应用五、查找与排序1. 查找算法的分类及其特点2. 顺序查找和二分查找算法3. 哈希查找算法及其应用4. 常见的排序算法:冒泡排序、插入排序、选择排序、归并排序、快速排序六、高级数据结构1. 图的高级算法:拓扑排序和关键路径2. 并查集的定义和操作3. 线段树的概念及其应用4. Trie树的概念及其应用七、应用案例1. 使用数据结构解决实际问题的案例介绍2. 如何选择适合的数据结构和算法八、复杂度分析1. 时间复杂度和空间复杂度的定义2. 如何进行复杂度分析3. 常见算法的复杂度比较九、常见问题及解决方法1. 数据结构相关的常见问题解答2. 如何优化算法的性能十、总结与展望1. 数据结构学习的重要性和难点2. 对未来数据结构的发展趋势的展望以上是数据结构复习资料的复习提纲知识要点归纳。
希望能够帮助你进行复习和回顾,加深对数据结构的理解和掌握。
在学习过程中,要注重理论与实践相结合,多进行编程练习和实际应用,提高数据结构的实际运用能力。
祝你复习顺利,取得好成绩!。
2010年复习提纲第一章数据、数据结构的概念;基本逻辑结构的种类;集合线性树形图状基本存储方式的种类;顺序链式散列索引算法、算法的时间复杂度以及其计算。
算法的五大特性:输入输出确定性有穷性有效性时间复杂度的计算:忽略常数与中间变量,循环套循环用乘法第二章线性表的概念;顺序存储和链接存储的线性表的数据结构、特性;顺序存储的特性:查找方便,不易扩充链接存储的特性:插入删除方便顺序存储和链接存储的线性表的基本算法:创建、插入、查找、删除等;链表的其他形式(带表头、循环、双向、双向循环等)的概念及基本算法(与一般链表的不同处)。
带表头:便于其后结点执行标准化操作循环:首尾相接双向:既可以查找前继又可以查找后继双向循环:结合以上两点链表逆转;第二章相关算法列举如下1.。
顺序线性表的插入Int sq_insert(int list[],int *p_n,int i,int x) { Int j;If(i<0||i>*p_n) return(1);If(*p_n==MAXSIZE) return(2);For(j=*p_n;j>I;j--)List[j]=list[j-1];List[i]=x;(*p_n)++;Return(0);} 2.顺序线性表的删除Int sq_delete(int list[],int *p_n,int i) {Int j;If(i<0||i>=*p_n) return(1);For(j=i+1;j<*p_n;j++)List[j-1]=list[j];(*p_n)--;Return(0);}3.链式线性表的创建NODE *create_link_list(int n){ int i;NODE *p,*q;NODE *p_head;if(n==0) return(NULL);p_head=new(NODE);p_head->data=-1;p=p_head;for(i=1;i<=n;i++){printf("请输入第%d个节点的值\n",i);q=new(NODE);scanf("%d",&(q->data));p->link=q;p=q;}q->link=NULL;return(p_head);/*返回的是假头*/ ※4.链式线性表的插入(i之后)Int insert(NODE* *p_head,int i,int a) { int n=0;NODE *p,*q,*r;p=*p_head;if(i<1) return(0);while((p!=NULL)&&(n<i)){If(p->data!=-1) n++;q=p;p=p->link;}r=new(NODE);r->data=a;r->link=q->link;q->link=r;}※5.链式线性表的删除int del(NODE* *p_head,int I) { NODE *p,*q;int n=0;p=*p_head;if(i<1) return(0);while((p!=NULL)&&(n<i)){If(p->data!=-1) n++;q=p;p=p->link;}if(p==NULL) return(0);q->link=p->link;delete(p);return(1);} 6.单链表的逆置NODE * reverse(NODE *head) {NODE *p,*q;P=head->next;Head->next=NULL;While(p){Q=p->next;p->next=head->next;head->next=p;p=q;}return(head);}7.试写一高效的算法,删除表中所有大于mink且小于maxk的元素Void Delete_between(int a[],int mink,int maxk){p=L;while(p->next->data<=mink) p=p->next;(本循环结束时p是最后一个不大于mink的元素)if(p->next)(如果还有比mink更大的元素){q=p->next;while(q->data<maxk) q=q->next;(本循环结束时q 是第一个不小于maxk 的元素)p->next=q;}}第三章栈与队列的概念;栈:只允许在一端进行插入和删除的线性表队列:只允许在一端进行插入,且只允许在另一端进行删除的线性表顺序栈和链栈的数据结构与基本算法;顺序队列(尤其是循环队列)和链队列的数据结构与基本算法;栈的应用算法;如何判断顺序栈的空与满、如何判断循环队列的空与满;判断顺序栈的空与满:若top的初始值是-1 则判空条件是if(top==-1) 判满条件是if(top==MAXN)若top的初始值是0 则判空条件是if(top==0) 判满条件是if(top==MAXN-1)判断循环队列的空与满{Head=0,tail=0;判断循环队列的空与满的条件都是if(head==tail)}中缀表达式与后缀表达式规则以及两者间的转换。
期末复习 第一章 绪论 复习1、计算机算法必须具备输入、输出、可行性、确定性、有穷性5个特性。
2、算法分析的两个主要方面是空间复杂度和时间复杂度。
3、数据元素是数据的基本单位。
4、数据项是数据的最小单位。
5、数据结构是带结构的数据元素的集合。
6、数据的存储结构包括顺序、链接、散列和索引四种基本类型。
基础知识数据结构算 法概 念逻辑结构 存储结构数据运算数据:计算机处理的信息总称 数据项:最小单位 数据元素:最基本单位数据对象:元素集合数据结构:相互之间存在一种或多种特定关系的数据元素集合。
概念:数据元素之间的关系 线性结构:一对一非线性结构 树:一对多 图:多对多顺序存储结构 链表存储结构 索引。
散列。
算法描述:指令的有限有序序列算法特性 有穷性 确定性 可行性 输入 输出 算法分析时间复杂度 空间复杂度第二章 线性表 复习1、在双链表中,每个结点有两个指针域,包括一个指向前驱结点的指针 、一个指向后继结点的指针2、线性表采用顺序存储,必须占用一片连续的存储单元3、线性表采用链式存储,便于进行插入和删除操作4、线性表采用顺序存储和链式存储优缺点比较。
5、简单算法第三章 栈和队列 复习线性表顺序存储结构链表存储结构概 念基本特点基本运算定义逻辑关系:前趋 后继节省空间 随机存取 插、删效率低 插入 删除单链表双向 链表 特点一个指针域+一个数据域 多占空间 查找费时 插、删效率高 无法查找前趋结点运算特点:单链表+前趋指针域运算插入删除循环 链表特点:单链表的尾结点指针指向附加头结点。
运算:联接1、 栈和队列的异同点。
2、 栈和队列的基本运算3、 出栈和出队4、 基本运算第四章 串 复习栈存储结构栈的概念:在一端操作的线性表 运算算法栈的特点:先进后出 LIFO初始化 进栈push 出栈pop队列顺序队列 循环队列队列概念:在两端操作的线性表 假溢出链队列队列特点:先进先出 FIFO基本运算顺序:链队:队空:front=rear队满:front=(rear+1)%MAXSIZE队空:frontrear ∧初始化 判空 进队 出队取队首元素第五章 数组和广义表 复习串存储结构运 算概 念顺序串链表串定义:由n(≥1)个字符组成的有限序列 S=”c 1c 2c 3 ……cn ”串长度、空白串、空串。
复习提纲:第一章:1.数据结构的基本概念;2.数据结构的4类基本结构及其特性;3.存储结构的分类及特点;4.算法的时间复杂度计算;第二章:1.线性表的基本概念;2.线性表的顺序存储结构的特点和插入删除算法;3.顺序存储结构的应用;4.单循环链表的存储结构特点,链表空的判断方法、插入、删除结点算法实现,报数游戏算法实现;5.双链表的存储特点,插入、删除结点算法实现。
第三章:1.栈的特点、对同一序列根据栈的特点进行不同入栈、出栈操作所得结果的判断;栈的实现的相关操作;2.顺序栈的4各要素和相关操作关键语句;链栈的4个要素和相关操作关键语句;3.了解队列的特点和可执行的基本操作,并能做相关判断;4.顺序循环队列的队空、队满判断条件,入队、出队操作的相关关键语句;5.顺序循环队列中对同一序列根据队列进行不同的入队、出队操作后队头和队尾指针的变化判断。
第四章:1.串的定义、串长的定义和计算、子串个数计算(注意区分:子串与非空且不同于S本身的子串);2.串的模式匹配(区分BF算法和KMP算法),掌握使用KMP算法计算next数组的值,并且要求掌握匹配过程(BF和KMP的匹配过程不同!)。
前三章程序重点掌握作业四、作业五、作业六、作业八、作业九第五章:1.特殊矩阵的压缩存储地址计算,稀疏矩阵的压缩存储结构图。
2.广义表的定义、区分原子和子表,求表头和表尾,深度和层次计算,存储结构图绘制;3.提供一广义表,写出通过head()和tail()操作求出某个原子的表达式。
4.注意:取表头时即广义表的第一个元素,外面不再加括号;而取表尾时,要将除表头元素外的其他元素一起用圆括号括起来,即将原广义表去掉表头;第六章:1.树的定义和相关基本术语;2.树的表示和各种存储结构的表示;3.二叉树的定义和结点形态;4.熟练使用二叉树的性质进行相关计算;5.掌握提供边集画树及树的存储结构图并将树转换为二叉树;6.根据后序遍历和中序遍历的序列画出二叉树直观图,并给出其先序遍历的序列,画出线索二叉树存储结构图;7.根据二叉树的顺序存储结构图,画出二叉树及二叉链存储结构图,并给出该二叉树转换后的森林。
数据结构复习提纲一、线性表线性表是最基本的数据结构之一,它是具有相同数据类型的 n 个数据元素的有限序列。
1、顺序表定义和特点:顺序表是用一组地址连续的存储单元依次存储线性表的数据元素。
存储结构:通常使用数组来实现。
基本操作:插入、删除、查找、遍历等。
时间复杂度分析:插入和删除操作在平均情况下的时间复杂度为O(n),查找和遍历操作的时间复杂度为 O(n)。
2、链表定义和特点:链表是通过指针将各个数据元素链接起来的一种存储结构。
单链表:每个节点包含数据域和指针域,指针域指向链表的下一个节点。
双链表:节点包含两个指针域,分别指向前驱节点和后继节点。
循环链表:尾节点的指针指向头节点,形成一个环形结构。
基本操作:插入、删除、查找等。
时间复杂度分析:插入和删除操作在平均情况下的时间复杂度为O(1),查找操作的时间复杂度为 O(n)。
二、栈和队列1、栈定义和特点:栈是一种限制在一端进行插入和删除操作的线性表,遵循“后进先出”的原则。
存储结构:顺序栈和链栈。
基本操作:入栈、出栈、栈顶元素获取等。
应用:表达式求值、括号匹配、函数调用等。
2、队列定义和特点:队列是一种在一端进行插入操作,在另一端进行删除操作的线性表,遵循“先进先出”的原则。
存储结构:顺序队列和链队列。
基本操作:入队、出队、队头元素获取等。
循环队列:解决顺序队列“假溢出”问题。
应用:层次遍历、消息队列等。
三、串1、串的定义和存储方式定长顺序存储堆分配存储块链存储2、串的基本操作串的赋值、连接、比较、求子串等。
3、模式匹配算法朴素的模式匹配算法KMP 算法:理解其原理和计算 next 数组的方法。
四、数组和广义表1、数组数组的定义和存储结构数组的地址计算特殊矩阵的压缩存储(如对称矩阵、三角矩阵、稀疏矩阵)2、广义表广义表的定义和表示广义表的递归算法1、树的基本概念定义、术语(如节点、度、叶子节点、分支节点、父节点、子节点、兄弟节点、层次等)树的性质2、二叉树定义和特点二叉树的性质完全二叉树和满二叉树3、二叉树的存储结构顺序存储链式存储4、二叉树的遍历先序遍历中序遍历后序遍历层序遍历5、二叉树的递归和非递归遍历算法实现线索化的目的和方法7、树、森林与二叉树的转换8、哈夫曼树定义和构造方法哈夫曼编码六、图1、图的基本概念定义、术语(如顶点、边、权、有向图、无向图、邻接矩阵、邻接表等)2、图的存储结构邻接矩阵邻接表十字链表邻接多重表3、图的遍历深度优先搜索(DFS)广度优先搜索(BFS)4、图的应用最小生成树(Prim 算法、Kruskal 算法)最短路径(Dijkstra 算法、Floyd 算法)拓扑排序关键路径七、查找1、查找的基本概念关键字、平均查找长度等2、顺序查找算法实现时间复杂度3、折半查找算法实现时间复杂度判定树4、分块查找5、二叉排序树定义和特点插入、删除操作查找算法6、平衡二叉树定义和调整方法7、 B 树和 B+树结构特点基本操作8、哈希表哈希函数的构造方法处理冲突的方法(开放定址法、链地址法等)八、排序1、排序的基本概念排序的稳定性2、插入排序直接插入排序折半插入排序希尔排序3、交换排序冒泡排序快速排序4、选择排序简单选择排序堆排序5、归并排序6、基数排序7、各种排序算法的时间复杂度、空间复杂度和稳定性比较。
数据结构复习提纲第一章绪论1.基本术语:数据,数据元素,数据对象,数据结构及其分类。
2.什么是算法?算法的特性。
3.时间复杂度及其简单计算。
第二章线性表1.线性表的定义,线性表的存储结构常有哪几种?各有何优缺点?2.顺序表的类型说明及其基本操作算法的实现3.链表结构的类型说明及其基本操作算法的实现。
表空条件,申请结点,插入,删除操作语句。
第三章栈和队列1.栈的定义及其特点。
队列的定义及其特点。
2.顺序栈的类型说明及其算法实现。
栈空,栈满条件,入栈出栈操作语句。
3.循环队列的类型说明及其算法实现。
队空,队满条件,入队出队操作,计算队列的长度语句。
第五章数组与广义表1.二维数组的两种存储方式及地址计算。
2.矩阵的压缩存储,对称矩阵,三角矩阵的地址计算。
3.什么是稀疏矩阵?稀疏矩阵的两种存储结构,算法的实现。
4.广义表的定义。
广义表的两种存储结构,广义表的表头,表尾计算第六章树和二叉树1.树的概念与定义。
2.二叉树。
满二叉树,完全二叉树的定义,二叉树的性质及其证明。
3.二叉树的存储结构及其类型说明。
4.二叉树的三种遍历及其递归算法实现。
5.树的三种存储结构。
6.树,森林与二叉树的转换。
7.哈夫曼树的定义。
哈夫曼树的构造及其哈夫曼编码。
第七章图1.图的定义及其术语。
2.图的存储结构。
邻接表,邻接矩阵。
3.图的深度,广度遍历及其应用4.最小生成树的两种构造算法。
5.什么是AOV网?拓扑排序的定义及其方法。
6.求关键路径的算法及其计算。
7.从源点到其余各顶点的最短路径的算法及其计算。
8.各对顶点的最短路径的算法及其计算。
第九章查找1.顺序表的查找算法及其算法实现ASL计算。
2.有序表的查找算法及其算法实现。
ASL计算3.二叉排序树的定义,特点,构造及其查找算法的实现ASL 计算。
4.B-树的定义,插入,删除,构造。
5.哈希函数,哈希冲突的定义。
构造哈希函数的方法,解决冲突的方法。
6.给出哈希函数,哈希冲突的解决方法,构造哈希表ASL计算。
复习提纲第一章数据结构概述基本概念与术语(P3)1.数据结构是一门研究非数值计算程序设计问题中计算机的操作对象以及他们之间的关系和操作的学科.2.数据是用来描述现实世界的数字,字符,图像,声音,以及能够输入到计算机中并能被计算机识别的符号的集合2.数据元素是数据的基本单位3.数据对象相同性质的数据元素的集合4.数据结构包括三方面内容:数据的逻辑结构.数据的存储结构.数据的操作. (1)数据的逻辑结构指数据元素之间固有的逻辑关系.(2)数据的存储结构指数据元素及其关系在计算机内的表示( 3 ) 数据的操作指在数据逻辑结构上定义的操作算法,如插入,删除等.5.时间复杂度分析--------------------------------------------------------------------------------------------------------------------1、名词解释:数据结构、二元组2、根据数据元素之间关系的不同,数据的逻辑结构可以分为集合、线性结构、树形结构和图状结构四种类型。
3、常见的数据存储结构一般有四种类型,它们分别是___顺序存储结构_____、___链式存储结构_____、___索引存储结构_____和___散列存储结构_____。
4、以下程序段的时间复杂度为___O(N2)_____。
int i,j,x;for(i=0;i<n:i++) n+1for(j=0;j<n;j++) n+1x+=i;------------------------------------------------------------------------------------------------------------------第二章线性表1.顺序表结构由n(n>=0)个具有相同性质的数据元素a1,a2,a3……,an组成的有穷序列//顺序表结构#define MAXSIZE 100typedef int DataType;Typedef struct{DataType items[MAXSIZE];Int length;}Sqlist,*LinkList;//初始化链表void InitList(LinkList *L){(*L)=(LinkList)malloc(sizeof(LNode));if(!L){cout<<”初始化失败!”;return;}(*L)->next=NULL;}//插入数据void InsertList(LinkList L,int pos,DataType x){LinkList p=L,q;int i=0;while(p&&i<pos-1){p=p->next;i++;}if(!p||i>pos-1){cout<<”插入位置错误”;return;}InitList(&q);q->next=p->next;p->next=q;q->data=x;}//销毁链表void DestoryList(LinkList L){LinkList t;while(L){t=L;L=L->next;free(t);}}//遍历链表void TraverseList(LinkList L){LinkList t=L;while(L){t=t->next;cout<<t->data<<” ”;}cout<<endl;}//删除元素void DeleteList(LinkList L,int pos){LinkList p=L,q;int i=0;while(p&&i<pos-1){p=p->next;i++;}if(!p||i>pos-1){cout<<”删除位置错误!!”;return;}q=p->next;p->next=q->next;free(q):}第三章栈和队列1.栈(1)栈的结构与定义(2)顺序栈操作算法:入栈、出栈、判断栈空等(3)链栈的结构与定义2.队列(1)队列的定义----------------------------------------------------------------------------------------------------------------1、一个栈的入栈序列为“ABCDE”,则以下不可能的出栈序列是()A. BCDAEB. EDACBC. BCADED. AEDCB2、栈的顺序表示仲,用TOP表示栈顶元素,那么栈空的条件是()A. TOP==STACKSIZEB. TOP==1C. TOP==0D. TOP==-13、允许在一端插入,在另一端删除的线性表称为____队列____。
一、数据结构的章节结构及重点构成数据结构学科的章节划分基本上为:概论,线性表,栈和队列,串,多维数组和广义表,树和二叉树,图,查找,内排,外排,文件,动态存储分配。
对于绝大多数的学校而言,“外排,文件,动态存储分配”三章基本上是不考的,在大多数高校的计算机本科教学过程中,这三章也是基本上不作讲授的。
所以,大家在这三章上可以不必花费过多的精力,只要知道基本的概念即可。
但是,对于报考名校特别是该校又有在试卷中对这三章进行过考核的历史,那么这部分朋友就要留意这三章了。
按照以上我们给出的章节以及对后三章的介绍,数据结构的章节比重大致为:概论:内容很少,概念简单,分数大多只有几分,有的学校甚至不考。
线性表:基础章节,必考内容之一。
考题多数为基本概念题,名校考题中,鲜有大型算法设计题。
如果有,也是与其它章节内容相结合。
栈和队列:基础章节,容易出基本概念题,必考内容之一。
而栈常与其它章节配合考查,也常与递归等概念相联系进行考查。
串:基础章节,概念较为简单。
专门针对于此章的大型算法设计题很少,较常见的是根据KMP进行算法分析。
多维数组及广义表:基础章节,基于数组的算法题也是常见的,分数比例波动较大,是出题的“可选单元”或“侯补单元”。
一般如果要出题,多数不会作为大题出。
数组常与“查找,排序”等章节结合来作为大题考查。
树和二叉树:重点难点章节,各校必考章节。
各校在此章出题的不同之处在于,是否在本章中出一到两道大的算法设计题。
通过对多所学校的试卷分析,绝大多数学校在本章都曾有过出大型算法设计题的历史。
图:重点难点章节,名校尤爱考。
如果作为重点来考,则多出现于分析与设计题型当中,可与树一章共同构成算法设计大题的题型设计。
查找:重点难点章节,概念较多,联系较为紧密,容易混淆。
出题时可以作为分析型题目给出,在基本概念型题目中也较为常见。
算法设计型题中可以数组结合来考查,也可以与树一章结合来考查。
排序:与查找一章类似,本章同属于重点难点章节,且概念更多,联系更为紧密,概念之间更容易混淆。
《数据结构》考试内容及要求:第一章绪论一、考核知识点数据结构,数据类型,抽象数据类型基本概念;算法基本概念;算法复杂度基本概念;常见基本算法的时间复杂度分析;时间复杂度的表示法;二、考核要求1、了解数据、数据结构、抽象数据类型以及算法等概念的确切含义;2、熟悉数据逻辑结构、存贮结构等概念;3、掌握算法复杂度分析的基本概念及分析方法;第二章线性表一、考核知识点线性表的定义、基本操作;顺序表、链表的存储表示以及基本操作(插入、删除、归并等)。
二、考核要求1、了解线性表的概念2、掌握顺序表上各种运算的实现方法3、掌握各种链表的存储结构及运算。
第三章栈和队列一、考核知识点栈和队列的结构特性、基本操作及在两种存储结构上基本操作的实现;栈和队列的应用、递归算法的设计。
二、考核要求1、了解栈与队列的概念2、掌握顺序栈、顺序队列,链栈、队列的各种运算的实现方法3、掌握栈与递归的概念。
第六章树和二叉树一、考核知识点树的基本概念;二叉树的定义、性质、存储表示;二叉树的遍历;线索二叉树;树的应用:哈夫曼树及哈夫曼编码。
二、考核要求1、了解树和二叉树的概念2、掌握二叉树遍历的方法及二叉树遍历的实现算法,线索化二叉树及其运算,哈夫曼树及哈夫曼编码等概念。
第七章图一、考核知识点图的基本概念、存储表示(邻接矩阵、邻接表、十字链表,邻接多重表)。
二、考核要求1、了解图的概念2、掌握图的存贮表示法;3、图的两种遍历方法;第九章查找一、考核知识点查找表是集合类型的数据结构,其操作借助静态查找表、动态查找表、哈希表实现;二、考核要求1、掌握查找的概念2、掌握线性表的查找(顺序查找,二分法查找,分块查找),树表的查找(二叉排序树),哈希表的概念及冲突处理。
第十章排序一、考核知识点内部排序介绍插入排序、快速排序(交换排序)、选择排序、归并排序;排序的基本思想和算法分析。
二、考核要求1、掌握排序的基本概念2、掌握插入排序(直接插入排序,shell排序),交换排序(起泡排序、快速排序),选择排序(直接选择排序、堆排序),归并排序等算法的实现3、掌握各种内排序算法的评价与比较方法。
数据结构复习大纲第一章绪论1. 数据结构的基本概念和术语1.1 数据、数据元素、数据项、数据结构等基本概念1.2 数据结构的逻辑结构、存储结构及数据运算的含义及其相互关系1.3 数据结构的两大逻辑结构和四种常用的存储表示方法2. 算法的描述和分析2.1 算法、算法的时间复杂度和空间复杂度、最坏的和平均的时间复杂度等概念2.2 算法描述和算法分析的方法,对于一般算法能分析出时间复杂度第二章线性表1. 线性表的逻辑结构1.1 线性表的逻辑结构特征2. 线性表的顺序存储结构2.1 顺序表的含义及特点,即顺序表如何反映线性表中元素之间的逻辑关系2.2 顺序表上的插入、删除操作及其平均时间性能分析3. 线性表的链式存储结构3.1 链表如何表示线性表中元素之间的逻辑关系3.2 链表中头指针和头结点的使用3.3 单链表、双(向)链表、循环链表链接方式上的区别3.4 单链表上实现的建表、查找、插入和删除4. 顺序表和链表的比较4.1 顺序表和链表的主要优缺点4.2 针对线性表上所需要执行的主要操作,知道选择顺序表还是链表作为其存储结构才能取得较优的时空性能第三章栈和队列1.栈的逻辑结构、存储结构及其相关算法1.1 栈的逻辑结构特点,栈与线性表的异同1.2 顺序栈和链栈上实现的进栈、退栈等基本算法1.3 栈的“上溢”和“下溢”的概念及其判别条件2. 队列的逻辑结构、存储结构及其相关算法2.1 队列的逻辑结构特点,队列与线性表的异同2.2 顺序队列(主要是循环队列)和链队列上实现的入队、出队等基本算法2.3 队列的“上溢”和“下溢”的概念及其判别条件2.4 使用数组实现的循环队列取代普通的顺序队列的原因2.5 循环队列中对边界条件的处理方法3. 栈和队列的应用3.1 栈和队列的特点,什么样的情况下能够使用栈或队列3.2 表达式求值的算法思想,及栈变化情况。
第四章串、数组和广义表1.串1.1 串的有关概念及基本运算1.2 串与线性表的关系2.多维数组2.1 多维数组的逻辑结构特征2.2 多维数组的顺序存储结构及地址计算方式2.3 数组是一种随机存取结构的原因2.4 矩阵的压缩存储(对称矩阵、三角矩阵、稀疏矩阵)的表示方式和对应的地址计算方式。
复习提纲第一章数据结构概述基本概念与术语(P3)1.数据结构是一门研究非数值计算程序设计问题中计算机的操作对象以及他们之间的关系和操作的学科.2.数据是用来描述现实世界的数字,字符,图像,声音,以及能够输入到计算机中并能被计算机识别的符号的集合2.数据元素是数据的基本单位3.数据对象相同性质的数据元素的集合4.数据结构包括三方面内容:数据的逻辑结构.数据的存储结构.数据的操作. (1)数据的逻辑结构指数据元素之间固有的逻辑关系.(2)数据的存储结构指数据元素及其关系在计算机内的表示( 3 ) 数据的操作指在数据逻辑结构上定义的操作算法,如插入,删除等.5.时间复杂度分析--------------------------------------------------------------------------------------------------------------------1、名词解释:数据结构、二元组2、根据数据元素之间关系的不同,数据的逻辑结构可以分为集合、线性结构、树形结构和图状结构四种类型。
3、常见的数据存储结构一般有四种类型,它们分别是___顺序存储结构_____、___链式存储结构_____、___索引存储结构_____和___散列存储结构_____。
4、以下程序段的时间复杂度为___O(N2)_____。
int i,j,x;for(i=0;i<n:i++) n+1for(j=0;j<n;j++) n+1x+=i;------------------------------------------------------------------------------------------------------------------第二章线性表1.顺序表结构由n(n>=0)个具有相同性质的数据元素a1,a2,a3……,an组成的有穷序列//顺序表结构#define MAXSIZE 100typedef int DataType;Typedef struct{DataType items[MAXSIZE];Int length;}Sqlist,*LinkList;//初始化链表void InitList(LinkList *L){(*L)=(LinkList)malloc(sizeof(LNode));if(!L){cout<<”初始化失败!”;return;}(*L)->next=NULL;}//插入数据void InsertList(LinkList L,int pos,DataType x){LinkList p=L,q;int i=0;while(p&&i<pos-1){p=p->next;i++;}if(!p||i>pos-1){cout<<”插入位置错误”;return;}InitList(&q);q->next=p->next;p->next=q;q->data=x;}//销毁链表void DestoryList(LinkList L){LinkList t;while(L){t=L;L=L->next;free(t);}}//遍历链表void TraverseList(LinkList L){LinkList t=L;while(L){t=t->next;cout<<t->data<<” ”;}cout<<endl;}//删除元素void DeleteList(LinkList L,int pos){LinkList p=L,q;int i=0;while(p&&i<pos-1){p=p->next;i++;}if(!p||i>pos-1){cout<<”删除位置错误!!”;return;}q=p->next;p->next=q->next;free(q):}第三章栈和队列1.栈(1)栈的结构与定义(2)顺序栈操作算法:入栈、出栈、判断栈空等(3)链栈的结构与定义2.队列(1)队列的定义----------------------------------------------------------------------------------------------------------------1、一个栈的入栈序列为“ABCDE”,则以下不可能的出栈序列是()A. BCDAEB. EDACBC. BCADED. AEDCB2、栈的顺序表示仲,用TOP表示栈顶元素,那么栈空的条件是()A. TOP==STACKSIZEB. TOP==1C. TOP==0D. TOP==-13、允许在一端插入,在另一端删除的线性表称为____队列____。
数据结构学习复习提纲
一、算法
1、定义算法:算法是一个有效的求解一些问题的一系列指令的集合,它是由一些可以执行的操作组成的一个有序序列,只要按正确的顺序进行
安排,就能解决问题。
2、算法分类:根据执行方式,算法可分为顺序算法、选择算法、分
支算法、循环算法等;根据具体操作,算法可分为检索算法、排序算法、
图算法、数论算法、动态规划等。
3、算法时间复杂度:时间复杂度指的是算法的执行效率,即算法在
给定的输入量时所需的时间。
算法时间复杂度可以用大O表示法来描述,
其常见分为O(1)、O(logN)、O(N)、O(NlogN)和O(N^2)等。
二、数据结构
1、定义数据结构:数据结构是指把数据元素相互关联,组织在一起
形成一个整体,它是一个计算机中存储、组织数据的方法。
2、数据结构分类:根据数据间关系,数据结构可分为线性结构和非
线性结构;根据存储模式,数据结构可分为顺序存储结构和链式存储结构;根据逻辑结构,数据结构可分为简单结构、树形结构、图形结构等。
3、数据结构实现:数据结构的实现一般采用顺序表和链表两种形式。
第一章数据结构概述基本概念与术语1.数据:数据是用来描述现实世界的文字,字符,图像,声音,以及能够输入到计算机中并能被计算机处理的符号。
2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。
数据项是数据的不可分割的最小单位。
)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
(有时候也叫做属性。
)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:a.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。
b.线性结构:结构中的数据元素之间存在“一对一“的关系。
若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。
c.树形结构:结构中的数据元素之间存在“一对多“的关系。
若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。
d.图状结构:结构中的数据元素存在“多对多”的关系。
若结构为非空集,折每个数据可有多个(或零个)直接后继。
(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。
想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。
逻辑结构可以映射为以下两种存储结构:a.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。
b.链式存储结构:借助指针表达数据元素之间的逻辑关系。
不要求逻辑上相邻的数据元素物理位置上也相邻。
5.时间复杂度分析:a.常量阶:算法的时间复杂度与问题规模n无关系T(n)=O(1)b.线性阶:算法的时间复杂度与问题规模n成线性关系T(n)=O(n)c.平方阶和立方阶:一般为循环的嵌套,循环体最后条件为i++时间复杂度的大小比较:O(1)< O(log 2 n)< O(n )< O(n log 2 n)< O(n2)< O(n3)< O(2 n )<O(n!)<O(n n)6.算法与程序:(1)算法的5个特性a、输入:有零个或多个输入b、输出:有一个或多个输出c、有穷性:要求序列中的指令是有限的;每条指令的执行包含有限的工作量;整个指令序列的执行在有限的时间内结束。
数据结构与算法复习提纲一、引言
- 数据结构与算法的重要性
- 复习的目的与意义
二、基本概念回顾
A. 数据结构回顾
1. 线性结构
2. 非线性结构
B. 算法回顾
1. 算法的定义与特性
2. 算法复杂度分析
a. 时间复杂度
b. 空间复杂度
三、线性结构复习
A. 数组
1. 定义与特点
2. 基本操作
3. 数组与链表的区别与应用场景
B. 链表
1. 定义与分类
2. 基本操作
3. 单链表与双链表的比较
C. 栈与队列
1. 定义与特点
2. 基本操作与应用场景
3. 栈与队列的联系与区别
四、非线性结构复习
A. 树
1. 二叉树与二叉搜索树
2. 平衡二叉树与红黑树
3. 堆与二叉堆
B. 图
1. 图的定义与分类
2. 图的表示方法
3. 图的遍历算法
五、常见算法复习
A. 搜索算法
1. 广度优先搜索算法(BFS)
2. 深度优先搜索算法(DFS)
B. 排序算法
1. 冒泡排序
2. 插入排序
3. 快速排序
C. 查找算法
1. 顺序查找
2. 二分查找
六、应用场景与综合题目
A. 常见应用场景下的数据结构选择
1. 栈与递归
2. 队列与广度优先搜索
3. 常用数据结构选择总结
B. 综合题目解析与思考
七、总结与复习建议
A. 复习要点总结
B. 复习策略与建议
结语
- 数据结构与算法的重要性再强调
- 希望本复习提纲对您的复习有所帮助。
祝您顺利掌握数据结构与算法知识。
复习提纲:
第一章:
1.数据结构的基本概念;
2.数据结构的4类基本结构及其特性;
3.存储结构的分类及特点;
4.算法的时间复杂度计算;
第二章:
1.线性表的基本概念;
2.线性表的顺序存储结构的特点和插入删除算法;
3.顺序存储结构的应用;
4.单循环链表的存储结构特点,链表空的判断方法、插入、删除结点算法实现,报数游戏算法实现;5.循环双链表的存储特点,插入、删除结点算法实现。
第三章:
1.栈的特点、对同一序列根据栈的特点进行不同入栈、出栈操作所得结果的判断;栈的实现的相关操作;2.顺序栈的4各要素和相关操作关键语句;链栈的4个要素和相关操作关键语句;
3.了解队列的特点和可执行的基本操作,并能做相关判断;
4.顺序循环队列的队空、队满判断条件,入队、出队操作的相关关键语句;
5.顺序循环队列中对同一序列根据队列进行不同的入队、出队操作后队头和队尾指针的变化判断。
第四章:
1.串的定义、串长的定义和计算、子串个数计算(注意区分:子串与非空且不同于S本身的子串);
2.串的模式匹配(区分BF算法和KMP算法),掌握使用KMP算法计算next数组的值,并且要求掌握匹配过程(BF和KMP的匹配过程不同!)。
前三章程序重点掌握作业四、作业五、作业六、作业八、作业九
第五章:
1.特殊矩阵的压缩存储地址计算,稀疏矩阵的压缩存储结构图。
2.广义表的定义、区分原子和子表,求表头和表尾,深度和层次计算,存储结构图绘制;
3.提供一广义表,写出通过head()和tail()操作求出某个原子的表达式。
4.注意:取表头时即广义表的第一个元素,外面不再加括号;而取表尾时,要将除表头元素外的其他元素一起用圆括号括起来,即将原广义表去掉表头;
第七章:
1.树的定义和相关基本术语;
2.树的表示和各种存储结构的表示;
3.二叉树的定义和结点形态;
4.熟练使用二叉树的性质进行相关计算;
5.掌握提供边集画树及树的存储结构图并将树转换为二叉树;
6.根据后序遍历和中序遍历的序列画出二叉树直观图,并给出其先序遍历的序列,画出线索二叉树存储结构图;
7.根据二叉树的顺序存储结构图,画出二叉树及二叉链存储结构图,并给出该二叉树转换后的森林。
8.根据先序和中序遍历序列画出二叉树,给出后序遍历序列,并将该二叉树转换为森林;
9.提供发送的电文,分析电文中相关字符的频度,根据频度画出相关的haffman树,并给出hafmman编码和WPL;
第八章:
1.熟悉图的基本概念和相关术语,有向图和无向图的边数和结点数的关系,无向图的连通量和有向图的强连通分量的求解;
2.图的所有存储结构:邻接表和逆邻接表;
3.熟悉图的遍历(广度和深度)
4.使用普里姆Prim算法和克鲁斯卡尔(Krusual)算法求图的最小生成树
5.有向带权图的遍历和求AOE网的关键路径和关键活动;
第九章:
1.顺序查找的方法和特点及查找过程;
2.熟悉二分查找(折半查找)的基本要求、查找思想、查找过程及判断树的构建;
3.二叉排序树的定义、熟悉二叉排序树的构建与结点的插入和删除;
4.提供一序列,根据哈希表长和哈希函数进行散列,并用线性探测再散列或根据提供的再散列函数解决冲突并画出哈希表。
5.了解平衡二叉树,并能够进行平衡二叉树的判定。