2019-2020苏州星海学校中考数学模拟试卷(含答案)
- 格式:doc
- 大小:640.00 KB
- 文档页数:19
2020年江苏省苏州市星海实验中学中考数学模拟试卷(3月份)一、选择题(每题3分,共30分)1.(3分)12-的倒数是( ) A .12 B .2 C .12- D .2-2.(3分)计算2(2)--的结果是( )A .2B .2-C .4-D .43.(3分)2018年苏州市GDP (国内生产总值)约为1860 000 000 000元.该数据可用科学记数法表示为( )A .9186010⨯B .1018610⨯C .1118.610⨯D .121.8610⨯4.(3分)数据5,2,4,5,6的中位数是( )A .2B .4C .5D .6 5.(3分)若2233x y -=,则2312x y -+的值是( ) A .2- B .12- C .32 D .46.(3分)对于二次函数2144y x x =-+-,下列说法正确的是( ) A .当0x >时,y 随x 的增大而增大B .当2x =时,y 有最大值3-C .图象的顶点坐标为(2,7)--D .图象与x 轴有两个交点 7.(3分)如图,D 是ABC ∆的边AB 的延长线上一点,//DE BC ,若32A ∠=︒,56D ∠=︒.则C ∠的度数是( )A .16︒B .20︒C .24︒D .28︒8.(3分)如图,在ABC ∆中,DE 是AC 的垂直平分线,分别交BC ,AC 于点D ,E ,连接AD ,若ABD ∆的周长16ABD C cm ∆=,5AB cm =,则线段BC 的长度等于( )A .8cmB .9 cmC .10 cmD .11 cm9.(3分)如图,菱形ABCD 的对角线AC ,BD 交于点O ,4AC =,16BD =,将ABO ∆沿点A 到点C 的方向平移,得到△A B O '''.当点A '与点C 重合时,点A 与点B '之间的距离为( )A .6B .8C .10D .1210.(3分)如图,正方形ABCD 的边长为1,点P 为BC 上任意一点(可与点B 或C 重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B '、C '、D ',则BB CC DD '+'+'的最小值是( )A .1B 2C 3D 5二、填空题(每题3分,共24分)11.(3分)因式分解:228x -= .12.(3分)函数23x y -x 的取值范围是 . 13.(3分)已知关于x 的一元二次方程2220ax x a a ++-=的一个根是0x =,则系数a = .14.(3分)如图所示,直线y kx b =+经过点(2,0)-,则关于x 的不等式0kx b +<的解集为 .15.(3分)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为 .16.(3分)如图,扇形OAB 中,90AOB ∠=︒.P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D .若2PD =,1CD =,则该扇形的半径长为 .17.(3分)如图,已知抛物线24y ax bx =++与x 轴、y 轴正半轴分别交于点A 、B 、D ,且点B 的坐标为(4,0),点C 在抛物线上,且与点D 的纵坐标相等,点E 在x 轴上,且BE AB =,连接CE ,取CE 的中点F ,则BF 的长为 .18.(3分)如图,在矩形ABCD 中,5AB =,3BC =,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连结CE ,CF ,若CEF α∠=,则tan α= .三、解答题(共76分)19.(5分)计算:0(31)|2|8---+20.(5分)解不等式组523(1)21162x xxx+-⎧⎪-⎨->⎪⎩…,并写出该不等式组的所有整数解.21.(6分)先化简再求值:22231()2111a a a aa a a a+-÷-++--,其中31a=+.22.(6分)2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米与小时?23.(8分)如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.(1)求证:AE CF=;(2)若AE BC=,试探究线段OC与线段DF之间的关系,并说明理由.24.(8分)某学校为了了解九年级学生“一分钟跳绳”体育测试项目情况,随机抽取了九年级部分学生组成测试小组进行调查测试,并对这部分学生“一分钟跳绳”测试的成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图。
2019-2020学年星海中学第一学期初三9月练习卷数学试卷(解析版)一、选择题(每题3分,共30分)1.下面的几何图形中,是轴对称图形但不是中心对称图形的是( ) A.等边三角形 B.圆 C.平行四边形 D.正六边形 【考点】轴对称图形,中心对称图形 【参考答案】A解:A. 等边三角形是轴对称图形,不是中心对称图形,符合题意; B. 圆既是轴对称图形,也是中心对称图形,不合题意;C. 平行四边形不是轴对称图形,是中心对称图形,不合题意;D. 正六边形既是轴对称图形,也是中心对称图形,不合题意。
2.下列事件是必然事件的是( )A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话D.三角形内角和等于180° 【考点】随机事件 【参考答案】D解:A. 乘坐公共汽车恰好有空座,是随机事件; B. 同位角相等,是随机事件;C. 打开手机就有未接电话,是随机事件;D. 三角形内角和等于180∘,是必然事件。
3.若y x ,的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A.y x x -+2B.22x yC.2332x yD.()222y x y - 【考点】分式的基本性质【参考答案】DA.51B.10C.20D.2x 【考点】最简二次根式 【参考答案】B 解:x x ===252205551,,不是最简二次根式D C A ..∴5.根据下列条件,一定可以判定四边形为菱形的是()A. 对角线互相平分B. 对角线互相垂直C. 对角线互相垂直平分D. 对角线互相平分且相等 【考点】菱形的判定 【参考答案】C解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形; ②四边相等;③对角线互相垂直平分的四边形是菱形。
只有C 能判定为是菱形6. 若关于x 的分式方程22142---=-xxx m 的解是正数,则实数m 的取值范围是( )A. 6<mB.2,10-≠<m m 且C.10<mD.2,6≠<m m 且 【考点】分式方程的解 【参考答案】D解:去分母得:()()42212---=x x m 解得:23m x -= 由分式方程的根是正数,得到023>-m ,且223≠-m7.如图,在正方形网格中,线段''B A 是线段AB 绕某点逆时针旋转角α得到的,点'A 与A 对应,则角α的大小为( )A. 30∘B. 60∘C. 90∘D. 120∘ 【考点】旋转的性质 【参考答案】C 如图:显然,旋转角为90∘8.已知反比例函数y=,当1<x<2时,y的最小整数值是( )A.5B.6C.8D.10 【考点】利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.本题主要考查反比例函数的性质,当时,在每一个象限内,y随x的增大而减小;当时,在每一个象限,y随x的增大而增大.【参考答案】B解:答案解析当x=1时,y==10;当x=2时,y==5,∴当1<x<2时,y的取值范围是5<y<10,y的最小整数值是6,故选B..9.某同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立米长的标杆测得其影长为米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为米和米,则学校旗杆的高度为()米。
2019-2020苏州市数学中考第一次模拟试题附答案一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.下列命题正确的是( )A .有一个角是直角的平行四边形是矩形B .四条边相等的四边形是矩形C .有一组邻边相等的平行四边形是矩形D .对角线相等的四边形是矩形 3.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( ) A .4B .3C .2D .1 4.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( ) A .2 B .3C .5D .7 5.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k > C .514k k ≠<且 D .514k k ≤≠且 6.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <7.如图,是由四个相同的小正方体组成的立体图形,它的左视图是( )A .B .C .D .8.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0) B .(0,2) C .(1,3) D .(3,﹣1)9.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x =<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-10.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55ab > D .-3a >-3b11.下列各式化简后的结果为32 的是( )A .6B .12C .18D .3612.8×200=x+40解得:x=120答:商品进价为120元.故选:B .【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.二、填空题13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是 .14.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.15.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________16.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x的图象上,则k 的值为________.17.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.18.若ab=2,则222a ba ab--的值为________.19.已知M、N两点关于y轴对称,且点M在双曲线12yx=上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A 型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?22.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?23.小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数)(参考数据:o o o o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈) 24.解方程:3x x +﹣1x=1. 25.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D 错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.3.A解析:A【解析】分析:先根据平均数的定义确定出x 的值,再根据方差公式进行计算即可求出答案. 详解:根据题意,得:67955x ++++=2x 解得:x=3,则这组数据为6、7、3、9、5,其平均数是6, 所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 故选A .点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数. 4.C解析:C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,5,7,7,中位数为:5.故选C .考点:众数;中位数.5.D解析:D【解析】【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D .此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键6.A解析:A【解析】【分析】 根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】 解:a b =Q ,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=,故选项A 错误,故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.A解析:A【解析】【分析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A .8.A解析:A【解析】【分析】把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案.【详解】把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2,解得k =1,∴y =x ﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y =x ﹣2中,只有(2,0)满足条件.故选A .本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.9.C解析:C【解析】【分析】【详解】∵A (﹣3,4),∴,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 10.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 11.C解析:C【解析】A 不能化简;BC ,故正确;D ,故错误;故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.12.无二、填空题13.【解析】【分析】连接BD 交AC 于点O 由勾股定理可得BO=3根据菱形的性质求出BD 再计算面积【详解】连接BD 交AC 于点O 根据菱形的性质可得AC ⊥BDAO=CO=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD ,交AC 于点O ,由勾股定理可得BO=3,根据菱形的性质求出BD ,再计算面积.【详解】连接BD ,交AC 于点O ,根据菱形的性质可得AC ⊥BD ,AO=CO=4,由勾股定理可得BO=3,所以BD=6, 即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.14.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.15.<a<-2【解析】【分析】【详解】解:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a >−设f(x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.16.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C 关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC是菱形,所以对角线互相垂直平分,则点A和点C关于y轴对称,点C在反比例函数上,设点C的坐标为(x,kx),则点A的坐标为(-x,kx),点B的坐标为(0,2kx),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 17.-3【解析】分析:由平行四边形面积转化为矩形BDOA 面积在得到矩形PDOE 面积应用反比例函数比例系数k 的意义即可详解:过点P 做PE⊥y 轴于点E∵四边形ABCD 为平行四边形∴AB=CD 又∵BD⊥x 轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA 面积,在得到矩形PDOE 面积,应用反比例函数比例系数k 的意义即可.详解:过点P 做PE ⊥y 轴于点E ,∵四边形ABCD 为平行四边形∴AB=CD又∵BD ⊥x 轴∴ABDO 为矩形∴AB=DO∴S 矩形ABDO =S ▱ABCD =6∵P 为对角线交点,PE ⊥y 轴∴四边形PDOE 为矩形面积为3即DO•EO=3∴设P 点坐标为(x ,y )k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k 的几何意义以及平行四边形的性质.18.【解析】分析:先根据题意得出a=2b 再由分式的基本性质把原式进行化简把a=2b 代入进行计算即可详解:∵=2∴a=2b 原式==当a=2b 时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:32【解析】分析:先根据题意得出a =2b ,再由分式的基本性质把原式进行化简,把a =2b 代入进行计算即可. 详解:∵a b=2,∴a =2b , 原式=()()()a b a b a a b +-- =a b a+ 当a =2b 时,原式=22b b b +=32. 故答案为32. 点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.19.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x∴顶点坐标为解析:( ,112). 【解析】【详解】∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②,∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=∴y=-12x 2,∴顶点坐标为(2b a -=244ac b a -=112),即(112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形 解析:43【解析】【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD,E F Q 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =Q8BD ∴=又Q 8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC =86=43. 故答案为:43.三、解答题21.(1)每台A 型机器每小时加工8个零件,每台B 型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A 型机器安排6台,B 型机器安排4台;方案二:A 型机器安排7台,B 型机器安排3台;方案三:A 型机器安排8台,B 型机器安排2台.【解析】【分析】(1)设每台B 型机器每小时加工x 个零件,则每台A 型机器每小时加工(x+2)个零件,根据工作时间=工作总量÷工作效率结合一台A 型机器加工80个零件与一台B 型机器加工60个零件所用时间相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设A 型机器安排m 台,则B 型机器安排(10m)-台,根据每小时加工零件的总量8A =⨯型机器的数量6B +⨯型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,再结合m 为正整数即可得出各安排方案.【详解】(1)设每台B 型机器每小时加工x 个零件,则每台A 型机器每小时加工(x+2)个零件, 依题意,得:8060x 2x=+, 解得:x=6,经检验,x=6是原方程的解,且符合题意,x28∴+=.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)设A型机器安排m台,则B型机器安排(10m)-台,依题意,得:()() 861072 861076mm mπ⎧+-⎪⎨+-⎪⎩…„,解得:6m8剟,mQ为正整数,m678∴=、、,答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.(1)y=26(2040)24(40)x xx x⎧⎨>⎩剟;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.【解析】【分析】【详解】(1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式y=26(2040) 24(40)x xx x⎧⎨>⎩剟;(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.由题意得:4089%(75)95%93%75 xx x>⎧⎨⨯-+⨯⎩…解得x≥50.由题意得w=8(75﹣x)+24x=16x+600.∵16>0,∴w的值随x的增大而增大.∴当x=50时,75﹣x=25,W最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.23.43米【解析】【分析】【详解】解:设CD = x.在Rt△ACD中,tan37AD CD︒=,则34ADx =,∴34 AD x=.在Rt△BCD中,tan48° =BD CD,则1110BDx=,∴1110 BD x=∵AD+BD = AB,∴31180 410x x+=.解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.24.分式方程的解为x=﹣34.【解析】【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【详解】两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣34,检验:当x=﹣34时,x(x+3)=﹣2716≠0,所以分式方程的解为x=﹣34.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键. 25.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。
2019-2020苏州星湾学校中考数学一模试题(含答案)一、选择题1.二次函数y =x 2﹣6x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,则m 的值为( )A .27B .9C .﹣7D .﹣162.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x 表示时间,y 表示林茂离家的距离.依据图中的信息,下列说法错误的是( )A .体育场离林茂家2.5kmB .体育场离文具店1kmC .林茂从体育场出发到文具店的平均速度是50min mD .林茂从文具店回家的平均速度是60min m3.函数3x y +=中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠4.已知二次函数y =ax 2+bx +c ,且a>b>c ,a +b +c =0,有以下四个命题,则一定正确命题的序号是( )①x=1是二次方程ax 2+bx +c=0的一个实数根;②二次函数y =ax 2+bx +c 的开口向下;③二次函数y =ax 2+bx +c 的对称轴在y 轴的左侧;④不等式4a+2b+c>0一定成立.A .①②B .①③C .①④D .③④ 5.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是()A .54k ≤B .54k > C .514k k ≠<且 D .514k k ≤≠且 6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内»OB上一点,∠BMO=120°,则⊙C 的半径长为( )A .6B .5C .3D .32 8.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .119.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A .102oB .112oC .122oD .92o10.下列二次根式中,与3是同类二次根式的是( )A .18B .13 C 24D 0.311.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间 12.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A.13 B.5 C .22 D .4二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x =>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.15.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是x= . 16.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x =在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.17.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L 的影长BC 为5米,落在斜坡上的部分影长CD 为4米.测得斜CD 的坡度i =1:.太阳光线与斜坡的夹角∠ADC =80°,则旗杆AB 的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)18.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.19.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
江苏省苏州市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg mB .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内2.如图,是反比例函数4y (x 0)x=>图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内(不包括边界)的整数点个数是k ,则抛物线2y (x 2)2=---向上平移k 个单位后形成的图象是()A .B .C .D .3.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q4.已知二次函数 2y ax bx c =++图象上部分点的坐标对应值列表如下: x… -3 -2 -1 0 1 2 … y…2-1-2-127…则该函数图象的对称轴是( ) A .x=-3B .x=-2C .x=-1D .x=05.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .1003100x y x y +=⎧⎨+=⎩C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩ 6.按如下方法,将△ABC 的三边缩小的原来的12,如图,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF ,则下列说法正确的个数是( ) ①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形③△ABC 与△DEF 的周长比为1:2 ④△ABC 与△DEF 的面积比为4:1.A .1B .2C .3D .47.在实数225,,0,36,-1.41472π,,有理数有( ) A .1个B .2个C .3个D .4个8.如图,已知在Rt △ABC 中,∠ABC=90°,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A=∠EBA ;③EB 平分∠AED ;④ED=12AB 中,一定正确的是( )A .①②③B .①②④C .①③④D .②③④9.已知抛物线y =x 2+bx+c 的部分图象如图所示,若y <0,则x 的取值范围是( )A .﹣1<x <4B .﹣1<x <3C .x <﹣1或x >4D .x <﹣1或x >310.二次函数y=ax 2+bx ﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a ﹣b ﹣2,则t 值的变化范围是( ) A .﹣2<t <0B .﹣3<t <0C .﹣4<t <﹣2D .﹣4<t <011.若3x >﹣3y ,则下列不等式中一定成立的是 ( ) A .0x y +>B .0x y ->C .0x y +<D .0x y -<12.若M (2,2)和N (b ,﹣1﹣n 2)是反比例函数y=kx的图象上的两个点,则一次函数y=kx+b 的图象经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将直线y =x 向下平移b 个单位长度后得到直线l ,l 与反比例函数y =5x(x >0)的图象相交于点A ,与x 轴相交于点B ,则OA 2﹣OB 2的值为_____.14.已知抛物线23y x mx =--与直线25y x m =-在22x -<„之间有且只有一个公共点,则m 的取值范围是__.15.如图,在矩形ABCD 中,AB=4,AD=2,以点A 为圆心,AB 长为半径画圆弧交边DC 于点E ,则»BE的长度为______.16.计算:2(a -b )+3b =___________. 17.抛物线 221y x =-的顶点坐标是________.18.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。
江苏省苏州市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.方程x 2﹣4x+5=0根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根2.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法错误的是( )A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等3.若分式有意义,则x 的取值范围是( ) A .x >3 B .x <3 C .x≠3 D .x=34.已知正比例函数(0)y kx k =≠的图象经过点(1,3)-,则此正比例函数的关系式为( ). A .3y x =- B .3y x = C .13y x = D .13y x =- 5.如图1,在△ABC 中,D 、E 分别是AB 、AC 的中点,将△ADE 沿线段DE 向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是( )A .点A 落在BC 边的中点B .∠B+∠1+∠C=180°C .△DBA 是等腰三角形D .DE ∥BC 6.计算(﹣ab 2)3的结果是( )A .﹣3ab 2B .a 3b 6C .﹣a 3b 5D .﹣a 3b 67.如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO为α,则树OA的高度为( )A.30tanα米B.30sinα米C.30tanα米D.30cosα米8.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=1x﹣2实数根的情况是()A.有三个实数根B.有两个实数根C.有一个实数根D.无实数根9.一元二次方程4x2﹣2x+14=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断10.若不等式组的整数解共有三个,则a的取值范围是()A.5<a<6 B.5<a≤6C.5≤a<6 D.5≤a≤611.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是()A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %12.一元二次方程210x x--=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.14.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD 高度是4m ,从侧面C 点测得警示牌顶端点A 和底端B 点的仰角(∠ACD 和∠BCD )分别是60°,45°.那么路况警示牌AB 的高度为_____.15.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为__________2cm .16.计算32)3-_____17.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律.已知21i =-,那么(1)(1)i i +⋅-=________. 18.飞机着陆后滑行的距离S (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是s =60t ﹣1.2t 2,那么飞机着陆后滑行_____秒停下.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x 的方程(a ﹣1)x 2+2x+a ﹣1=1.若该方程有一根为2,求a 的值及方程的另一根;当a 为何值时,方程的根仅有唯一的值?求出此时a 的值及方程的根.20.(6分)如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.21.(6分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O 的切线交于点D.若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.22.(8分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).(1)如图2,ω=45°,矩形OAB C中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=l.①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=3,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.23.(8分)(1)计算:﹣14+12sin61°+(12)﹣2﹣(π﹣5)1.(2)解不等式组3(1)72513x xxx--≤⎧⎪⎨--⎪⎩p①②,并把它的解集在数轴上表示出来.24.(10分)在等边△ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求∠BEC的度数;(2)如图2,当∠MAC=30°时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0°<∠MAC<120°,当线段DE=2BE时,直接写出∠MAC的度数.25.(10分)如图,直线y=2x+6与反比例函数y=kx(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?26.(12分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.(1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;(2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为,AD的长为.27.(12分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD 沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】【详解】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.2.C【解析】【分析】图中,线段GH和EF将大平行四边形ABCD分割成了四个小平行四边形,平行四边形的对角线平分该平行四边形的面积,据此进行解答即可.【详解】解:由已知得题图中几个四边形均是平行四边形.又因为平行四边形的一条对角线将平行四边形分成两个全等的三角形,即面积相等,故红花和绿花种植面积一样大,蓝花和黄花种植面积一样大,紫花和橙花种植面积一样大.故选择C.【点睛】本题考查了平行四边形的定义以及性质,知道对角线平分平行四边形是解题关键.3.C【解析】【详解】试题分析:∵分式13x有意义,∴x﹣3≠0,∴x≠3;故选C.考点:分式有意义的条件.4.A【解析】【分析】根据待定系数法即可求得.【详解】解:∵正比例函数y=kx的图象经过点(1,﹣3),∴﹣3=k,即k=﹣3,∴该正比例函数的解析式为:y=﹣3x.故选A.【点睛】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.5.A【解析】【分析】根据折叠的性质明确对应关系,易得∠A=∠1,DE是△ABC的中位线,所以易得B、D答案正确,D是AB中点,所以DB=DA,故C正确.【详解】根据题意可知DE是三角形ABC的中位线,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA 是等腰三角形.故只有A错,BA≠CA.故选A.【点睛】主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.还涉及到翻折变换以及中位线定理的运用.(1)三角形的外角等于与它不相邻的两个内角和.(1)三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.通过折叠变换考查正多边形的有关知识,及学生的逻辑思维能力.解答此类题最好动手操作.6.D【解析】【分析】根据积的乘方与幂的乘方计算可得.【详解】解:(﹣ab2)3=﹣a3b6,故选D.【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算法则.7.C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.8.C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意. 9.B【解析】【分析】【详解】试题解析:在方程4x2﹣2x+ =0中,△=(﹣2)2﹣4×4×14=0,∴一元二次方程4x2﹣2x+14=0有两个相等的实数根.故选B.考点:根的判别式.10.C【解析】【分析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式组得:2<x≤a,∵不等式组的整数解共有3个,∴这3个是3,4,5,因而5≤a<1.故选C .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 11.C【解析】【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.【详解】观察直方图,由图可知:A. 最喜欢足球的人数最多,故A 选项错误;B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B 选项错误;C. 全班共有12+20+8+4+6=50名学生,故C 选项正确;D. 最喜欢田径的人数占总人数的4100%50⨯=8 %,故D 选项错误, 故选C.【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.12.A【解析】【分析】把a=1,b=-1,c=-1,代入24b ac ∆=-,然后计算∆,最后根据计算结果判断方程根的情况.【详解】 21,1,14145a b c b ac ==-=-∴∆-=+=Q∴方程有两个不相等的实数根.故选A.【点睛】本题考查根的判别式,把a=1,b=-1,c=-1,代入24b ac ∆=-计算是解题的突破口.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.52【解析】【分析】根据题意可得阴影部分的面积等于△ABC 的面积,因为△ABC 的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.【详解】设AP,EF交于O点,∵四边形ABCD为菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四边形AEFP是平行四边形.∴S△POF=S△AOE.即阴影部分的面积等于△ABC的面积.∵△ABC的面积等于菱形ABCD的面积的一半,菱形ABCD的面积=12AC⋅BD=5,∴图中阴影部分的面积为5÷2=52.141243-【解析】【分析】由特殊角的正切值即可得出线段CD的长度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD长度,再利用线段间的关系即可得出结论.【详解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°=ADCD3∴43∵在Rt△BCD中,∠BAD=45∘,43∴43∴AB=AD-BD=4-331243-路况警示牌AB 的高度为123-m .. 【点睛】 解直角三角形的应用-仰角俯角问题.15.16π【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥; 根据三视图知:该圆锥的母线长为6cm ,底面半径为2cm ,故表面积=πrl+πr 2=π×2×6+π×22=16π(cm 2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.16【解析】【分析】根据二次根式的运算法则进行计算即可求出答案.【详解】-,.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.17.2【解析】【分析】根据定义即可求出答案.【详解】由题意可知:原式=1-i 2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.18.1【解析】【分析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s 最大时对应的t 值.【详解】由题意,s=﹣1.2t 2+60t=﹣1.2(t 2﹣50t+61﹣61)=﹣1.2(t ﹣1)2+750即当t=1秒时,飞机才能停下来.故答案为1.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s 取最大值.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(3)a=15,方程的另一根为12;(2)答案见解析. 【解析】【分析】(3)把x=2代入方程,求出a 的值,再把a 代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b 2-4ac =3求出a 的值,再代入解方程即可.【详解】(3)将x =2代入方程2(a 1)x 2x a 10-++-=,得4(a 1)4a 10-++-=,解得:a =15. 将a =15代入原方程得24x 2054x 5-+-=,解得:x 3=12,x 2=2. ∴a =15,方程的另一根为12; (2)①当a =3时,方程为2x =3,解得:x =3.②当a≠3时,由b 2-4ac =3得4-4(a -3)2=3,解得:a =2或3.当a =2时, 原方程为:x 2+2x +3=3,解得:x 3=x 2=-3;当a =3时, 原方程为:-x 2+2x -3=3,解得:x 3=x 2=3.综上所述,当a =3,3,2时,方程仅有一个根,分别为3,3,-3.考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.20.AED ACB ∠=∠.【解析】【分析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠1.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).【点睛】本题重点考查平行线的性质和判定,难度适中.21.(15;(2)∠CDE=2∠A.【解析】【分析】(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO .再由△AOE∽△ACB,得到OE 的长;(2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:222242AC BC+=+=5∴AO=125∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴OE AO BC AC=,∴OE=25 BC AOAC⋅==5.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE.∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.考点:切线的性质;探究型;和差倍分.22.(1)①(2,0),(12),(﹣12);②2x;③2x,y=22;(2)①半径为4,M 8343)31<r3+1.【解析】【分析】(1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M 的半径即可解决问题.【详解】(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,由题意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=2,∴A(2,0),B(1,2),C(﹣1,2),故答案为(2,0),(1,2),(﹣1,2);②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴BEPM=OEOM,∴21y x,∴2;③如图2﹣3中,作QM∥OA交OD于M,则有MQ DM OA DO=,∴222x y-=,∴y=﹣22x+2,故答案为y=2x,y=﹣22x+2;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=43,∴OF=FA=23,∴FM=2,OM=2FM=4,∵MN∥y轴,∴MN⊥OM,∴43,83,∴M(33,33);②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO是等边三角形,∴3当FN=1时,31,当EN=1时,3,观察图象可知当⊙M的半径r31<r3.3﹣1<r3.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.23.(1)5;(2)﹣2≤x<﹣12.【解析】【分析】(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;(2)先求出两个不等式的解集,再找出解集的公共部分即可.【详解】(1)原式31341, =-+-1341, =-++-=5;(2)解不等式①得,x≥﹣2,解不等式②得,12x<-,所以不等式组的解集是122x-≤<-.用数轴表示为:【点睛】本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定.24.(1)补全图形如图1所示,见解析,∠BEC=60°;(2)BE=2DE,见解析;(3)∠MAC=90°. 【解析】【分析】(1)根据轴对称作出图形,先判断出∠ABD=∠ADB=y,再利用三角形的内角和得出x+y即可得出结论;(2)同(1)的方法判断出四边形ABCD是菱形,进而得出∠CBD=30°,进而得出∠BCD=90°,即可得出结论;(3)先作出EF=2BE,进而判断出EF=CE,再判断出∠CBE=90°,进而得出∠BCE=30°,得出∠AEC =60°,即可得出结论.【详解】(1)补全图形如图1所示,根据轴对称得,AD=AC,∠DAE=∠CAE=x,∠DEM=∠CEM.∵△ABC是等边三角形,∴AB=AC,∠BAC=60°.∴AB=AD.∴∠ABD=∠ADB=y.在△ABD中,2x+2y+60°=180°,∴x+y=60°.∴∠DEM=∠CEM=x+y=60°.∴∠BEC=60°;(2)BE=2DE,证明:∵△ABC是等边三角形,∴AB=BC=AC,由对称知,AD=AC,∠CAD=2∠CAM=60°,∴△ACD是等边三角形,∴CD=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,且∠BAD=2∠CAD=120°,∴∠ABC=60°,∴∠ABD=∠DBC=30°,由(1)知,∠BEC=60°,∴∠ECB=90°.∴BE=2CE.∵CE=DE,∴BE=2DE.(3)如图3,(本身点C,A,D在同一条直线上,为了说明∠CBD=90°,画图时,没画在一条直线上)延长EB至F使BE=BF,∴EF=2BE,由轴对称得,DE=CE,∵DE=2BE,∴CE=2BE,∴EF=CE,连接CF,同(1)的方法得,∠BEC=60°,∴△CEF是等边三角形,∵BE=BF,∴∠CBE=90°,∴∠BCE=30°,∴∠ACE=30°,∵∠AED=∠AEC,∠BEC=60°,∴∠AEC=60°,∴∠MAC=180°﹣∠AEC﹣∠ACE=90°.【点睛】此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.25.(1)m =8,反比例函数的表达式为y =8x;(2)当n =3时,△BMN 的面积最大. 【解析】【分析】(1)求出点A 的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)∵直线y=2x+6经过点A (1,m ),∴m=2×1+6=8,∴A (1,8),∵反比例函数经过点A (1,8),∴8=1k , ∴k=8,∴反比例函数的解析式为y=8x. (2)由题意,点M ,N 的坐标为M (8n ,n ),N (62n -,n ), ∵0<n <6, ∴62n -<0, ∴S △BMN =12×(|62n -|+|8n |)×n=12×(﹣62n -+8n)×n=﹣14(n ﹣3)2+254, ∴n=3时,△BMN 的面积最大. 26. (1) 见解析;(2)15,354 【解析】【分析】(1) 先通过证明△AOE为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE//OD, 从而证得四边形AODE是平行四边形, 再根据“一组邻边相等的平行四边形为菱形” 即可得证.(2) 利用在Rt△OBD中,sin∠B==可得出半径长度,在Rt△ODB中BD=,可求得BD的长,由CD=CB﹣BD可得CD的长,在RT△ACD中,AD=,即可求出AD长度.【详解】解:(1)证明:连接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等边三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圆O的切线,OD是半径,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四边形AODE是平行四边形,∵OD=OA∴四边形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圆O的切线,OD是半径,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【点睛】本题主要考查圆中的计算问题、菱形以及相似三角形的判定与性质27.△A′DE是等腰三角形;证明过程见解析.【解析】试题分析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB 推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.。
2019-2020苏州市数学中考试卷(带答案)一、选择题1.已知反比例函数 y =的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a在同一平面直角坐标系中的图象可能是( )A .B .C .D .2.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3B .x ≥-3且1x ≠C .1x ≠D .3x ≠-且1x ≠3.2-的相反数是( ) A .2-B .2C .12D .12-4.如图,直线l 1∥l 2,将一直角三角尺按如图所示放置,使得直角顶点在直线l 1上,两直角边分别与直线l 1、l 2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为( )A .25°B .75°C .65°D .55°5.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .6.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM,若AN平分∠MAB,则折痕AM的长为()A.3 B.23C.32D.67.二次函数y=ax2+bx+c的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b2,③2a+b=0,④a-b+c>2,其中正确的结论的个数是()A.1B.2C.3D.48.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°9.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD 的长度之比为()A.tantanαβB.sinsinβαC.sinsinαβD.coscosβα10.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1;2,△OAC与△CBD的面积之和为,则k 的值为( )A .2B .3C .4D .11.若正比例函数y=mx (m≠0),y 随x 的增大而减小,则它和二次函数y=mx 2+m 的图象大致是( )A .B .C .D .12.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-二、填空题13.如图,在四边形ABCD 中,∠B=∠D=90°,AB =3, BC =2,tanA =43,则CD =_____.14.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:摸球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位).15.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.16.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.17.计算:82-=_______________.18.已知(a-4)(a-2)=3,则(a-4)2+(a-2)2的值为__________.19.在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有_____位学生.20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a 的值为 ;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.22.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC 35DBC S S ∆=,求点D 的坐标;(3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.23.如图,点D 在以AB 为直径的⊙O 上,AD 平分BAC ∠,DC AC ⊥,过点B 作⊙O 的切线交AD 的延长线于点E . (1)求证:直线CD 是⊙O 的切线. (2)求证:CD BE AD DE ⋅=⋅.24.问题:探究函数y=x+的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)函数的自变量x的取值范围是:____;(2)如表是y与x的几组对应值,请将表格补充完整:x…﹣3﹣2﹣﹣1123…y…﹣3﹣3﹣3﹣443…(3)如图,在平面直角坐标系中描点并画出此函数的图象;(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).25.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.12≈1.413【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.2.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.x ≥0,3∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.3.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .4.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.5.C解析:C【解析】从上面看,看到两个圆形,6.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM,再由AN平分∠MAB,得出∠DAM=∠MAN=∠NAB,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴AM=2623 33AD==,故选:B.【点睛】本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 7.C解析:C【解析】【详解】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确.故选C.8.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键. 9.B解析:B【解析】【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.10.C解析:C【解析】【分析】由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即可得出k的值.【详解】∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),∵△OAC与△CBD的面积之和为,∴(k-1)+ (k-1)=,∴k =4.故选C .【点睛】本题考查反比例函数系数k 的几何意义,三角形面积的计算,解题的关键是用k 表示出△OAC 与△CBD 的面积.11.A解析:A【解析】【分析】【详解】∵正比例函数y=mx (m≠0),y 随x 的增大而减小,∴该正比例函数图象经过第一、三象限,且m <0,∴二次函数y=mx 2+m 的图象开口方向向下,且与y 轴交于负半轴,综上所述,符合题意的只有A 选项,故选A.12.C解析:C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底. 二、填空题13.【解析】【分析】延长AD 和BC 交于点E 在直角△ABE 中利用三角函数求得BE 的长则EC 的长即可求得然后在直角△CDE 中利用三角函数的定义求解【详解】如图延长ADBC 相交于点E ∵∠B=90°∴∴BE=∴ 解析:65【解析】【分析】延长AD 和BC 交于点E ,在直角△ABE 中利用三角函数求得BE 的长,则EC 的长即可求得,然后在直角△CDE中利用三角函数的定义求解.【详解】如图,延长AD、BC相交于点E,∵∠B=90°,∴4 tan3BEAAB==,∴BE=44 3AB⋅=,∴CE=BE-BC=2,225AB BE+=,∴3 sin5ABEAE==,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,sinCDECE =,∴CD=36sin255 CE E⋅=⨯=.14.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率解析:4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.15.-6【解析】因为四边形OABC是菱形所以对角线互相垂直平分则点A和点C 关于y轴对称点C在反比例函数上设点C的坐标为(x)则点A的坐标为(-x)点B的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 16.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x >﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, ∵解不等式①得:x≤﹣4,解不等式②得:x >﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.17.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.18.10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体利用完全平方公式求解【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a ﹣4)(a﹣2)+2(a﹣4)(a﹣2)=解析:10【解析】【分析】试题分析:把(a﹣4)和(a﹣2)看成一个整体,利用完全平方公式求解.【详解】(a﹣4)2+(a﹣2)2=(a﹣4)2+(a﹣2)2-2(a﹣4)(a﹣2)+2(a﹣4)(a﹣2)=[(a﹣4)-(a﹣2)]2+2(a﹣4)(a﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b)2=a2±2ab+b2求解,整体思想的运用使运算更加简便.19.28【解析】【分析】设加分前及格人数为x人不及格人数为y人原来不及格加分为及格的人数为n人所以72x+58y=66(x+y)75(x+n)+59(y-n)=(66+5)(x+y)用n分别表示xy得到解析:28【解析】【分析】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为及格的人数为n人,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.【详解】设加分前及格人数为x人,不及格人数为y人,原来不及格加分为为及格的人数为n人,根据题意得,解得,所以x+y=n,而15<n<30,n为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为28.【点睛】本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型是解题关键.20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形 解析:43 【解析】 【分析】连接BD ,根据中位线的性质得出EF //BD ,且EF=12BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.【详解】连接BD ,E F 分别是AB 、AD 的中点∴EF //BD ,且EF=12BD 4EF =8BD ∴=又8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒ ∴tanC=BD DC =86=43. 故答案为:43.三、解答题21.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.【解析】【分析】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a 的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%; 则a 的值是25;(2)、观察条形统计图得: 1.502 1.554 1.605 1.656 1.70324563x ⨯+⨯+⨯+⨯+⨯=++++=1.61; ∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65; 将这组数据从小到大排列为,其中处于中间的两个数都是1.60, 则这组数据的中位数是1.60.(3)、能; ∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m >1.60m , ∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数22.(1)213y x x 222=--;(2)D 的坐标为2⎛ ⎝⎭,2⎛ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫-⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB=90°,过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解.(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:2016420a b a b --=⎧⎨+-=⎩ ,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =12 x 2﹣32x ﹣2. (2)当x =0时,y =12x 2﹣32x ﹣2=﹣2, ∴点C 的坐标为(0,﹣2).∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0),,BC=AB =5.∵AC 2+BC 2=25=AB 2,∴∠ACB=90°.过点D 作DM∥BC,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC,∴△AD 1M 1∽△ACB.∵S △DBC =35S ABC ∆, ∴125AM AB =, ∴AM 1=2,∴点M 1的坐标为(1,0),∴BM 1=BM 2=3,∴点M 2的坐标为(7,0).设直线BC 的解析式为y =kx+c (k≠0),将B (4,0),C (0,﹣2)代入y =kx+c ,得:402k c c +=⎧⎨=-⎩ ,解得:122k c ⎧=⎪⎨⎪=-⎩ , ∴直线BC 的解析式为y =12x ﹣2. ∵D 1M 1∥BC∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0), ∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12x ﹣72. 联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得:112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=⎪⎩3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩, ∴点D 的坐标为(2),(),(1,﹣3)或(3,﹣2). (3)分两种情况考虑,如图2所示.①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC,设直线AC 的解析设为y =mx+n (m≠0),将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:-02m n n +=⎧⎨=-⎩ ,解得:22m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2.∵AC⊥BC,OF 1⊥BC,∴直线OF 1的解析式为y =﹣2x .连接直线OF 1和直线BC 的解析式成方程组,得:2122y x y x =-⎧⎪⎨=-⎪⎩ , 解得:4585x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点F 1的坐标为(45,﹣85 ); ②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE,交直线BC 于点F 3,则△CEF 2∽△BAC∽△CF 3E .∵EC=EB ,EF 2⊥BC 于点F 2,∴点F 2为线段BC 的中点,∴点F 2的坐标为(2,﹣1);∵BC=,∴CF 2=12 BC,EF 2=12 CF 2=,F 2F 3=12 EF 2=4, ∴CF 3. 设点F 3的坐标为(x ,12 x ﹣2), ∵CF 3=4,点C 的坐标为(0,﹣2),∴x2+[12x﹣2﹣(﹣2)]2=12516,解得:x1=﹣52(舍去),x2=52,∴点F3的坐标为(52,﹣34).综上所述:存在以C、E、F为顶点的三角形与△ABC相似,点F的坐标为(45,﹣8 5),(2,﹣1)或(52,﹣34).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D且与直线BC平行的直线的解析式;(3)分点E与点O重合及点E与点O不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F的坐标.23.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)连接OD,由角平分线的定义得到∠CAD=∠BAD,根据等腰三角形的性质得到∠BAD=∠ADO,求得∠CAD=∠ADO,根据平行线的性质得到CD⊥OD,于是得到结论;(2)连接BD,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【详解】解:证明:(1)连接OD ,∵AD 平分BAC ∠,∴CAD BAD ∠=∠,∵OA OD =,∴BAD ADO =∠∠,∴CAD ADO ∠=∠,∴AC OD ∥,∵CD AC ⊥,∴CD OD ⊥,∴直线CD 是⊙O 的切线;(2)连接BD ,∵BE 是⊙O 的切线,AB 为⊙O 的直径,∴90ABE BDE ︒∠=∠=,∵CD AC ⊥,∴90C BDE ︒∠=∠=,∵CAD BAE DBE ∠=∠=∠,∴ACD BDE ∆∆∽, ∴CD AD DE BE=, ∴CD BE AD DE ⋅=⋅.【点睛】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.24.(1)x ≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.【解析】【分析】(1)由分母不为零,确定x 的取值范围即可;(2)将x =1,x =2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;【详解】(1)因为分母不为零,∴x≠0;故答案为a≠0.(2)x=1时,y=3;x=2时,y=3;故答案为3,3.(3)如图:(4)此函数有最小值和最大值;【点睛】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.25.A、C之间的距离为10.3海里.【解析】【分析】【详解】解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD3x.又∵BC=20,∴x3x=20,解得:x =31).=≈⨯⨯-=≈ (海里).∴AC1) 1.4110(1.731)10.29310.3答:A、C之间的距离为10.3海里.。
江苏省苏州市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x2﹣8x﹣2=0,配方的结果是()A.(x+4)2=18 B.(x+4)2=14 C.(x﹣4)2=18 D.(x﹣4)2=142.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()A.60°B.65°C.70°D.75°3.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m4.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°58的叙述正确的是()A835B8的点C8=±22D8 36.一、单选题在反比例函数4yx的图象中,阴影部分的面积不等于4的是()A. B.C.D.7.我国的钓鱼岛面积约为4400000m2,用科学记数法表示为()A.4.4×106B.44×105C.4×106D.0.44×1078.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为()A.B.C.D.9.tan30°的值为()A.B.C.D.10.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为()A.6 B.9 C.10 D.1211.大箱子装洗衣粉36千克,把大箱子里的洗衣粉分装在4个大小相同的小箱子里,装满后还剩余2千克洗衣粉,则每个小箱子装洗衣粉()A.6.5千克B.7.5千克C.8.5千克D.9.5千克12.如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是.14.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.15.如图,在△ABC中,DE∥BC,1=2ADDB,则ADEBCEDV的面积四边形的面积=_____.16.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.17.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.18.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC 上的任意一点,那么a+b-2c= ______ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE .(1)求∠AEC 的度数;(2)请你判断AE 、BE 、AC 三条线段之间的等量关系,并证明你的结论.20.(6分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率. 21.(6分)解方程311(1)(2)x x x x -=--+. 22.(8分)如图,已知二次函数2y x bx c =-++与x 轴交于A 、B 两点,A 在B 左侧,点C 是点A 下方,且AC ⊥x 轴.(1)已知A(-3,0),B(-1,0),AC=OA .①求抛物线解析式和直线OC 的解析式;②点P 从O 出发,以每秒2个单位的速度沿x 轴负半轴方向运动,Q 从O 出发,以每秒2个单位的速度沿OC 方向运动,运动时间为t.直线PQ 与抛物线的一个交点记为M,当2PM=QM 时,求t 的值(直接写出结果,不需要写过程)(2)过C 作直线EF 与抛物线交于E 、F 两点(E 、F 在x 轴下方),过E 作EG ⊥x 轴于G ,连CG ,BF,求证:CG ∥BF23.(8分)在矩形ABCD 中,两条对角线相交于O ,∠AOB=60°,AB=2,求AD 的长.24.(10分)先化简,再求值:22124()(1)442a a a a a a a -+-÷--+-,其中a 为不等式组72230a a ->⎧⎨->⎩的整数解.25.(10分)如图,在等腰△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 相交于点D 且BD =2AD ,过点D 作DE ⊥AC 交BA 延长线于点E ,垂足为点F .(1)求tan ∠ADF 的值;(2)证明:DE 是⊙O 的切线;(3)若⊙O 的半径R =5,求EF 的长.26.(12分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?27.(12分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣2,1),B (﹣1,4),C (﹣3,2)画出△ABC 关于点B 成中心对称的图形△A 1BC 1;以原点O 为位似中心,位似比为1:2,在y 轴的左侧画出△ABC 放大后的图形△A 2B 2C 2,并直接写出C 2的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】x2-8x=2,x2-8x+16=1,(x-4)2=1.故选C.【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.2.C【解析】试题分析:连接OB,根据PA、PB为切线可得:∠OAP=∠OBP=90°,根据四边形AOBP的内角和定理可得∠AOB=140°,∵OC=OB,则∠C=∠OBC,根据∠AOB为△OBC的外角可得:∠ACB=140°÷2=70°. 考点:切线的性质、三角形外角的性质、圆的基本性质.3.A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×3=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.4.C【解析】【分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.5.D【解析】【分析】根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.【详解】选项A B C=选项D.故选D.【点睛】本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.6.B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=1.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.7.A【解析】4400000=4.4×1.故选A.点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.8.B【解析】【分析】由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.【详解】根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1.故选B.【点睛】此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.9.D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.10.B【解析】【分析】首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.【详解】解:如图,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为6,∴AB=OA=OB=6,∵点E,F分别是AC、BC的中点,∴EF=12AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:6×2=12,∴GE+FH的最大值为:12﹣3=1.故选:B.【点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键. 11.C【解析】【分析】设每个小箱子装洗衣粉x千克,根据题意列方程即可.【详解】设每个小箱子装洗衣粉x千克,由题意得:4x+2=36,解得:x=8.5,即每个小箱子装洗衣粉8.5千克,故选C.【点睛】本题考查了列一元一次方程解实际问题,弄清题意,找出等量关系是解答本题的关键. 12.A【解析】试题分析:充分利用图形,直接从图上得出x的取值范围.由图可知,当y<1时,x<-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y<1,在x轴上方的部分y>1.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.12.【解析】【分析】【详解】根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为12.考点:概率公式.14.AC=BC.【解析】分析:添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.详解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.点睛:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.1 8【解析】【分析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题. 【详解】解:∵DE∥BC,AD1=DB2,∴AD 1=AB 3, 由平行条件易证△ADE ~△ABC, ∴S △ADE :S △ABC =1:9, ∴ADE S ADE BCED S ABC S ADE V V V V 的面积四边形的面积=-=18.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键. 16.5 【解析】 【分析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张. 【详解】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3, 所以根据相似三角形的性质可设从顶点到这个正方形的线段为x , 则=,解得x=3,所以另一段长为18-3=15, 因为15÷3=5,所以是第5张. 故答案为:5. 【点睛】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答. 17.23【解析】试题解析:∵共6个数,小于5的有4个,∴P (小于5)=46=23.故答案为23. 18.1 【解析】∵点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点, ∴由中点公式得:c=2a b+, ∴a+b=2c , ∴a+b-2c=1. 故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)90°;(1)AE1+EB1=AC1,证明见解析.【解析】【分析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答.【详解】解:(1)∵点D是BC边的中点,DE⊥BC,∴DE是线段BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(1)AE1+EB1=AC1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.【点睛】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.20.(1)12(2)16【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)12.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能. ∴P (两次都摸到红球)=212=16. 考点:概率统计 21.原分式方程无解. 【解析】 【分析】根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证. 【详解】方程两边乘(x ﹣1)(x+2),得x(x+2)﹣(x ﹣1)(x+2)=3 即:x 2+2x ﹣x 2﹣x+2=3 整理,得x =1检验:当x =1时,(x ﹣1)(x+2)=0, ∴原方程无解. 【点睛】本题考查解分式方程,解题的关键是明确解放式方程的计算方法. 22. (1)①y=-x 2-4x -3;y=x ;② 或6350±;(2)证明见解析.【解析】 【分析】(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA 知C 点坐标为(-3,-3),故可求出直线OC 的解析式;②由题意得OP=2t,P(-2t ,0),过Q 作QH ⊥x 轴于H, 得OH=HQ=t,可得Q(-t,-t),直线 PQ 为y =-x -2t ,过M 作MG ⊥x 轴于G ,由12PG PM GH QM ==,则2PG=GH ,由2P G G H x x x x -=-,得2P M M Q x x x x -=-, 于是22M M t x x t --=+,解得533M M x t x t =-=-或,从而求出M(-3t,t)或M (51,33t t --),再分情况计算即可; (2) 过F 作FH ⊥x轴于H ,想办法证得tan ∠CAG=tan ∠FBH ,即∠CAG=∠FBH ,即得证. 【详解】2y x bx c =-++解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得09301b c b c =--+⎧⎨=--+⎩解得43b c =-⎧⎨=-⎩∴y=-x 2-4x -3;由AC=OA 知C 点坐标为(-3,-3),∴直线OC 的解析式y=x ; ②OP=2t,P(-2t ,0),过Q 作QH ⊥x 轴于H,∵,∴OH=HQ=t, ∴Q(-t,-t),∴PQ :y =-x -2t , 过M 作MG ⊥x 轴于G , ∴12PG PM GH QM ==, ∴2PG =GH∴2P G G H x x x x -=-,即2P M M Q x x x x -=-, ∴ 22M M t x x t --=+,∴533M M x t x t =-=-或,∴M(-3t,t)或M (51,33t t --)当M(-3t,t)时:29123t t t =-+-,∴t =当M (51,33t t --)时:2125203393t t t -=-+-,∴t =综上:t =t =(2)设A(m,0)、B(n,0),∴m 、n 为方程x 2-bx -c=0的两根,∴m+n=b,mn =-c,∴y =-x2+(m+n)x -mn =-(x -m)(x -n),∵E 、F 在抛物线上,设()()2111E x x m n x mn -++-,、()()2222,F x x m n x mn -++-, 设EF :y =kx+b, ∴E E F E y kx by kx b=+⎧⎨=+⎩ ,∴()E F E F y y k x x -=-∴()()2212121212E F E F x x m n x x y y k m n x x x x x x -+++--===+---- ∴()()()()12111:F y m n x x x x x m x n =+------,令x =m ∴()()()()12111c y m n x x m x x m x n =+------ =()()()()112112+m x m n x x x n m x m x -+---=-- ∴AC=()()12m x m x ---, 又∵1A E AG x x m x =-=-, ∴tan ∠CAG=2ACx m AG=-, 另一方面:过F 作FH ⊥x 轴于H ,∴()()22FH x m x n =--,2BH x n =-, ∴tan ∠FBH=2FHx m BH=- ∴tan ∠CAG=tan ∠FBH ∴∠CAG=∠FBH ∴CG ∥BF【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.23.【解析】 试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD ,再由∠AOB=60°可得△AOB 是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt △ABD 中,由勾股定理可解得AD 的长. 试题解析:∵四边形ABCD 是矩形, ∴OA=OB=OD ,∠BAD=90°, ∵∠AOB=60°,∴△AOB 是等边三角形, ∴OB=OA=2, ∴BD=2OB=4, 在Rt △ABD 中∴=24.()212a -,1【解析】 【分析】先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可. 【详解】 解:原式=[()212a a --﹣()22a a a +-]4aa-÷=()2442a a aa a -⋅-- =()212a -,∵不等式组的解为32<a <5,其整数解是2,3,4, a 不能等于0,2,4, ∴a =3, 当a =3时,原式=()2132-=1.【点睛】本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.25.(1)12;(2)见解析;(3)83【解析】【分析】(1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.【详解】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==12;(2)连接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(3)设AD=x,则BD=2x,∴AB=x=10, ∴x=2, ∴AD=2,同理得:AF=2,DF=4, ∵AF ∥OD , ∴△AFE ∽△ODE , ∴, ∴=,∴EF=83. 【点睛】本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.26.(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析 【解析】分析: (1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案; (2)根据学校总人数乘以骑自行车所占的百分比,可得答案. 详解:(1)乘公交车所占的百分比60360=16, 调查的样本容量50÷16=300人, 骑自行车的人数300×120360=100人, 骑自行车的人数多,多100﹣50=50人; (2)全校骑自行车的人数2400×120360=800人, 800>600,故学校准备的600个自行车停车位不足够.点睛: 本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.27.(1)画图见解析;(2)画图见解析,C 2的坐标为(﹣6,4). 【解析】试题分析:()1利用关于点对称的性质得出11,A C 的坐标进而得出答案;()2利用关于原点位似图形的性质得出对应点位置进而得出答案.试题解析:(1)△A1BC1如图所示.(2)△A2B2C2如图所示,点C2的坐标为(-6,4).。
江苏省苏州市2019-2020学年中考数学仿真第五次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知函数y=﹣3x 与函数y=ax 2+bx 的交点P 的纵坐标为1,则不等式ax 2+bx+3x>0的解集是( )A .x <﹣3B .﹣3<x <0C .x <﹣3或x >0D .x >02.如图,点A ,B ,C 在⊙O 上,∠ACB=30°,⊙O 的半径为6,则»AB 的长等于( )A .πB .2πC .3πD .4π3.下列运算正确的是( )A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x = 4.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )A .B .C .D . 5.下列计算正确的是( )A 523B 4 =±2C .a 6÷a 2=a 3D .(﹣a 2)3=﹣a 66.如图,已知点A (0,1),B (0,﹣1),以点A 为圆心,AB 为半径作圆,交x 轴的正半轴于点C ,则∠BAC 等于( )A.90°B.120°C.60°D.30°7.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)8.估计10﹣1的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.△ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是()A.13,5 B.6.5,3 C.5,2 D.6.5,210.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°11.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1 B.23C.2D.512.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A .最低温度是32℃B .众数是35℃C .中位数是34℃D .平均数是33℃二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.14.已知,正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm (结果保留π).15.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.16.327﹣|﹣1|=______.17.如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC“先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC 的顶点C 的坐标为_____.18.计算(2a )3的结果等于__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:2(x-3)=3x(x-3).20.(6分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.21.(6分)随着社会经济的发展,汽车逐渐走入平常百姓家.某数学兴趣小组随机抽取了我市某单位部分职工进行调查,对职工购车情况分4类(A :车价40万元以上;B :车价在20—40万元;C :车价在20万元以下;D :暂时未购车)进行了统计,并将统计结果绘制成以下条形统计图和扇形统计图.请结合图中信息解答下列问题:(1)调查样本人数为__________,样本中B 类人数百分比是_______,其所在扇形统计图中的圆心角度数是________;(2)把条形统计图补充完整;(3)该单位甲、乙两个科室中未购车人数分别为2人和3人,现从中选2人去参观车展,用列表或画树状图的方法,求选出的2人来自不同科室的概率.22.(8分)计算:(π﹣3.14)0﹣20213cos30()2-+﹣|﹣3|.23.(8分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少? (3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a 万元(a >0),市政府如何确定方案才能使费用最少?24.(10分)如图,已知一次函数y=12x+m 的图象与x 轴交于点A (﹣4,0),与二次函数y=ax 1+bx+c 的图象交于y 轴上一点B ,该二次函数的顶点C 在x 轴上,且OC=1.(1)求点B 坐标;(1)求二次函数y=ax 1+bx+c 的解析式;(3)设一次函数y=12x+m 的图象与二次函数y=ax 1+bx+c 的图象的另一交点为D ,已知P 为x 轴上的一个动点,且△PBD 是以BD 为直角边的直角三角形,求点P 的坐标.25.(10分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?26.(12分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命题会正确吗?(1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.①等腰三角形两腰上的中线相等;②等腰三角形两底角的角平分线相等;③有两条角平分线相等的三角形是等腰三角形;(2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.27.(12分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】首先求出P 点坐标,进而利用函数图象得出不等式ax 2+bx+3x >1的解集. 【详解】∵函数y=﹣3x 与函数y=ax 2+bx 的交点P 的纵坐标为1, ∴1=﹣3x, 解得:x=﹣3,∴P (﹣3,1),故不等式ax 2+bx+3x >1的解集是:x <﹣3或x >1. 故选C .【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是正确得出P 点坐标.2.B【解析】【分析】根据圆周角得出∠AOB =60°,进而利用弧长公式解答即可.【详解】解:∵∠ACB =30°,∴∠AOB =60°,∴»AB 的长=606180π⨯=2π, 故选B .【点睛】此题考查弧长的计算,关键是根据圆周角得出∠AOB =60°.3.B【解析】【分析】根据幂的运算法则及整式的加减运算即可判断.【详解】A. ()23x =x 6,故错误;B. ()55x x -=-,正确;C. 3x ·2x =5x ,故错误;D. 32x +2 3x 不能合并,故错误,【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.4.C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.5.D【解析】【分析】根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.【详解】A. 不是同类二次根式,不能合并,故A选项错误;4,故B选项错误;C. a6÷a2=a4≠a3,故C选项错误;D. (−a2)3=−a6,故D选项正确.故选D.【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.6.C【解析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC=OAAC=12,∴∠BAC=60°.故选C.点睛:本题考查了垂径定理的应用,关键是求出AC、OA的长.解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的两条弧.7.A【解析】【分析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.8.B【解析】【分析】<<.【详解】<∴34<,∴213<<﹣1的值在2和3之间.故选B.【点睛】的大小,在确定答案的范围.9.D【解析】【分析】根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为512132+-,【详解】解:如下图,∵△ABC的三条边长分别是5,13,12,且52+122=132,∴△ABC是直角三角形, 其斜边为外切圆直径,∴外切圆半径=132=6.5,内切圆半径=512132+-=2,故选D.【点睛】本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.10.A【解析】分析:如图求出∠5即可解决问题.详解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°-∠5=125°,故选:A.点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.11.C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得2详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG+22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.12.D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是313233334357++⨯++=33℃.故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.25【解析】 【分析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率. 【详解】 解:列表如下:所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种, 则P (恰好是两个连续整数)=82.205= 故答案为25. 【点睛】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比. 14.2π 【解析】考点:弧长的计算;正多边形和圆.分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式. 解:方法一:先求出正六边形的每一个内角=()621806-⨯︒=120°,所得到的三条弧的长度之和=3×120180rπ=2πcm ; 方法二:先求出正六边形的每一个外角为60°, 得正六边形的每一个内角120°, 每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为2πcm . 15.-12分析:对所求代数式进行因式分解,把2a b +=,3ab =-,代入即可求解. 详解:2a b +=,3ab =-,()()23223222223212.a b a b ab ab a ab b ab a b ++=++=+=-⨯=- ,故答案为:12.-点睛:考查代数式的求值,掌握提取公因式法和公式法进行因式分解是解题的关键. 16.2 【解析】 【分析】原式利用立方根定义,以及绝对值的代数意义计算即可求出值. 【详解】解:原式=3﹣1=2, 故答案为:2 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.(﹣2016+1) 【解析】 【分析】据轴对称判断出点C 变换后在x 轴上方,然后求出点C 纵坐标,再根据平移的距离求出点A 变换后的横坐标,最后写出即可. 【详解】解:∵△ABC 是等边三角形AB =3﹣1=2,∴点C 到x 轴的距离为1+2×2, 横坐标为2,∴C (2+1),第2018次变换后的三角形在x 轴上方,点C , 横坐标为2﹣2018×1=﹣2016,所以,点C 的对应点C′的坐标是(﹣2016+1)故答案为:(﹣2016+1)本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x 轴上方是解题的关键. 18.8【解析】试题分析:根据幂的乘方与积的乘方运算法则进行计算即可 考点:(1)、幂的乘方;(2)、积的乘方三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.1223,3x x ==. 【解析】 【分析】先进行移项,在利用因式分解法即可求出答案. 【详解】()()2333x x x -=-,移项得:()()23330x x x ---=, 整理得:()()3230x x --=,30x -=或230x -=,解得:13x =或223x =. 【点睛】本题考查了解一元一次方程-因式分解,熟练掌握因式分解的技巧是本题解题的关键. 20.吉普车的速度为30千米/时. 【解析】 【分析】先设抢修车的速度为x 千米/时,则吉普车的速度为1.5x 千米/时,列出方程求出x 的值,再进行检验,即可求出答案. 【详解】解:设抢修车的速度为x 千米/时,则吉普车的速度为15x 千米/时. 由题意得:1515151.560x x -=. 解得,x=20经检验,x=20是原方程的解,并且x=20,1.5x=30都符合题意. 答:吉普车的速度为30千米/时.点评:本题难度中等,主要考查学生对分式方程实际应用的综合运用.为中考常见题型,要求学生牢固掌握.注意检验.21.(1)50,20%,72°.(2)图形见解析;(3)选出的2人来自不同科室的概率=.【解析】试题分析:(1)根据调查样本人数=A类的人数除以对应的百分比.样本中B类人数百分比=B类人数除以总人数,B类人数所在扇形统计图中的圆心角度数=B类人数的百分比×360°.(2)先求出样本中B类人数,再画图.(3)画树状图并求出选出的2人来自不同科室的概率.试题解析:(1)调查样本人数为4÷8%=50(人),样本中B类人数百分比(50﹣4﹣28﹣8)÷50=20%,B类人数所在扇形统计图中的圆心角度数是20%×360°=72°;(2)如图,样本中B类人数=50﹣4﹣28﹣8=10(人);(3)画树状图为:共有20种可能的结果数,其中选出选出的2人来自不同科室占12种,所以选出的2人来自不同科室的概率=.考点:1.条形统计图2.扇形统计图3.列表法与树状图法.22.﹣1.【解析】【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式312343 =-⨯+-,=1﹣3+4﹣3,=﹣1.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.23.(1)甲:25万元;乙:28万元;(2)三种方案;甲种套房提升50套,乙种套房提升30套费用最少;(3)当a=3时,三种方案的费用一样,都是2240万元;当a>3时,取m=48时费用最省;当0<a<3时,取m=50时费用最省.【解析】试题分析:(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论;(3)根据(2)表示出W与m之间的关系式,由一次函数的性质分类讨论就可以得出结论.(1)设甲种套房每套提升费用为x万元,依题意,得解得:x=25经检验:x=25符合题意,x+3=28;答:甲,乙两种套房每套提升费用分别为25万元,28万元.(2)设甲种套房提升套,那么乙种套房提升(m-48)套,依题意,得解得:48≤m≤50即m=48或49或50,所以有三种方案分别是:方案一:甲种套房提升48套,乙种套房提升32套.方案二:甲种套房提升49套,乙种套房提升1.套方案三:甲种套房提升50套,乙种套房提升30套.设提升两种套房所需要的费用为W.所以当时,费用最少,即第三种方案费用最少.(3)在(2)的基础上有:当a=3时,三种方案的费用一样,都是2240万元.当a>3时,取m=48时费用W最省.当0<a<3时,取m=50时费用最省.考点: 1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用.24.(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解析】【分析】(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x ﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.【详解】(1)∵y=12x+1交x轴于点A(﹣4,0),∴0=12×(﹣4)+m,∴m=1,与y轴交于点B,∵x=0,∴y=1∴B点坐标为:(0,1),(1)∵二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1 ∴可设二次函数y=a(x﹣1)1把B(0,1)代入得:a=0.5∴二次函数的解析式:y=0.5x1﹣1x+1;(3)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴1AO BOBO OP =,∴1422OP =, 得:OP 1=1, ∴P 1(1,0),(Ⅱ)作P 1D ⊥BD ,连接BP 1,将y=0.5x+1与y=0.5x 1﹣1x+1联立求出两函数交点坐标: D 点坐标为:(5,4.5), 则AD=952, 当D 为直角顶点时∵∠DAP 1=∠BAO ,∠BOA=∠ADP 1, ∴△ABO ∽△AP 1D ,∴2AB AO AP AD=,22595AP = , 解得:AP 1=11.15, 则OP 1=11.15﹣4=7.15, 故P 1点坐标为(7.15,0);∴点P 的坐标为:P 1(1,0)和P 1(7.15,0).【点睛】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解. 25.R= 或R=【解析】 【分析】【详解】解:当圆与斜边相切时,则R=,即圆与斜边有且只有一个公共点,当R=时,点A在圆内,点B在圆外或圆上,则圆与斜边有且只有一个公共点.考点:圆与直线的位置关系.26.(1)①真;②真;③真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;见解析.【解析】【分析】(1)根据命题的真假判断即可;(2)根据全等三角形的判定和性质进行证明即可.【详解】(1)①等腰三角形两腰上的中线相等是真命题;②等腰三角形两底角的角平分线相等是真命题;③有两条角平分线相等的三角形是等腰三角形是真命题;故答案为真;真;真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;已知:如图,△ABC中,BD,CE分别是AC,BC边上的中线,且BD=CE,求证:△ABC是等腰三角形;证明:连接DE,过点D作DF∥EC,交BC的延长线于点F,∵BD,CE分别是AC,BC边上的中线,∴DE是△ABC的中位线,∴DE∥BC,∵DF∥EC,∴四边形DECF是平行四边形,∴EC=DF,∵BD=CE,∴DF=BD,∴∠DBF=∠DFB,∵DF∥EC,∴∠F=∠ECB,∴∠ECB=∠DBC,在△DBC与△ECB中BD EC DBC ECB BC CB =⎧⎪∠=∠⎨⎪=⎩, ∴△DBC ≌△ECB , ∴EB =DC , ∴AB =AC ,∴△ABC 是等腰三角形.【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质;证明的步骤是:先根据题意画出图形,再根据图形写出已知和求证,最后写出证明过程.27.(1)52﹣2×4=42+1;(2)(n+1)2﹣2n =n 2+1,证明详见解析. 【解析】 【分析】(1)根据①②③的规律即可得出第④个等式;(2)第n 个等式为(n+1)2﹣2n =n 2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边. 【详解】(1)∵22﹣2×1=12+1① 32﹣2×2=22+1② 42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1, 故答案为:52﹣2×4=42+1, (2)第n 个等式为(n+1)2﹣2n =n 2+1. (n+1)2﹣2n =n 2+2n+1﹣2n =n 2+1. 【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.。
江苏省苏州市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.452.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=()A.50°B.40°C.30°D.20°3.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D4.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°5.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.13266.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是A.B.C.D.7.下列性质中菱形不一定具有的性质是()A .对角线互相平分B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形8.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是 ()A .B .C .D .9.函数y kx 1=+与ky x=-在同一坐标系中的大致图象是( ) A 、 B 、 C 、 D 、10.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 逆时针旋转到△AB′C′的位置,使得CC′∥AB ,则∠CAC′为( )A .30°B .35°C .40°D .50°11.如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为»AB 上一点(不与O 、A 两点重合),则cosC 的值为( )A .34B .35C .43D .4512.如图,在扇形CAB 中,CA=4,∠CAB=120°,D 为CA 的中点,P 为弧BC 上一动点(不与C ,B 重合),则2PD+PB 的最小值为( )A .B .C .10D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:x 甲=10,2S 甲=0.02;机床乙:x 乙=10,2S 乙=0.06,由此可知:________(填甲或乙)机床性能好. 14.计算2(252) 的结果等于__________.15.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数).16.某排水管的截面如图,已知截面圆半径OB=10cm ,水面宽AB 是16cm ,则截面水深CD 为_____.17.抛物线y=2x 2+4x ﹣2的顶点坐标是_______________.18.如果把抛物线y=2x 2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x 元/公里计算,耗时费按y 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8 8 12小刚12 10 16(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?20.(6分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.21.(6分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=32CD,求⊙O半径.22.(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:运动项目频数(人数)羽毛球30篮球乒乓球36排球足球12请根据以上图表信息解答下列问题:频数分布表中的,;在扇形统计图中,“排球”所在的扇形的圆心角为度;全校有多少名学生选择参加乒乓球运动?23.(8分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x24.(10分)先化简,再求值1xx-÷(x﹣21xx-),其中x=76.25.(10分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系.求出y与x之间的函数关系式;写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?26.(12分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?27.(12分)某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:收集数据从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:78 86 74 81 75 76 87 70 75 90八年级75 79 81 70 74 80 86 69 83 7793 73 88 81 72 81 94 83 77 83九年级80 81 70 81 73 78 82 80 70 40整理、描述数据将成绩按如下分段整理、描述这两组样本数据:成绩(x)40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100八年级人数0 0 1 11 7 1九年级人数 1 0 0 7 10 2(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)分析数据两组样本数据的平均数、中位数、众数、方差如表所示:年级平均数中位数众数方差八年级78.3 77.5 75 33.6九年级 78 80.5 a 52.1(1)表格中a 的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】法一,依题意△ABC 为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin 1B B +=,∴sinB=35,∵tanB=sin cos B B =34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34b a =故选B 2.B 【解析】试题解析:延长ED 交BC 于F ,∵AB ∥DE,∴380,1180318080100ABC ∠=∠=∠=-∠=-=o o o o o ,218018014040.CDE o o o o∠=-∠=-= 在△CDF 中,1100,240∠=∠=o o,故180121801004040.C ∠=-∠-∠=--=o o o o o故选B. 3.B 【解析】【分析】-≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.3 1.732【详解】-≈-,3 1.732()---≈,1.7323 1.268()1.73220.268---≈,()---≈,1.73210.732因为0.268<0.732<1.268,-表示的点与点B最接近,所以3故选B.4.B【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.5.C【解析】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,故选:C.点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.6.D【解析】【分析】本题主要考查二次函数的解析式【详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.故选D.【点睛】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.7.C【解析】【分析】根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.【详解】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C.考点:菱形的性质8.A【解析】从左面看,得到左边2个正方形,中间3个正方形,右边1个正方形.故选A.9.D.【解析】试题分析:根据一次函数和反比例函数的性质,分k>0和k<0两种情况讨论:当k<0时,一次函数图象过二、四、三象限,反比例函数中,-k>0,图象分布在一、三象限;当k>0时,一次函数过一、三、四象限,反比例函数中,-k<0,图象分布在二、四象限.故选D.考点:一次函数和反比例函数的图象.10.A【解析】【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA=30°.故选A.【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键11.D【解析】【详解】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴4 cos cos5OBC ABOAB=∠==.故选D.12.D【解析】【分析】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD∽△ABP′,得到BP′=2PD,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.【详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,∵=2,∴△APD∽△ABP′,∴BP′=2PD,∴2PD+PB=BP′+PB≥PP′,∴PP′=,∴2PD+PB≥4,∴2PD+PB的最小值为4,故选D.【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.甲.【解析】试题分析:根据方差的意义可知,方差越小,稳定性越好,由此即可求出答案.试题解析:因为甲的方差小于乙的方差,甲的稳定性好,所以甲机床的性能好.故答案为甲.考点:1.方差;2.算术平均数.14.22410【解析】【分析】根据完全平方公式进行展开,然后再进行同类项合并即可.【详解】解:2.故填22-【点睛】主要考查的是完全平方公式及二次根式的混合运算,注意最终结果要化成最简二次根式的形式. 15.28%.【解析】【分析】用被抽查的100名学生中参加社会实践活动时间在2~2.5小时之间的学生除以抽查的学生总人数,即可得解.【详解】由频数分布直方图知,2~2.5小时的人数为100﹣(8+24+30+10)=28,则该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的百分比为28100⨯100%=28%.故答案为:28%.【点睛】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.16.4cm.【解析】【分析】由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC 的长,由CD=OD-OC即可得出结论.【详解】由题意知OD⊥AB,交AB于点E,∵AB=16cm,∴BC=12AB=12×16=8cm,在Rt△OBE中,∵OB=10cm,BC=8cm,∴(cm),∴CD=OD-OC=10-6=4(cm)故答案为4cm.【点睛】本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.17.(﹣1,﹣1)【解析】【分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【详解】x=-422⨯=-1,把x=-1代入得:y=2-1-2=-1.则顶点的坐标是(-1,-1).故答案是:(-1,-1).【点睛】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.18.y=2(x+1)2+1.【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)x=1,y=12;(2)小华的打车总费用为18元.【解析】试题分析:(1)根据表格内容列出关于x、y的方程组,并解方程组.(2)根据里程数和时间来计算总费用.试题解析:(1)由题意得8812 101216 x yx y+=⎧⎨+=⎩,解得112xy=⎧⎪⎨=⎪⎩;(2)小华的里程数是11km,时间为14min.则总费用是:11x+14y=11+7=18(元).答:总费用是18元.20.(1)作图见解析;(2)证明见解析;【解析】【分析】(1)分别以B 、D为圆心,以大于12BD 的长为半径四弧交于两点,过两点作直线即可得到线段BD 的垂直平分线;(2)利用垂直平分线证得△DEO ≌△BFO 即可证得结论.【详解】解:(1)如图:(2)∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠ADB=∠CBD ,∵EF 垂直平分线段BD ,∴BO=DO ,在△DEO 和三角形BFO 中,{ADB CBDBO DO DOE BOF∠=∠=∠=∠,∴△DEO ≌△BFO (ASA ),∴DE=BF .考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.21.(1)见解析;(25 【解析】分析: (1)首先连接CO ,根据CD 与⊙O 相切于点C ,可得:∠OCD=90°;然后根据AB 是圆O 的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD ,即可推得△ADC ∽△CDB .(2)首先设CD 为x ,则AB=32x ,OC=OB=34x ,用x 表示出OD 、BD ;然后根据△ADC ∽△CDB ,可得:ACCB=CDBD ,据此求出CB 的值是多少,即可求出⊙O 半径是多少.详解:(1)证明:如图,连接CO ,,∵CD 与⊙O 相切于点C ,∴∠OCD=90°,∵AB 是圆O 的直径,∴∠ACB=90°,∴∠ACO=∠BCD ,∵∠ACO=∠CAD ,∴∠CAD=∠BCD ,在△ADC 和△CDB 中,CAD BCD ADC CDB ∠=∠⎧⎨∠=∠⎩∴△ADC ∽△CDB .(2)解:设CD 为x ,则AB=32x ,OC=OB=34x , ∵∠OCD=90°,∴22OC CD +223()4x x +=54x , ∴BD=OD ﹣OB=54x ﹣34x=12x , 由(1)知,△ADC ∽△CDB , ∴AC CB =CD BD, 即212x CB x =, 解得CB=1,∴22AC BC +5∴⊙O 5. 点睛: 此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.22. (1)24,1;(2) 54;(3)360.【解析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a,用总人数减去其它组的人数求得b;(2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解.【详解】(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=1.故答案是:24,1;(2)“排球”所在的扇形的圆心角为360°×=54°,故答案是:54;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).23.(1)x1=9,x2=﹣2;(2)x1=1,x2=﹣23.【解析】【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)x2﹣7x﹣18=0,(x﹣9)(x+2)=0,x﹣9=0,x+2=0,x1=9,x2=﹣2;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键.24.6【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x 的值进行计算即可得.【详解】原式=2121x x x x x--+÷ =()211x x x x -⋅- =11x -, 当x=76,原式=1716-=6. 【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.25.(1)y=-x+170;(2)W=﹣x 2+260x ﹣1530,售价定为130元时,每天获得的利润最大,最大利润是2元.【解析】【分析】(1)先利用待定系数法求一次函数解析式;(2)用每件的利润乘以销售量得到每天的利润W ,即W=(x ﹣90)(﹣x+170),然后根据二次函数的性质解决问题.【详解】(1)设y 与x 之间的函数关系式为y=kx+b ,根据题意得:1205014030k b k b +=⎧⎨+=⎩,解得:1170k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为y=﹣x+170;(2)W=(x ﹣90)(﹣x+170)=﹣x 2+260x ﹣1.∵W=﹣x 2+260x ﹣1=﹣(x ﹣130)2+2,而a=﹣1<0,∴当x=130时,W 有最大值2.答:售价定为130元时,每天获得的利润最大,最大利润是2元.【点睛】本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=每件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x 的取值范围.26.(1)证明见解析;(2)当t=3时,△AEQ 2;(3)(3,0)或(6,)或(0,【解析】(1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED 全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即可解决问题;【详解】(1)如图①中,∵C(6,0),∴BC=6在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由题意知,当0<t<6时,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等边三角形,∴不论t如何变化,△DEF始终为等边三角形;(2)如图②中,作AH⊥BC于H,则AH=AB•sin60°=33,∴S△AEC=12×3(6﹣t)=33(6)2t,∵EQ∥AB,∴△CEQ∽△ABC,∴CEQ ABC S S V V =(CE CB )2=2(6)36t -,即S △CEQ =2(6)36t -S △ABC =2(6)36t -×93=23(6)4t -, ∴S △AEQ =S △AEC ﹣S △CEQ =33(6)t -﹣23(6)t -=﹣3(t ﹣3)2+93, ∵a=﹣3<0, ∴抛物线开口向下,有最大值,∴当t=3时,△AEQ 的面积最大为93cm 2, (3)如图③中,由(2)知,E 点为BC 的中点,线段EQ 为△ABC 的中位线,当AD 为菱形的边时,可得P 1(3,0),P 3(6,3,当AD 为对角线时,P 2(0,3,综上所述,满足条件的点P 坐标为(3,0)或(6,3)或(0,3).【点睛】本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题. 27. (1)81;(2) 108人;(3)见解析.【解析】【分析】(1)根据众数的概念解答;(2)求出九年级学生体质健康的优秀率,计算即可;(3)分别从不同的角度进行评价.【详解】解:(1)由测试成绩可知,81分出现的次数最多,∴a=81,故答案为:81;(2)九年级学生体质健康的优秀率为:10+2100%=60% 20,九年级体质健康优秀的学生人数为:180×60%=108(人),答:估计该校九年级体质健康优秀的学生人数为108人;(3)①因为八年级学生的平均成绩高于九年级的平均成绩,且八年级学生成绩的方差小于九年级的方差,所以八年级学生的体质健康情况更好一些.②因为九年级学生的优秀率(60%)高于八年级的优秀率(40%),且九年级学生成绩的众数或中位数高于八年级的众数或中位数,所以九年级学生的体质健康情况更好一些.【点睛】本题考查的是用样本估计总体、方差、平均数、众数和中位数的概念和性质,正确求出样本的众数、理解方差和平均数、众数、中位线的性质是解题的关键.。
2019-2020年苏州市初三数学中考模拟试卷(九)(满分:130分考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.计算(-2)×5的结果是( )A.10 B.5 C.-5 D.-102.下列运算正确的是( )A.x3·x2=16 B.(x2)3=x5C.2a-3a=-a D.(x-2)2=x2-43.设x x的值满足( )A.1<x<2 B.2<x<3 C.3<x<4 D.4<x<54.给出下列四个函数:①y=-x;②y=x;③y=1x;④y=x2.当x<0时,y随x的增大而减小的函数有( )A.①③B.②④C.①④D.①③④5.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲、乙射击成绩的正确判断是( )A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲、乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较6.若-1≤y≤2y+1有( )A.最大值0 B.最大值3 C.最小值0 D.最小值17.圆锥底面圆的半径为3 cm,其侧面展开图是半圆,则圆锥的母线长为( )A.3 cm B.6 cm C.9 cm D.12 cm8.如图,下列条件中不能判断直线l1∥l2的是( )A.∠1=∠3 B.∠2=∠3C.∠4=∠5 D.∠2+∠4=180°9.如图,⊙O的半径为5,若OP=3,则经过点P的弦长可能是( )A .3B .6C .9D .1210.如图,⊙O 为半径的圆,点P 是直线y =-x +6上的一点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为 ( )A .3B .4C .6D .-1二、填空题(本大题共8小题,每小题3分,共24分)11.我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是_______毫米. 12.分解因式:x 3-6x 2+9x =_______.13.现有五张完全相同的卡片,上面分别写有“中国”、“美国”、“韩国”、“德国”、“英国”,把卡片背面朝上洗匀,从中随机抽取一张,抽到卡片对应的国家为亚洲国家的概率是_______.14.不等式组2063x x x ->⎧⎨+>⎩的解集是_______.15.如图,点A 在反比例函数y =6x(x>0)的图像上,且OA =4,过点A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于点B .则△ABC 的周长为_______.16.在四边形ABCD 中,给出三个条件:①AD ∥BC ;②AB =DC ;③AD =BC .以其中两个作为题设,余下一个作为结论,写出一个真命题:_______.(用“序号⇒序号”表示) 17.已知一次函数y =23x +b 与反比例函数y =3x中,x 与y 的对应值如下表:则不等式23x +b>3x的解集为_______. 18.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连接AO ,如果AB =3,AO =2,那么AC 的长等于_______. 三、解答题(本大题共11小题,共76分)计算:()20122cos30 3.142π-⎛⎫+--︒+- ⎪⎝⎭.20.(本题满分5分)解方程组:327239x y x y +=⎧⎨-=⎩21.(本题满分6分)先化简,再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程x 2-2x -2=0的正数根.22.(本题满分6分)某市举办中学生足球赛,初中男子组共有市区学校的A 、B 两队和县区学校的e 、f 、g 、h 四队报名参赛,六支球队分成甲、乙两组,甲组由A 、e 、f 三队组成,乙组由B 、g 、h 三队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛.(1)在甲组中,首场比赛抽e 队的概率是_______;(2)请你用画树状图或列表的方法,求首场比赛出场的两个队都 是县区学校队的概率.23.(本题满分6分)“校园手机”现象越来越受到社会的关注°某校小记著随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如下统计图:(1)求这次调查的家长人数,并补全图①; (2)求图②中表示家长“赞成”的圆心角的度数;(3)已知该地区共有6500名家长,估计其中反对中学生带手机的家长大约有多少名.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,现在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D 所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测的小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?25.(本题满分7分)某超市销售甲、乙两种商品,3月份该超市同时一次购进甲、乙两种商品共100件,购进甲种商品用去300元,购进乙种商品用去1200元.(1)若购进甲、乙两种商品的进价相同,求两种商品的数量分别是多少;(2)由于商品受到市民欢迎,超市4月份决定再次购进甲、乙两种商品共100件,但甲、乙两种商品进价在原基础上分别降20%、涨20%,甲种商品售价20元,乙种商品售价35元,若这次全部售出甲、乙两种商品后获得的总利润不少于1200元,该超市最多购进甲种商品多少件?如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF交对角线AC于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=AB的长.27.(本题满分8分)如图,在△ABC中,D是AB边上一点,⊙O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是⊙O的切线;(2)如果∠ACB=75°,①若⊙O的半径为2,求BD的长;②试问CD:BC的值是否为定值?若是,直接写出这个比值;若不是,请说明理由.28.(本题满分10分)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个交点和该抛物线的顶点、对称轴上一点为顶点的菱形称为这条抛物线的“抛物菱形”.(1)若抛物线y=ax2+bx-+c(a≠0)与x轴的两个交点为(-1,0)、(3,0),且这条抛物线的“抛物菱形”是正方形,求这条抛物线的函数解析式;(2)如图,四边形OABC是抛物线y=-x2+bx(b>0)的“抛物菱形”,且∠OAB=60°.①求“抛物菱形OABC”的面积;②将直角三角板中含有“60°角”的顶点与坐标原点O重合,两边所在直线与“抛物菱形OABC”的边AB、BC交于点E、F,△OEF的面积是否存在最小值?若存在,求出此时△OEF的面积;若不存在,说明理由.29.(本题满分10分)如图1,⊙O在直角坐标系中是一个以原点为圆心、半径为4的圆,AB是过圆心O的直径,点P从点B出发沿⊙O做匀速运动,过点P作PC垂直于直径AB,PC的长度随着点P的运动而变化.(各组数据已标出)(1)当点P的位置如图所示时,求∠OPC和∠POC的度数.(2)当点P的位置如图所示时,求PC的值.(3)探究:PC的长度随着∠BOP的变化而变化,设PC的值为y,∠BOP为x,并规定:①PC在x轴上方记为正,在x轴下方记为负;②逆时针旋转得到的角度记为正,顺时针旋转得到的角度记为负;③η=180°,12π=90°.请写出y关于x的函数关系式,以及x的取值范围.(直接写出答案)(4)试在图2中画出第(3)题中函数的图像.(5)求出该函数图像的对称轴.(直接写出答案,答案请用含有π的式子表示)参考答案1—10 DCCDB CBBCB11.2.5 ×10-312.x(x -3)2 13.2514.2<x<3 15.16.①③⇒②(或②③⇒①) 17.x>1或-2<x<0 18.+319.320.31x y =⎧⎨=-⎩21.11x -22.(1)13(2)4923.(1)280(人).(2)36°.(3)4550(名).24.解:由题意得,∠BAD=∠BCE , ∵∠ABD=∠CBE=90°, ∴△BAD ∽△BCE , ∴=, 即=,解得BD=13.6米.25.(1)购进甲种商品20件,乙种商品80件.(2)55件. 26.(1)略 (2)6.27.(1)略 -1. 28.(1)y =-12x 2+x +32或y =12x 2-x -32(2)①6 ②存在.29.(1)60°. (3) y =4sinx .x 可取任意实数.(4)图像如下:(5)x =2π±k π(k 为整数).。
2019-2020年苏州市初三中考数学一模模拟试卷【含答案】一.选择题(满分24分,每小题3分)1.下列计算正确的是()A.﹣=B.()﹣1=﹣C.÷=2 D.3﹣=3 2.一组数据:2,3,3,4,若添加一个数据3,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5 B.a≥1 C.a>1且a≠5 D.a≥1且a≠5 5.如图,AB是半圆O的直径,C是OB的中点,过点C作CD⊥AB,交半圆于点D,则与的长度的比为()A.1:2 B.1:3 C.1:4 D.1:56.如图:长方形纸片ABCD中,AD=4cm,AB=10cm,按如图的方式折叠,使点B与点D重合.折痕为EF,则DE长为()A.4.8 cm B.5 cm C.5.8 cm D.6 cm7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4 B.x<﹣2或0<x<4C.x<﹣2或x>4 D.﹣2<x<0或x>4二.填空题(满分24分,每小题3分)9.分解因式:x2﹣9x=.10.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.11.已知关于x,y的方程组的解满足x+y=5,则k的值为.12.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是.13.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.14.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是.15.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC=2,AD为BC边上的高,动点P在AD上,从点A出发,沿A→D方向运动,设AP=x,△ABP的面积为S1,矩形PDFE的面积为S 2,y=S1+S2,则y与x的关系式是.三.解答题17.(6分)解不等式组并写出它的整数解.18.(6分)解分式方程:﹣1=.19.(6分)在边长为1的小正方形组成的网格中建立如图所示的平面直角坐标系,△ABC 为格点三角形(顶点是网格线的交点).(1)画出△ABC先向上平移2个单位长度,再向左平移3个单位长度得到的△A1B1C1;(2)以点O为位似中心,在第一象限画出△ABC的位似图形△A2B2C2,使△A2B2C2与△ABC的位似比为2:1.20.(6分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E 的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为;(3)2月份王老师到药房买了抗生素类药D、E各一盒,若D中有两盒是降价药,E中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率.21.(6分)如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF ⊥CD于点F.(1)求证:四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.22.(6分)在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.四.解答题23.(8分)如图,AB是⊙O的直径,点C是圆上一点,点D是的中点,延长AD至点E,使得AB=BE.(1)求证:△ACF∽△EBF;(2)若BE=10,tan E=,求CF的长.24.(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y =的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.25.(10分)某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?26.(10分)如图,在直角坐标系中,直线y=﹣x+b与x轴正半轴,y轴正半轴分别交于点A,B,点F(2,0),点E在第一象限,△OEF为等边三角形,连接AE,BE(1)求点E的坐标;的面积;(2)当BE所在的直线将△OEF的面积分为3:1时,求S△AEB(3)取线段AB的中点P,连接PE,OP,当△OEP是以OE为腰的等腰三角形时,则b=(直接写出b的值)参考答案一.选择题1.解:(A)原式=﹣,故A错误;(B)原式==,故B错误;(D)原式=2,故D错误;故选:C.2.解:原数据的2、3、3、4的平均数为=3,中位数为=3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×2+(4﹣3)2]=0.5;新数据2、3、3、3、4的平均数为=3,中位数为3,众数为3,方差为×[(2﹣3)2+(3﹣3)2×3+(4﹣3)2]=0.4;∴添加一个数据3,方差发生变化,故选:D.3.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.4.解:由题意知,△=(﹣4)2﹣4×(a﹣5)×(﹣1)≥0,且a﹣5≠0,解得:a≥1且a≠5,故选:D.5.解:连接OD,∵AB是半圆O的直径,C是OB的中点,∴OD=2OC,∵CD⊥AB,∴∠DOB=60°,∴∠AOD=120°,∴与的长度的比为,故选:A.6.解:设DE=xcm,则BE=DE=x,AE=AB﹣BE=10﹣x,在Rt △ADE 中,DE 2=AE 2+AD 2, 即x 2=(10﹣x )2+16. 解得:x =5.8. 故选:C .7.解:设男孩x 人,女孩有y 人,根据题意得出:,解得:,故选:C .8.解:观察函数图象可发现:当x <﹣2或0<x <4时,一次函数图象在反比例函数图象上方,∴使y 1>y 2成立的x 取值范围是x <﹣2或0<x <4. 故选:B . 二.填空题9.解:原式=x •x ﹣9•x =x (x ﹣9), 故答案为:x (x ﹣9).10.解:∵袋中装有6个黑球和n 个白球, ∴袋中一共有球(6+n )个,∵从中任摸一个球,恰好是黑球的概率为, ∴=,解得:n =2. 故答案为:2. 11.解:,②×2﹣①,得3x =9k +9,解得x =3k +3,把x =3k +3代入①,得3k +3+2y =k ﹣1,解得y =﹣k ﹣2,∵x+y=5,∴3k+3﹣k﹣2=5,解得k=2.故答案为:212.解:设扇形的半径为r,圆心角为n°.由题意:•π•r=π,∴r=4,∴=π,∴n=120,故答案为120°13.解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.故答案为:.14.解:如图,过点O作OC⊥AB的延长线于点C,则AC =4,OC =2,在Rt △ACO 中,AO =,∴sin ∠OAB =. 故答案为:. 15.解:如图:连接BO ,CO ,∵△ABC 的边BC =4cm ,⊙O 是其外接圆,且半径也为4cm ,∴△OBC 是等边三角形,∴∠BOC =60°,∴∠A =30°.若点A 在劣弧BC 上时,∠A =150°.∴∠A =30°或150°.故答案为:30°或150°.16.解:∵在Rt △ABC 中,∠BAC =90°,AB =AC =2,AD 为BC 边上的高,AP =x ,∴∠BAD =∠CAD =45°,BC =4,AD =2,∴AP =PE =x ,PD =AD ﹣AP =2﹣x ,∴y =S 1+S 2=+(2﹣x )•x =﹣x 2+3x 故答案为:y ═﹣x 2+3x .三.解答题17.解:,由①得:x≥﹣1,由②得:x<2,∴不等式组的解集为﹣1≤x<2,则不等式组的整数解为﹣1,0,1.18.解:方程两边同时乘以(x+2)(x﹣2)得:(x﹣2)2﹣(x+2)(x﹣2)=16解得:x=﹣2,检验:当x=﹣2时,(x+2)(x﹣2)=0,∴x=﹣2是原方程的增根,原方程无解.19.解:(1)△A1B1C1;如图所示.(2)△A2B2C2如图所示.20.解:(1)2月份销售抗生素的总数是:6÷30%=20(盒),则E类的销售盒数是:20×10%=2(盒),则A类销售的盒数是:20﹣5﹣6﹣3﹣2=4(盒),;(2)极差是:6﹣2=4(盒);(3)若D中有两盒是降价药都用D表示,另一盒不降价的记作D,E中有一盒是降价药1,记作E,另一盒记作E1则共有20种情况,他买到两盒都是降价药的有6种情况,则概率是:=.21.证明:(1)∵AD∥BC,AE∥DC,∴四边形AECD是平行四边形,∵∠BAC=90°,E是BC的中点,∴AE=CE=BC,∴四边形AECD是菱形;(2)过A作AH⊥BC于点H,∵∠BAC=90°,AB=6,BC=10,∴AC=,∵,∴AH=,∵点E是BC的中点,BC=10,四边形AECD是菱形,∴CD=CE=5,∵S=CE•AH=CD•EF,▱AECD∴EF=AH=.法二:连接ED交AC于O,由题意得:AC=8,计算得ED=6..计算得5EF=6✘4,EF=.22.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x 千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y万元、2y万元,30y+15×2y=780,y=13,2y=26,2018年1至5月:道路硬化的里程为40千米,道路拓宽的里程为10千米,由题意得:13(1+a%)•40(1+5a%)+26(1+5a%)•10(1+8a%)=780(1+10a%),设a%=m,则520(1+m)(1+5m)+260(1+5m)(1+8m)=780(1+10m),10m2﹣m=0,m 1=,m2=0(舍),∴a=10.四.解答题23.(1)证明:∵点D是的中点,∴∠CAD=∠BAE.∵AB=BE,∴∠BAE=∠E,∴∠CAF=∠E.又∵∠AFC=∠EFB,∴△ACF∽△EBF;(2)解:∵AB为⊙O的直径,∴∠ACB=90°.∵△ACF∽△EBF,∴∠EBF=∠ACF=90°.∵BE=10,tan E=,∴BF=BE•tan E=.∵∠CAF=∠E,∴AC=3CF.在Rt△ABC中,∠ACB=90°,AB=BE=10,AC=3CF,BC=CF+,∴AB2=AC2+BC2,即102=9CF2+(CF+)2,解得:CF=或CF=﹣(舍去).∴CF的长为.24.解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,将y=2代入y=﹣x+3得:x=2,∴M(2,2),将x=4代入y=﹣x+3得:y=1,∴N(4,1),把M的坐标代入y=得:k=4,∴反比例函数的解析式是y=;(2)由题意可得:S四边形BMON =S矩形OABC﹣S△AOM﹣S△CON=4×2﹣×2×2﹣×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).25.解:(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b得:,解得:,即:函数的表达式为:y=﹣20x+500,(25>x≥6);(2)设:该品种蜜柚定价为x元时,每天销售获得的利润w最大,则:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),∵﹣20<0,故w有最大值,当x=﹣==15.5时,w的最大值为1805元;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x元时,既能销售完又能获得最大利润w,由题意得:50(500﹣20x)≥12000,解得:x≤13,w=﹣20(x﹣25)(x﹣6),当x=13时,w=1680,此时,既能销售完又能获得最大利润.26.解:(1)如图1,过E作EC⊥x轴于C,∵点F(2,0),∴OF=2,∵△OEF为等边三角形,∴OC=OF=1,Rt△OEC中,∠EOC=60°,∴∠OEC=30°,∴EC=,∴E(1,);(2)当BE所在的直线将△OEF的面积分为3:1时,存在两种情况:①如图2,S△OED :S△EDF=3:1,即OD:DF=3:1,∴D(,0),∵E(1,),∴ED的解析式为:y=﹣2x+3,∴B(0,3),A(3,0),∴OB=OA=3,∴S△AEB =S△AOB﹣S△EOB﹣S△AOE=×3×3﹣×3×1﹣×3×=﹣﹣=9﹣;②S△OED :S△EDF=1:3,即OD:DF=1:3,∴D(,0),∵E(1,),∴ED的解析式为:y=2x﹣,∴B(0,﹣),∵点B在y轴正半轴上,∴此种情况不符合题意;综上,S△AEB的面积是9﹣;(3)存在两种情况:①如图3,OE=EP,过E作ED⊥y轴于D,作EM⊥AB于M,作EG⊥OP于G,∵△AOB是等腰直角三角形,P是AB的中点,∴OP⊥AB,∴∠EGP=∠GPM=∠EMP=90°,∴四边形EGPM是矩形,∵OE=EP,∴EM=PG=OP=AB=,∴S△AOB =S△BOE+S△AOE+S△ABE,=++,b=2+2.②如图4,当OE=OP时,则OE=OP=2,∵△AOB是等腰直角三角形,P是AB的中点,∴AB=2OP=4,∴OB=2,即b=2,故答案为:2+2或2.中学数学一模模拟试卷一.选择题(满分30分,每小题3分)1.估计﹣2的值在()A.0到l之间B.1到2之问C.2到3之间D.3到4之间2.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.3.下列计算正确的是()A.3x2﹣2x2=1 B. +=C.x÷y•=x D.a2•a3=a54.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④5.甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩一样,而他们的方差分别是S甲2=1.8,S乙2=0.7,则成绩比较稳定的是()A.甲稳定B.乙稳定C.一样稳定D.无法比较6.如图是一个几何体的三视图,则该几何体的展开图可以是()A.B.C.D.7.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.8.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0 B.x2﹣36x+36=0C.4x2+4x+1=0 D.x2﹣2x﹣1=09.如图,在菱形ABCD中,点P从B点出发,沿B→D→C方向匀速运动,设点P运动时间为x,△APC的面积为y,则y与x之间的函数图象可能为()A.B.C.D.10.如图,在菱形ABCD中,∠ABC=60°,AB=4,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.B.2C.πD.π二.填空题(满分18分,每小题3分)11.因式分解:a3﹣9a=.12.方程=的解是.13.已知,如图,扇形AOB中,∠AOB=120°,OA=2,若以A为圆心,OA长为半径画弧交弧AB于点C,过点C作CD⊥OA,垂足为D,则图中阴影部分的面积为.14.若点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,则此抛物线的对称轴是.15.已知点A是双曲线y=在第一象限的一动点,连接AO,过点O做OA⊥OB,且OB=2OA,点B在第四象限,随着点A的运动,点B的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.16.如图,在矩形ABCD中,AB=15,BC=17,将矩形ABCD绕点D按顺时针方向旋转得到矩形DEFG,点A落在矩形ABCD的边BC上,连接CG,则CG的长是.三.解答题17.(9分)(x+3)(x﹣1)=12(用配方法)18.(9分)如图,在矩形ABCD中,M是BC中点,请你仅用无刻度直尺按要求作图.(1)在图1中,作AD的中点P;(2)在图2中,作AB的中点Q.19.(10分)先化简,再求值(1﹣)÷,其中x=4.20.(10分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A 等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.21.(12分)如图,在⊙O 中,点A 是的中点,连接AO ,延长BO 交AC 于点D . (1)求证:AO 垂直平分BC .(2)若,求的值.22.(12分)如图,将一矩形OABC 放在直角坐标系中,O 为坐标原点,点A 在y 轴正半轴上,点E 是边AB 上的一个动点(不与点A 、B 重合),过点E 的反比例函数y =(x >0)的图象与边BC 交于点F(1)若△OAE 的面积为S 1,且S 1=1,求k 的值;(2)若OA =2,OC =4,反比例函数y =(x >0)的图象与边AB 、边BC 交于点E 和F ,当△BEF 沿EF 折叠,点B 恰好落在OC 上,求k 的值.23.(12分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C 两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)24.(14分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣,过点A(﹣3,2)和点B(2,),与y轴交于点C,连接AC交x轴于点D,连接OA,OB(1)求抛物线y=ax2+bx﹣的函数表达式;(2)求点D的坐标;(3)∠AOB的大小是;(4)将△OCD绕点O旋转,旋转后点C的对应点是点C′,点D的对应点是点D′,直线AC′与直线BD′交于点M,在△OCD旋转过程中,当点M与点C′重合时,请直接写出点M到AB的距离.25.(14分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若=,求证:CD=DH.参考答案1.B.2.B.3.D.4.D.5.B.6.A.7.C.8.C.9.A.10.D.11.a(a+3)(a﹣3).12.x=﹣413.π+.14.x=3.15.y=﹣.16..17.解:将原方程整理,得x2+2x=15(1分)两边都加上12,得x2+2x+12=15+12(2分)即(x+1)2=16开平方,得x+1=±4,即x+1=4,或x+1=﹣4(4分)∴x1=3,x2=﹣5(5分)18.解:(1)如图点P即为所求;(2)如图点Q即为所求;19.解:原式=(﹣)÷=•=,当x=4时,原式==.20.解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.21.(1)证明:延长AO交BC于H.∵=,∴OA⊥BC,∴BH=CH,∴AO垂直平分线段BC.(2)解:延长BD交⊙O于K,连接CK.在Rt△ACH中,∵tan∠ACH==,∴可以假设AH=4k,CH=3k,设OA=r,在Rt△BOH中,∵OB2=BH2+OH2,∴r2=9k2+(4k﹣r)2,∴r=k,∴OH=AH=OA=k,∵BK是直径,∴∠BCK=90°,∴CK⊥BC,∵OA⊥BC,∴OA∥CK,∵BO=OK,BH=HC,∴CK=2OH=k,∵CK∥OA,∴△AOD∽△CKD,∴===.22.解:(1)设E(a,b),则OA=b,AE=a,k=ab∵△AOE的面积为1,∴k=1,k=2;答:k的值为:2.(2)过E作ED⊥OC,垂足为D,△BEF沿EF折叠,点B恰好落在OC上的B′,∵OA=2,OC=4,点E、F在反比例函数y=的图象上,∴E(,2),F(4,),∴EB=EB′=4﹣,BF=B′F=2﹣,∴=,由△EB′F∽△B′CF得:,∵DE=2,∴B′C=1,在Rt△B′FC中,由勾股定理得:12+()2=(2﹣)2,解得:k=3,答:k的值为:3.23.解:过B作BD⊥AC于点D.在Rt△ABD中,BD=AB•sin∠BAD=4×0.8=3.2(千米),∵△BCD中,∠CBD=90°﹣35°=55°,∴CD=BD•tan∠CBD=4.48(千米),∴BC=CD÷sin∠CBD≈6(千米).答:B、C两地的距离大约是6千米.24.解:(1)∵抛物线y=ax2+bx﹣过点A(﹣3,2)和点B(2,)∴解得:∴抛物线的函数表达式为:y=x2+x﹣(2)当x=0时,y=ax2+bx﹣=﹣∴C(0,﹣)设直线AC解析式为:y=kx+c∴解得:∴直线AC解析式为y=﹣x﹣当y=0时,﹣x﹣=0,解得:x=﹣1∴D(﹣1,0)(3)如图1,连接AB∵A(﹣3,2),B(2,)∴OA2=32+(2)2=21,OB2=22+()2=7,AB2=(2+3)2+()2=28 ∴OA2+OB2=AB2∴∠AOB=90°故答案为:90°.(4)过点M作MH⊥AB于点H,则MH的长为点M到AB的距离.①如图2,当点M与点C′重合且在y轴右侧时,∵△OCD绕点O旋转得△OC'D'(即△OMD)∴OM=OC=,OD'=OD=1,∠MOD'=∠COD=90°∴MD'==2,∠MD'O=60°,∠OMD'=30°∵∠MOD'=∠AOB=90°∴∠MOD'+∠BOM=∠AOB+∠BOM即∠BOD'=∠AOM∵OA=,OB=∴∴△BOD'∽△AOM∴∠BD'O=∠AMO=60°,∴∠AMD'=∠AMO+∠OMD'=60°+30°=90°,即AM⊥BD' 设BD'=t(t>0),则AM=t,BM=BD'﹣MD'=t﹣2∵在Rt△AMB中,AM2+BM2=AB2∴(t)2+(t﹣2)2=28解得:t1=﹣2(舍去),t2=3∴AM=3,BM=1∵S△AMB=AM•BM=AB•MH∴MH=②如图3,当点M与点C′重合且在y轴左侧时,∴∠MOD'﹣∠AOD'=∠AOB﹣∠AOD'即∠AOM=∠BOD'∴同理可证:△AOM∽△BOD'∴∠AMO=∠BD'O=180°﹣∠MD'O=120°,∴∠AMD'=∠AMO﹣∠OMD'=120°﹣30°=90°,即AM⊥BD' 设BD'=t(t>0),则AM=t,BM=BD'+MD'=t+2∵在Rt△AMB中,AM2+BM2=AB2∴(t)2+(t+2)2=28解得:t1=2,t2=﹣3(舍去)∴AM=2,BM=4=AM•BM=AB•MH∵S△AMB∴MH=综上所述,点M到AB的距离为或.25.(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直径,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切线;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=6.在Rt△ABD中,AB=6,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴==,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.中学数学一模模拟试卷一、选择题(每小题3分,共30分) 1.实数2019的相反数是( ) A .2019B .-2019C .12019D .−120192.下面几个平面图形中为左侧给出圆锥俯视图的是( )A .B .C .D .3.将6120 000用科学记数法表示应为( ) A .0.612×107B .6.12×106C .61.2×105D .612×1044.函数中,自变量x 的取值范围是( ) A .x >5B .x <5C .x≥5D .x≤55.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6.下列运算正确的是( ) A .a2+a3=a5 B .(2a3)2=2a6 C .a3•a4=a12 D .a5÷a3=a2 7.有一组数据:1,2,3,6,这组数据的方差是( )A .2.5B .3C .3.5D .48.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm2,则较大多边形的面积为( ) A .9cm2B .16cm2C .56cm2D .24cm29.某件商品原价为1000元,连续两次都降价x%后该件商品售价为640元,则下列所列方程正确的是( ) A .1000(1-x%)2=640B .1000(1-x%)2=360C.1000(1-2x%)=640 D.1000(1-2x%)=36010.下列关于二次函数y=2(x-3)2-1的说法,正确的是()A.对称轴是直线x=-3B.当x=3时,y有最小值是-1C.顶点坐标是(3,1)D.当x>3时,y随x的增大而减小二、填空题(每小题4分,共16分)11.一元二次方程x2+3x=0的解是12.如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为130°.13.一次函数y=kx+b的图象如图所示,若y>0,则x的取值范围是14.如图,在矩形ABCD中,按以下步骤作图:①分别以点A和点C为圆心,大于12AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=3,CE=5,则该矩形的周长为.三、解答题(共54分)15.(1)计算:10 120192|3tan3022018π-︒⎛⎫⎛⎫--++⎪ ⎪⎝⎭⎝⎭;(2)解不等式组:3122(1)5x x x ->⎧⎨+<+⎩16.解方程:22111xx x +=-- 17.某商场为了方便顾客使用购物车,将自动扶梯由坡角30°的坡面改为坡度为1:3的坡面.如图,BD 表示水平面,AD 表示电梯的铅直高度,如果改动后电梯的坡面AC 长为米,求改动后电梯水平宽度增加部分BC 的长.(结果保留整数,≈1.4≈1.7)18.某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调査.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调査得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,样本容量为 80 ,请补全条形统计图;(2)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到三种信号灯的可能性相同,求小明在两个路口都遇到绿灯的概率.(请用“画树状图”或“列表”的方法写出分析过程)19.如图,一次函数y=k1x+b (k1≠0)与反比例函数y=kx (k2≠0)的图象交于A (-1,-4)和点B (4,m )(1)求这两个函数的解析式;(2)已知直线AB 交y 轴于点C ,点P (n ,0)在x 轴的负半轴上,若△BCP 为等腰三角形,求n 的值.20.如图1,以Rt△ABC的直角边BC为直径作⊙O,交斜边AB于点D,作弦DF交BC于点E.(1)求证:∠A=∠F;(2)如图2,连接CF,若∠FCB=2∠CBA,求证:DF=DB;(3)如图3,在(2)的条件下,H为线段CF上一点,且12FHHC=,连接BH,恰有BH⊥DF,若AD=1,求△BFE的面积.一、填空题(每小题4分,共20分)21.已知,则x2+2x=22.点P(2,17)为二次函数y=ax2+4ax+5图象上一点,其对称轴为l,则点P关于l的对称点的坐标为23.如图所示的图案(阴影部分)是这样设计的:在△ABC中,AB=AC=2cm,∠ABC=30°,以A为圆心,以AB为半径作弧BEC,以BC为直径作半圆BFC,则图案(阴影部分)的面积是.(结果保留π)24.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m,使关于x的方程3111mxx x-=--有正整数解的概率为.25.如图,点P 在第一象限,点A 、C 分别为函数y=kx (x >0)图象上两点,射线PA 交x 轴的负半轴于点B ,且P0过点C ,12PA AB,PC=CO ,若△PAC 的面积为2534,则k= .二、解答题(共30分) 26.某种蔬菜每千克售价y1(元)与销售月份x 之间的关系如图1所示,每千克成本y2(元)与销售月份x 之间的关系如图2所示,其中图1中的点在同一条线段上,图2中的点在同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1)求出y1与x 之间满足的函数表达式,并直接写出x 的取值范围; (2)求出y2与x 之间满足的函数表达式;(3)设这种蔬菜每千克收益为w 元,试问在哪个月份出售这种蔬菜,w 将取得最大值?并求出此最大值.(收益=售价-成本)27.(1)模型探究:如图1,D 、E 、F 分别为△ABC 三边BC 、AB 、AC 上的点,且∠B=∠C=∠EDF=a .△BDE 与△CFD 相似吗?请说明理由; (2)模型应用:△ABC 为等边三角形,其边长为8,E 为AB 边上一点,F 为射线AC 上一点,将△AEF 沿EF 翻折,使A 点落在射线CB 上的点D 处,且BD=2.①如图2,当点D 在线段BC 上时,求AEAF 的值;②如图3,当点D 落在线段CB 的延长线上时,求△BDE 与△CFD 的周长之比.28.如图1,以点A(-1,2)、C(1,0)为顶点作Rt△ABC,且∠ACB=90°,tanA=3,点B位于第三象限(1)求点B的坐标;(2)以A为顶点,且过点C的抛物线y=ax2+bx+c(a≠0)是否经过点B,并说明理由;(3)在(2)的条件下(如图2),AB交x轴于点D,点E为直线AB上方抛物线上一动点,过点E作EF⊥BC于F,直线FF分别交y轴、AB于点G、H,若以点B、G、H为顶点的三角形与△ADC相似,求点E的坐标.参考答案及试题解析1. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2. 【分析】直接利用相反数的定义进而得出答案.【解答】解:实数2019的相反数是:-2009.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.3. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:6120000=6.12×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求范围.【解答】解:根据题意得:x-5≥0解得:x≥5故选:C.【点评】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5. 【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故A错误;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,又是中心对称图形,故D正确.故选:D.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6. 【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、(2a3)2=4a6,故此选项错误;C、a3•a4=a7,故此选项错误;D、a5÷a3=a2,故此选项正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.7. 【分析】先求平均数,再代入公式S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],计算即可.【解答】解:x=(1+2+3+6)÷4=3,S2=14[(1-3)2+(2-3)2+(3-3)2+(6-3)2]=3.5.故选:C.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为x,则方差S2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8. 【分析】根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.【解答】解:∵两个相似多边形的周长比是2:3,∴两个相似多边形的相似比是2:3,∴两个相似多边形的面积比是4:9,∵较小多边形的面积为4cm2,∴较大多边形的面积为9cm2,故选:A.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.9. 【分析】等量关系为:原价×(1-下降率)2=640,把相关数值代入即可.【解答】解:∵第一次降价后的价格为1000×(1-x%),第二次降价后的价格为1000×(1-x%)×(1-x%)=1000×(1-x%)2,∴方程为1000(1-x%)2=640.故选:A.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.10. 【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:由二次函数y=2(x-3)2-1可知:开口向上,顶点坐标为(3,-1),当x=3时有最小值是-1;对称轴为x=3,当x≥3时,y随x的增大而增大,当x<3时,y随x的增大而减小,故A、C、D错误,B正确,故选:B.【点评】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性.11. 【分析】提公因式后直接解答即可.【解答】解:提公因式得,x(x+3)=0,解得x1=0,x2=-3.故答案为0,-3.【点评】本题考查了解一元二次方程--因式分解法,要根据方程特点选择合适的方法.12. 【分析】根据平行线的性质由AB∥CD得到∠FEB=∠C=50°,然后根据邻补角的定义得到∠AEF=180°-∠BEF=180°-50°=130°.【解答】解:∵AB∥CD,∴∠FEB=∠C=50°,∴∠AEF=180°-∠BEF=180°-50°=130°.故答案为:130°.【点评】本题考查了平行线的性质以及邻补角的定义.解决问题的关键是掌握:两直线平行,同位角角相等.13. 【分析】直接利用一次函数图象与x轴的交点得出y>0时x的取值范围.【解答】解:如图所示:y>0,则x的取值范围是:x<-2.故答案为:x<-2.【点评】此题主要考查了一次函数的性质,正确利用数形结合分析是解题关键.14. 【分析】连接EA,如图,利用基本作图得到MN垂直平分AC,根据线段垂直平分线的性质得到EA=EC=5,然后利用勾股定理计算出AD,从而得到矩形的周长.【解答】解:连接EA,如图,。
江苏省苏州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.二次函数y =ax 2+bx+c (a≠0)和正比例函数y =﹣13x 的图象如图所示,则方程ax 2+(b+ 13)x+c =0(a≠0)的两根之和( )A .大于0B .等于0C .小于0D .不能确定2.如图,在ABC V 中,D 、E 分别在边AB 、AC 上,//DE BC ,//EF CD 交AB 于F ,那么下列比例式中正确的是( )A .AF DEDF BC= B .DF AFDB DF= C .EF DECD BC= D .AF ADBD AB= 3.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A .92432B .98132C .82432D .881324.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b --5.在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差6.方程(m –2)x 2+3mx+1=0是关于x 的一元二次方程,则( ) A .m≠±2B .m=2C .m=–2D .m≠27.已知如图,△ABC 为直角三角形,∠C =90°,若沿图中虚线剪去∠C ,则∠1+∠2等于( )A .315°B .270°C .180°D .135°8.化简221x -÷11x -的结果是( ) A .21x + B .2xC .21x - D .2(x +1)9.一个多边形的内角和比它的外角和的3倍少180°,那么这个多边形的边数是( ) A .7B .8C .9D .1010.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B 所表示的实数是( ) A .1 B .-6 C .2或-6 D .不同于以上答案 11.下列二次根式中,是最简二次根式的是( ) A .48B .22x y +C .15D .0.312.如图,已知Rt △ABC 中,∠BAC=90°,将△ABC 绕点A 顺时针旋转,使点D 落在射线CA 上,DE 的延长线交BC 于F ,则∠CFD 的度数为( )A .80°B .90°C .100°D .120°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.点A (x 1,y 1)、B (x 1,y 1)在二次函数y=x 1﹣4x ﹣1的图象上,若当1<x 1<1,3<x 1<4时,则y 1与y 1的大小关系是y 1_____y 1.(用“>”、“<”、“=”填空)14.如图,已知圆锥的母线 SA 的长为 4,底面半径 OA 的长为 2,则圆锥的侧面积等于 .15.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,23=AB BC ,DE=6,则EF= .16.如图,直线a 经过正方形ABCD 的顶点A ,分别过此正方形的顶点B 、D 作BF a ⊥于点F 、DE a⊥ 于点E .若85DE BF ==,,则EF的长为________.17.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.18.若关于x 的方程111m xx x ----=0有增根,则m 的值是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:(1x ﹣21x -)÷2212x xx x +-+,其中x 的值从不等式组11022(1)x x x⎧+⎪⎨⎪-≤⎩>的整数解中选取.20.(6分)已知:如图,∠ABC=∠DCB ,BD 、CA 分别是∠ABC 、∠DCB 的平分线. 求证:AB=DC .21.(6分)如图,已知△ABC,以A 为圆心AB 为半径作圆交AC 于E,延长BA 交圆A 于D 连DE 并延长交BC 于F, 2CE CF CB =⋅(1)判断△ABC 的形状,并证明你的结论; (2)如图1,若BE=CE=23,求⊙A 的面积; (3)如图2,若tan ∠CEF=12,求cos ∠C 的值.22.(8分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是________;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.(8分)小明随机调查了若干市民租用共享单车的骑车时间t (单位:分),将获得的数据分成四组,绘制了如下统计图(A :0<t≤10,B :10<t≤20,C :20<t≤30,D :t >30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A 组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率.24.(10分)如图,在正方形ABCD中,E为对角线AC上一点,CE=CD,连接EB、ED,延长BE交AD于点F.求证:DF2=EF•BF.25.(10分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了位好友.已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?26.(12分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m ,小王的眼睛离地面1.65m ,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(3≈1.732,结果精确到0.1m ).27.(12分)如图,四边形 ABCD 中,对角线 AC 、BD 相交于点 O ,若22OA OB OC OD ==== AB ,求证:四边形 ABCD 是正方形参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】设20(0)ax bx c a ++=≠的两根为x 1,x 2,由二次函数的图象可知12x x 0+<,a >0;设方程210(0)3ax b x c a ⎛⎫+++=≠ ⎪⎝⎭的两根为m ,n ,再根据根与系数的关系即可得出结论.【详解】解:设20(0)ax bx c a ++=≠的两根为x 1,x 2,∵由二次函数的图象可知12x x 0+<,a >0, 0ba∴-<.设方程210(0)3ax b x c a ⎛⎫+++=≠ ⎪⎝⎭的两根为m ,n ,则1133b b m n a a a++=-=-- 010300a ab am m >∴-<-<∴+<Q Q .故选C . 【点睛】本题考查的是抛物线与x 轴的交点,熟知抛物线与x 轴的交点与一元二次方程根的关系是解答此题的关键. 2.C 【解析】 【分析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断. 【详解】A 、∵EF ∥CD ,DE ∥BC ,∴AF AE DF EC =,AE DE AC BC =,∵CE≠AC ,∴AF DEDF BC ≠,故本选项错误; B 、∵EF ∥CD ,DE ∥BC ,∴AF AE DF EC =,AE AD EC BD =,∴AF AD DF BD =,∵AD≠DF ,∴DF AFDB DF≠,故本选项错误;C 、∵EF ∥CD ,DE ∥BC ,∴DEAE BC AC =,EFAE CD AC =,∴EFDECD BC =,故本选项正确; D 、∵EF ∥CD ,DE ∥BC ,∴ADAE ABAC =,AFAE AD AC =,∴AFAD AD AB =,∵AD≠DF ,∴AF ADBD AB≠,故本选项错误. 故选C. 【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健. 3.A 【解析】分析:连接OE 1,OD 1,OD 2,如图,根据正六边形的性质得∠E 1OD 1=60°,则△E 1OD 1为等边三角形,再根据切线的性质得OD 2⊥E 1D 1,于是可得OD 2=2E 1D 1=2×2,利用正六边形的边长等于它的半径得到正六边形A 2B 2C 2D 2E 2F 2的边长2,同理可得正六边形A 3B 3C 3D 3E 3F 3的边长=2×2,依此规律可得正六边形A 11B 11C 11D 11E 11F 11的边长=(3)10×2,然后化简即可. 详解:连接OE 1,OD 1,OD 2,如图,∵六边形A 1B 1C 1D 1E 1F 1为正六边形, ∴∠E 1OD 1=60°,∴△E 1OD 1为等边三角形,∵正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切, ∴OD 2⊥E 1D 1, ∴OD 2=32E 1D 1=32×2, ∴正六边形A 2B 2C 2D 2E 2F 2的边长=32×2, 同理可得正六边形A 3B 3C 3D 3E 3F 3的边长=32×2, 则正六边形A 11B 11C 11D 11E 11F 11的边长=310×2=92432. 故选A .点睛:本题考查了正多边形与圆的关系:把一个圆分成n (n 是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径. 4.C 【解析】 解:A .22233a a b ab=,故本选项错误; B .2133a a a a =--,故本选项错误;C .22a ba b ++,不能约分,故本选项正确;D .222()()()a ab a a b aa b a b a b a b--==-+-+,故本选项错误. 故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键.5.D【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
2019届苏州市中考数学预测试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内. 1.|﹣2|的值是( ) A .﹣2 B .2C.D.﹣2.已知某种纸一张的厚度约为0.0089cm ,用科学记数法表示这个数为( ) A .8.9×10﹣5 B .8.9×10﹣4 C .8.9×10﹣3 D .8.9×10﹣2 3.计算a 3•(﹣a )2的结果是( ) A .a 5B .﹣a 5C .a 6D .﹣a 64.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是﹣1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( ) A.+1B.C.﹣1D .1﹣5.已知一次函数y=ax ﹣x ﹣a +1(a 为常数),则其函数图象一定过象限( ) A .一、二B .二、三C .三、四D .一、四6.在△ABC 中,AB=3,AC=2.当∠B 最大时,BC 的长是( ) A .1B .5C.D.7.一元二次方程2x 2+3x +1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定8.下列运算结果正确的是( )A .a 2+a 3=a 5B .a 2·a 3=a 6C .a 3÷a 2=aD .(a 2)3=a 59.如图,将矩形ABCD 绕点A 逆时针旋转90°至矩形AEFG ,点D 的旋转路径为 ⌒DG,若AB =1,BC =2,则阴影部分的面积为( )A .π3+2B .1+π2 C .π2D .π3+1A BG(第9题)BCDEF(第10题)(第4题)10.如图,将正六边形ABCDEF 放入平面直角坐标系后,若点A 、B 、E 的坐标分别为 (a ,b )、(3,1)、(-a ,b ),则点D 的坐标为( )A .(1,3)B .(3,-1)C .(-1,-3)D .(-3,1)二、填空题:本大题共8小题,每小题3分,共24分,不需写出解答过程,请把最后结果填在题中横线上. 11.分解因式2x 2+4x +2= ▲ .12.已知一组数据2,6,5,2,4,则这组数据的中位数是 ▲ .13.若关于x 的方程x 2+mx +5=0有一个根为1,则该方程的另一根为 ▲ . 14.如图,△ABC 是⊙O 的内接三角形,AD 是⊙O 直径,若∠ABC =50°,则∠CAD = ▲ °.15.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD的面积为 ▲ .16.如图,A (a ,b )、B (1,4)(a >1)是反比例函数y =kx (x >0)图像上两点,过A 、B 分别作x 轴、y 轴的垂线,垂足分别为C 、D 、E 、F ,AE 、BD 交于点G .则四边形ACDG 的面积随着a 的增大而 ▲ .(填“减小”、“不变”或“增大”)17.二次函数y =a (x -b )2+c (a <0)的图像经过点(1,1)和(3,3),则b 的取值范围是 ▲ .18.如图,在△ABC 中,∠C =90°,AC =BC =1,P 为△ABC 内一个动点,∠PAB =∠PBC ,则CP 的最小值为▲ .(第14题)ABCDE F M (第15题)(第16题)(第18题)2019届苏州市中考数学预测卷答卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题:11. ;12. ;13. ;14. ; 15. ;16. ;17. ;18. ; 三. 解答题(共10小题)19.(本题满分5分)计算:01120172()4---+.20. (5分)解不等式组 :并将解集在数轴上表示.21.(6分)先化简,再求值:(b a +b +b a -b ) ÷ a a 2-b 2.其中2017,a b ==22. (6分)一个不透明的袋子中,装有2个红球,1个白球,1个黄球,这些球除颜色外都相同.求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是红球;(2)搅匀后从中任意摸出2个球,2个都是红球.23.(8分)某公司在某市五个区投放共享单车供市民使用,投放量的分布及投放后的使用情况统计如下.(1)该公司在全市一共投放了▲万辆共享单车;(2)在扇形统计图中,B区所对应扇形的圆心角为▲°;(3)该公司在全市投放的共享单车的使用量占投放量的85%,请计算C区共享单车的使用量并补全条形统计图.24.(8分)将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.25.(8分)如图,正比例函数y=2x的图象与反比例函数y=的图象交于点A、B,AB=2,(1)求k的值;(2)若反比例函数y=的图象上存在一点C,则当△ABC为直角三角形,请直接写出点C的坐标.26.(10分)如图,在Rt △ABC 中,∠A =90°,点D 、E 分别在AC 、BC 上,且CD ·BC =AC ·CE ,以E 为圆心,DE 长为半径作圆,⊙E 经过点B ,与AB 、BC 分别交于点F 、G .(1)求证:AC 是⊙E 的切线; (2)若AF =4,CG =5, ①求⊙E 的半径;②若Rt △ABC 的内切圆圆心为I ,则IE = ▲ .27. (10分)如图,在平面直角坐标系中,二次函数y=ax 2+bx ﹣4(a ≠0)的图象与x 轴交于A (﹣2,0)、C (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D . (1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.(第26题)28. (10分)如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t 秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.参考答案一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题:11. 2(x +1)2 12.4 13. 5 14.40 15.16 16.增大 17.b >2 18.2-1 三、解答题: 19.2-;20. (本题5分)解不等式组:.解:解①得x <2,解②得x ≥﹣1,则不等式组的解集是﹣1≤x <2. 数轴略。
江苏省苏州市2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m ,将0.000 000 04用科学记数法表示为( )A .0.4×108B .4×108C .4×10﹣8D .﹣4×1082.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA 和折线BCD 分别表示两车离甲地的距离y (单位:千米)与时间x (单位:小时)之间的函数关系.则下列说法正确的是( )A .两车同时到达乙地B .轿车在行驶过程中进行了提速C .货车出发3小时后,轿车追上货车D .两车在前80千米的速度相等3.某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+4.如图所示,从☉O 外一点A 引圆的切线AB ,切点为B ,连接AO 并延长交圆于点C ,连接BC ,已知∠A=26°,则∠ACB 的度数为( )A .32°B .30°C .26°D .13°5.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a≥3 D .a≤36.若代数式11xx+-有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠17.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.310B.103C.9 D.928.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或109.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.CDACB.BCABC.BDBCD.ADAC10.4的平方根是()A.16 B.2 C.±2 D.±11.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2C.x>﹣2 D.x≠﹣2 12.图中三视图对应的正三棱柱是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:sin30°﹣(﹣3)0=_____.1464_____.15.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.16.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km1,该数据用科学记数法表示为__________km1.17.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是,AFBE=.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣23,求旋转角a的度数.18.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限,若反比例函数kyx的图象经过点B,则k的值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4);点D的坐标为(0,2),点P为二次函数图象上的动点.(1)求二次函数的表达式;(2)当点P位于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值;(3)在y轴上是否存在点F,使∠PDF与∠ADO互余?若存在,直接写出点P的横坐标;若不存在,请说明理由.20.(6分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?21.(6分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.22.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?23.(8分)某自动化车间计划生产480个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20分钟,恢复生产后工作效率比原来提高了13,结果完成任务时比原计划提前了40分钟,求软件升级后每小时生产多少个零件?24.(10分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.求y与x之间的函数关系式;设种植的总成本为w元,①求w与x之间的函数关系式;②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.25.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=513,求DG的长,26.(12分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.27.(12分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC 的三个顶点都在格点上,且直线m、n互相垂直.(1)画出△ABC关于直线n的对称图形△A′B′C′;(2)直线m上存在一点P,使△APB的周长最小;①在直线m上作出该点P;(保留画图痕迹)②△APB的周长的最小值为.(直接写出结果)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【详解】0.000 000 04=4×10-8,故选C【点睛】此题考查科学记数法,难度不大2.B【解析】【分析】①根据函数的图象即可直接得出结论;②求得直线OA和DC的解析式,求得交点坐标即可;③由图象无法求得B的横坐标;④分别进行运算即可得出结论.【详解】由题意和图可得,轿车先到达乙地,故选项A 错误,轿车在行驶过程中进行了提速,故选项B 正确,货车的速度是:300÷5=60千米/时,轿车在BC 段对应的速度是:()80080 2.5 1.213÷-=千米/时,故选项D 错误,设货车对应的函数解析式为y =kx ,5k =300,得k =60,即货车对应的函数解析式为y =60x ,设CD 段轿车对应的函数解析式为y =ax +b , 2.5804.5300a b a b +=⎧⎨+=⎩,得110195a b =⎧⎨=-⎩, 即CD 段轿车对应的函数解析式为y =110x -195,令60x =110x -195,得x =3.9,即货车出发3.9小时后,轿车追上货车,故选项C 错误,故选:B .【点睛】此题考查一次函数的应用,解题的关键在于利用题中信息列出函数解析式3.D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.详解:设2016年的国内生产总值为1,∵2017年国内生产总值(GDP )比2016年增长了12%,∴2017年的国内生产总值为1+12%; ∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%),∵这两年GDP 年平均增长率为x%, ∴2018年的国内生产总值也可表示为:()21%x +,∴可列方程为:(1+12%)(1+7%)=()21%x +.故选D .点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.4.A【解析】【分析】连接OB ,根据切线的性质和直角三角形的两锐角互余求得∠AOB=64°,再由等腰三角形的性质可得∠C=∠OBC,根据三角形外角的性质即可求得∠ACB的度数.【详解】连接OB,∵AB与☉O相切于点B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故选A.【点睛】本题考查了切线的性质,利用切线的性质,结合三角形外角的性质求出角的度数是解决本题的关键.5.D【解析】分析:先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.详解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选D.点睛:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.6.D试题分析:∵代数式11xx+-有意义,∴10 {xx-≠≥,解得x≥0且x≠1.故选D.考点:二次根式,分式有意义的条件.7.A【解析】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=13CD=3,∴BE=2293+=310.故选A.点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.8.B【解析】试题分析:∵2是关于x的方程x2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①当1是腰时,2是底边,此时周长=1+1+2=2;②当1是底边时,2是腰,2+2<1,不能构成三角形.所以它的周长是2.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.9.D【解析】【分析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.cosα=BD BC CD BC AB AC==.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.10.C【解析】试题解析:∵(±2)2=4,∴4的平方根是±2,故选C.考点:平方根.11.D【解析】试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.考点:分式有意义的条件.12.A【解析】【分析】由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,从而求解【详解】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.【点睛】本题考查由三视图判断几何体,掌握几何体的三视图是本题的解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1 2【解析】【分析】sin30°=12,a0=1(a≠0)【详解】解:原式=12-1=-1 2故答案为:-1 2 .【点睛】本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键.14.22【解析】∵64=8,(22)2=8,∴64的算术平方根是22.故答案为:22.15.20 cm.【解析】【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得2222A B A D BD121620'='+=+=(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.16.1.267×102【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126700有6位,所以可以确定n=6﹣1=2.【详解】解:126 700=1.267×102.故答案为1.267×102.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.17.(1)互相垂直;3;(2)结论仍然成立,证明见解析;(3)135°.【解析】【分析】(1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;(2)利用已知得出△BEC∽△AFC,进而得出∠1=∠2,即可得出答案;(3)过点D作DH⊥BC于H,则DB=4-(6-23)=23-2,进而得出BH=3-1,DH=3-3,求出CH=BH,得出∠DCA=45°,进而得出答案.【详解】解:(1)如图1,线段BE与AF的位置关系是互相垂直;∵∠ACB=90°,BC=2,∠A=30°,∴AC=23,∵点E,F分别是线段BC,AC的中点,∴AEBE=3;(2))如图2,∵点E,F分别是线段BC,AC的中点,∴EC=12BC,FC=12AC,∴12 EC FCBC AC==,∵∠BCE=∠ACF=α,∴△BEC∽△AFC,∴1330AF ACBE BC tan===︒∴∠1=∠2,延长BE交AC于点O,交AF于点M∵∠BOC=∠AOM,∠1=∠2∴∠BCO=∠AMO=90°∴BE⊥AF;(3)如图3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°过点D作DH⊥BC于H∴DB=4-(33-2,∴3,3,又∵CH=2-3-1)3,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.183【解析】【分析】已知△ABO是等边三角形,通过作高BC,利用等边三角形的性质可以求出OB和OC的长度;由于Rt△OBC中一条直角边和一条斜边的长度已知,根据勾股定理还可求出BC的长度,进而确定点B的坐标;将点B的坐标代入反比例函数的解析式kyx=中,即可求出k的值.【详解】过点B作BC垂直OA于C,∵点A的坐标是(2,0),∴AO=2,∵△ABO是等边三角形,∴OC=1,3∴点B的坐标是(3,把()1,3代入k y x=,得3k =. 故答案为3.【点睛】 考查待定系数法确定反比例函数的解析式,只需求出反比例函数图象上一点的坐标;三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) y =﹣x 2﹣3x+4;(2)当74t =-时,S 有最大值814;(3)点P 的横坐标为﹣2或1或5332-或533--. 【解析】【分析】(1)将B 10C 04(,)、(,)代入2y x bx c =-++,列方程组求出b 、c 的值即可; (2)连接PD ,作PG y P 轴交AD 于点G ,求出直线AD 的解析式为y x 2=+,设 ()2,34P t t t --+4t 0(﹣<<),则1,22G t t ⎛⎫+ ⎪⎝⎭, 2217342224PG t t t t t =--+--=--+,2217812241484244APDD A S S PG x x t t t ⎛⎫==⨯⋅-=--+=-++ ⎪⎝⎭V , 当74t =-时,S 有最大值814; (3)过点P 作PH y ⊥轴,设()2,34P t t t --+,则PH x =, 2234232HD x x x x =--+-=--+,根据PDH DAO V V ∽,列出关于x 的方程,解之即可.【详解】解:(1)将B 10(,)、C 04(,)代入y x2bx c ++=﹣,1043,4b c c b c -++=⎧⎨=⎩∴=-= , ∴二次函数的表达式234y x x =--+;(2)连接PD ,作PG y P 轴交AD 于点G ,如图所示.在234y x x =--+中,令y =0,得x14x21=﹣,=,A 40∴(﹣,).D 02Q (,),∴直线AD 的解析式为y x 2=+.设()2,34P t t t --+4t 0(﹣<<),则1,22G t t ⎛⎫+ ⎪⎝⎭,∴2217342224PG t t t t t =--+--=--+, ∴2217812241484244APD D A S S PG x x t t t ⎛⎫==⨯⋅-=--+=-++ ⎪⎝⎭V . 404t 0Q ﹣<,﹣<<,∴当74t =-时,S 有最大值814. (3)过点P 作PH y ⊥轴,设()2,34P t t t --+,则PH x =,2234232HD x x x x =--+-=--+,PDF ADO 90DAO ADO 90∠∠∠∠+︒+︒Q =,=,PDF DAO ∠∠∴=,PDH DAO V V ∽,∴ PH DO 21DH AO 42∴===, 即2||1232x x x =--+ 2322||x x x --+=,当点P 在y 轴右侧时,x 0>,2322x x x --+=,或()2322x x x ---+=,12533533,22x x -+--==(舍去)或1x 2=﹣(舍去),2x 1= 当点P 在y 轴左侧时,x <0,2322x x x --+=-,或()2322x x x ---+=-,12x 2x 1=﹣,=(舍去),或15332x -+=(舍去),25332x --= 综上所述,存在点F ,使PDF ∠与ADO ∠互余点P 的横坐标为2﹣或1或533-+或533--. 【点睛】本题是二次函数,熟练掌握相似三角形的判定与性质、平行四边形的性质以及二次函数图象的性质等是解题的关键.20.该工程队原计划每周修建5米.【解析】【分析】找出等量关系是工作时间=工作总量÷工作效率,可根据实际施工用的时间+1周=原计划用的时间,来列方程求解.【详解】设该工程队原计划每周修建x 米.由题意得:30301x x =++1. 整理得:x 2+x ﹣32=2.解得:x 1=5,x 2=﹣6(不合题意舍去).经检验:x =5是原方程的解.答:该工程队原计划每周修建5米.【点睛】本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.21.(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.【解析】【分析】(2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;(2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.【详解】解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,解得k≥﹣2.∵k为负整数,∴k=﹣2,﹣2.(2)当k=﹣2时,不符合题意,舍去;当k=﹣2时,符合题意,此时方程的根为x2=x2=2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.22.羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得x1=20,x2=1.则100﹣4x=20或100﹣4x=2.∵2>21,∴x2=1舍去.即AB=20,BC=20考点:一元二次方程的应用.23.软件升级后每小时生产1个零件.【解析】分析:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据工作时间=工作总量÷工作效率结合软件升级后节省的时间,即可得出关于x的分式方程,解之经检验后即可得出结论.详解:设软件升级前每小时生产x个零件,则软件升级后每小时生产(1+13)x个零件,根据题意得:240240402016060(1)3x x -=++, 解得:x=60,经检验,x=60是原方程的解,且符合题意,∴(1+13)x=1. 答:软件升级后每小时生产1个零件.点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.24.(1)803y x =-;(2)①165760w x =-+;②14 【解析】【分析】(1)先求出种植C 种树苗的人数,根据现种植A 、B 、C 三种树苗一共480棵,可以列出等量关系,解出y 与x 之间的关系;(2)①分别求出种植A ,B ,C 三种树苗的成本,然后相加即可;②求出种植C 种树苗工人的人数,然后用种植C 种树苗工人的人数÷总人数即可求出概率.【详解】解:(1)设种植A 种树苗的工人为x 名,种植B 种树苗的工人为y 名,则种植C 种树苗的人数为(80-x-y )人,根据题意,得:8x+6y+5(80-x-y )=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y )=80x+32y+3200, 把y=-3x+80代入,得:w=-16x+5760,②种植的总成本为5600元时,w=-16x+5760=5600,解得x=10,y=-3×10+80=50, 即种植A 种树苗的工人为10名,种植B 种树苗的工人为50名,种植B 种树苗的工人为:80-10-50=20名. 采访到种植C 种树苗工人的概率为:2080=14. 【点睛】本题主要考查了一次函数的实际问题,以及概率的求法,能够将实际问题转化成数学模型是解答此题的关键.25. (1)证明见解析;(3)DG=23. 【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证;(2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF =xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=513 AFAE=,∴AF=AE•sin∠AEF=10×513=50 13,∵AF∥OD,∴501013513AG AFDG OD===,即DG=1323AD,∴AD=503013·1813AB AF=⨯=,则DG=133033013 23⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.26.(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形【解析】【分析】(1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;(2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.【详解】(1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;(2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.∵CA=CE,CB=CF,∴AE=BF.∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.【点睛】本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.27.(1)详见解析;(2)①详见解析;②1032.【解析】【分析】(1)根据轴对称的性质,可作出△ABC关于直线n的对称图形△A′B′C′;(2)①作点B关于直线m的对称点B'',连接B''A与x轴的交点为点P;②由△ABP的周长=AB+AP+BP=AB+AP+B''P,则当AP与PB''共线时,△APB的周长有最小值.【详解】解:(1)如图△A′B′C′为所求图形.(2)①如图:点P为所求点.②∵△ABP的周长=AB+AP+BP=AB+AP+B''P∴当AP与PB''共线时,△APB的周长有最小值.∴△APB的周长的最小值102102【点睛】本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质.。