比较线粒体的氧化磷酸化和叶绿体的光合磷酸化异同
- 格式:doc
- 大小:33.50 KB
- 文档页数:2
第四章:细胞膜与细胞表面1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系?以极性尾部相对,极性头部朝向水相的磷脂双分子层是组成生物膜的基本结构成分,蛋白分子以不同的方式镶嵌在脂双分子层中或结合在其表面。
生物膜具有两个显著的特征,即膜的不对称性和膜的流动性:1)、生物膜结构的不对称性保证了膜功能的方向性,使膜两侧具有不同的功能,有的功能只发生在膜外侧,有的则在膜内侧,这是生物膜发生作用所必不可少的。
如调节细胞内外Na+、K+的Na+—K+ATP酶,其运转时所需的ATP是细胞内产生的,该酶的ATP结合点正是处于膜的内侧面;许多激素受体等接受细胞外信号的则处于细胞外侧。
2)、膜的流动性与物质运输、能量转换、细胞识别、药物对细胞的作用密切相关。
可以说,一切膜的基本活动均在生物膜的流动状态下进行。
2、何为内在膜蛋白?它以什么方式与膜脂相结合?内在膜蛋白又称整合膜蛋白,这类蛋白部分或全部插入脂双层中,多数为横跨整个膜的跨膜蛋白。
它与膜结合的主要方式有:1)、膜蛋白的跨膜结构域与脂双层分子的疏水核心的相互作用。
2)、跨膜结构域两端携带正电荷的氨基酸残基,如精氨酸、赖氨酸等与磷脂分子带负电的极性头形成离子键,或带负电的氨基酸残基通过Ca+、Mg+等阳离子与带负电的磷脂极性头相互作用。
3)、某些膜蛋白通过自身在细胞质基质一侧的半胱氨酸残基上共价结合的脂肪酸分子,插到膜双层之间,进一步加强膜蛋白与脂双层的结合力,还有少数蛋白与糖脂共价结合。
3、从生物膜结构模型的演化,谈谈人们对生物膜的认识过程。
生物膜结构模型的演化是人类认识细胞膜的一个循序渐进的过程,是随着实验技术和方法的改进而不断完善的:1)、1925年:质膜是由双层脂分子构成的;2)、1935年:提出“蛋白质—脂质—蛋白质”的三明治式的质膜结构模型,这一模型影响达20年之久;3)、1959年提出单位膜模型,并大胆推测所有的生物膜都是由“蛋白质—脂质—蛋白质”的单位膜构成;4)、1972年桑格和尼克森提出了生物膜的流动镶嵌模型,强调:①膜的流动性,膜蛋白和膜脂均可侧向运动;②膜蛋白分布的不对称性,有的镶嵌在膜表面,有的嵌入或横跨脂双层分子。
期中测试试题一、名词解释。
(20)1、锚定蛋白。
2、协同运输。
3、辅酶Q4、呼吸链。
5、电化学梯度。
6、氧化磷酸化。
7、第二信使。
8、G蛋白。
9、踏车现象。
10、反式作用因子。
二、填空。
(10)1、膜的不对称性:糖脂仅存在于质膜的()面,是完成其生理功能的结构基础; 糖蛋白糖残基均分布在质膜的( )面。
2、顺物质电化学梯度,需要通道蛋白或载体蛋白,利用自身的电化学梯度势能,不耗细胞代谢能,这种运输方式是();若逆物质电化学梯度,需要载体蛋白,消耗细胞代谢能是()。
3、G蛋白偶联受体介导的磷脂酰肌醇信号通路的信号转导是通过效应酶磷酸酯酶C(PLC)完成的,这种信号通路是();若细胞外信号(激素,第一信使)与相应G蛋白偶联的受体结合,导致细胞内第二信使水平变化引起细胞反应的信号通路是()4、主要合成分泌性蛋白、膜蛋白及内质网、高尔基体和溶酶体中的蛋白的细胞器是();合成过程中结构因子与其协同作用,以()为信号肽,指导分泌蛋白到这个细胞器上进行合成。
5、蛋白质糖基化分两种类型,来自同一个寡糖前体,与天冬酰胺结合的是();在粗面内质网或高尔基体上合成,第一个糖残基是N—乙酰半乳糖胺的是()。
6、在某个产生能量的重要细胞器的内膜上,电子从NADH或FADH2经过电子传递链传递给的过程中发生的。
每一个()被氧化产生3个ATP分子,而每一()被氧化产生2个ATP分子,电子最终被O2接收而生成水,这个过程是();由光引起的光化学反应,其产物是ATP和NADPH,这个过程是()。
7、核小体组蛋白帮助DNA卷曲形成核小体,其中起连接作用,并赋予染色质极性的蛋白是()。
8、70S核糖体由50S亚基和()构成;80S核糖体由60s亚基和()构成。
9、NDA一级结构是(),二级结构是()。
三、判断题。
(10)1、连接子是锚定连接的基本单位。
2、血影是红细胞经低渗处理后 质膜破裂释放出血红蛋白和其他胞内可溶性蛋白后剩下的结构 是研究质膜的结构及其与膜骨架的关系的理想材料。
细胞生物学(第四版)课后思考题答案仅供参考目录第一章绪论 (1)1、根据细胞生物学研究的内容与你掌握的生命科学知识,恰当的评价细胞生物学在生命科学中所处的地位,以及它与其他学科的关系。
(1)2、如何认识细胞学说在细胞学乃至生物学发展简史中的重要意义? (1)3、试简明扼要地分析细胞生物学学科形成的客观条件,以及它今后发展的主要趋势。
..14、当前细胞生物学研究的热点课题中你最感兴趣的是哪些?为什么? (1)第二章细胞的统一性和多样性 (1)1、如何理解“细胞是生命活动的基本单位”这一概念? (1)2、为什么说支原体可能是最小最简单的细胞存在形式? (2)3、怎样理解“病毒是非细胞形态的生命体”?试比较病毒与细胞的区别并讨论其相互的关系。
(2)4、试从进化的角度比较原核细胞。
古核细胞及真核细胞的异同。
(2)第三章细胞生物学研究方法 (3)1、举例说明电子显微镜技术与细胞分子生物学技术的结合在现代细胞生物学研究中的应用。
(3)2、光学显微镜技术有哪些新发展?它们各有哪些突出优点? 为什么电子显微镜不能完全代替光学显微镜? (3)3、为什么说细胞培养是细胞生物学研究的最基本的技术之一? (3)4、研究细胞内大分子之间的相互作用与动态变化涉及哪些实验技术?他们各有哪些优缺点? (3)5、什么是模式生物?举例说明模式生物的使用在细胞生物学研究中的作用。
(3)6、功能基因组学的基本研究思路与基本方法是什么?为什么说它与细胞生物学的发展密切相关? (4)第四章细胞质膜 (4)1、从生物膜结构模型的演化,谈谈人们对生物膜的认识过程。
(4)2、膜脂有哪几种基本类型?他们各自的结构特征和功能是什么? (4)3、何谓内在膜蛋白? 内在膜蛋白以什么方式与膜脂相结合? (4)4、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系? (4)膜的流动性:生物膜的基本特征之一,细胞进行生命活动的必要条件。
光合磷酸化和氧化磷酸化的异同在谈论光合磷酸化和氧化磷酸化之前,先来个小小的科普:磷酸化这个词听上去是不是有点儿复杂?其实就是加一个“磷酸”到某个分子上。
光合磷酸化和氧化磷酸化都是生物体用来制造能量的过程,但它们的工作方式和发生场景可大相径庭。
来,我们一起像探险家一样,深入了解一下这两位能量制造的高手吧!1. 光合磷酸化1.1 发生在光合作用中光合磷酸化,听名字就知道,这可是跟植物的光合作用有着密切的关系。
植物在光合作用的过程中,就像做美味的蛋糕一样,把阳光的能量“搅拌”到化学反应里。
简单来说,就是植物用阳光“煮”出能量,光合磷酸化就是这个过程的关键一步。
1.2 过程简述这个过程发生在植物细胞的叶绿体中,具体是在叶绿体的类囊体膜上。
类囊体膜就像是一个个小厨房,阳光进入厨房,激活了光合作用的“厨师”。
这些“厨师”用光能驱动水分子的分解,同时生成ATP,这种“美味”的ATP就像能量的快餐,迅速供应植物的各种活动。
1.3 关键角色在光合磷酸化中,有一个关键的角色叫做“光系统”,它就像是厨房里的主厨,不仅调动所有的材料,还确保每一步都精确无误。
光系统利用光能将电子传递给其他分子,推动ATP的生成。
2. 氧化磷酸化2.1 发生在细胞呼吸中与光合磷酸化不同,氧化磷酸化可是发生在细胞的“能源工厂”——线粒体中。
想象线粒体是一座发电厂,它利用“燃料”来制造ATP。
这个过程通常在细胞呼吸中进行,特别是在有氧条件下。
2.2 过程简述氧化磷酸化发生在线粒体的内膜上。
这个过程好比把燃料在工厂里点燃,利用产生的热能制造电力。
在这里,电子通过一系列复杂的步骤传递,并最终生成ATP。
这个过程中,氧气扮演了至关重要的角色,像是“工厂”中的最终检查员,确保一切正常。
2.3 关键角色氧化磷酸化中的一个重要角色是“电子传递链”,它就像一个传递链条,每一个环节都不容有失。
电子通过这个链条移动,每经过一步,都会释放出能量,最终制造出ATP。
第二章:细胞的基本知识概要1、如何理解“细胞是生命活动的基本单位”这一概念?1)一切有机体都有细胞构成,细胞是构成有机体的基本单位2)细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位3)细胞是有机体生长与发育的基础4)细胞是遗传的基本单位,细胞具有遗传的全能性5)没有细胞就没有完整的生命6)细胞是多层次非线性的复杂结构体系7)细胞是物质(结构)、能量与信息过程精巧结合的综合体8)细胞是高度有序的,具有自装配与自组织能力的体系2、细胞的基本共性是什么?1)所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜2)所有的细胞都有DNA与RNA两种核酸3) 所有的细胞内都有作为蛋白质合成的机器――核糖体4)所有细胞的增殖都是一分为二的分裂方式3、说明原核细胞与真核细胞的主要差别。
4、何谓细胞外被?它有哪些功能?1) 细胞外被是指动物细胞表面的由构成质膜的糖蛋白和糖脂伸出的寡糖链组成的厚约10~20nm的绒絮状结构。
2) 功能:(1) 细胞识别;(2) 血型抗原;(3) 酶活性。
5、细胞连接都有哪些类型?各有何结构特点?细胞连接按其功能分为:紧密连接,锚定连接,通讯连接。
1) 紧密连接(封闭连接),细胞质膜上,紧密连接蛋白(门蛋白)形成分支的链索条,与相邻的细胞质膜上的链索条对应结合,将细胞间隙封闭。
2) 锚定连接:通过中间纤维(桥粒、半桥粒)或微丝(粘着带和粘着斑)将相邻细胞或细胞与基质连接在一起,以形成坚挺有序的细胞群体、组织与器官。
3) 通讯连接:包括间隙连接和化学突触,是通过在细胞之间的代谢偶联、信号传导等过程中起重要作用的连接方式。
4) 胞间连丝连接:是高等植物细胞之间通过胞间连丝来进行物质交换与互相联系的连接方式。
第五章物质的跨膜运输与信号传递6、物质跨膜运输有哪几种方式?它们的异同点。
跨膜运输:直接进行跨膜转运的物质运输,又分为简单扩散、协助扩散和主动运输。
1) 简单扩散:顺物质电化学梯度,不需要膜运输蛋白,利用自身的电化学梯度势能,不耗细胞代谢能;2) 协助扩散:顺物质电化学梯度,需要通道蛋白或载体蛋白,利用自身的电化学梯度势能,不耗细胞代谢能;3) 主动运输:逆物质电化学梯度,需要载体蛋白,消耗细胞代谢能。
第二章:细胞的基本知识概要1、如何理解“细胞是生命活动的基本单位”这一概念?1)一切有机体都有细胞构成,细胞是构成有机体的基本单位2)细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位3)细胞是有机体生长与发育的基础4)细胞是遗传的基本单位,细胞具有遗传的全能性5)没有细胞就没有完整的生命6)细胞是多层次非线性的复杂结构体系7)细胞是物质(结构)、能量与信息过程精巧结合的综合体8)细胞是高度有序的,具有自装配与自组织能力的体系2、细胞的基本共性是什么?1)所有的细胞表面均有由磷脂双分子层与镶嵌蛋白质构成的生物膜2)所有的细胞都有DNA与RNA两种核酸3) 所有的细胞内都有作为蛋白质合成的机器――核糖体4)所有细胞的增殖都是一分为二的分裂方式3、4、何谓细胞外被?它有哪些功能?1) 细胞外被是指动物细胞表面的由构成质膜的糖蛋白和糖脂伸出的寡糖链组成的厚约10~20nm的绒絮状结构。
2) 功能:(1) 细胞识别;(2) 血型抗原;(3) 酶活性。
5、细胞连接都有哪些类型?各有何结构特点?细胞连接按其功能分为:紧密连接,锚定连接,通讯连接。
1) 紧密连接(封闭连接),细胞质膜上,紧密连接蛋白(门蛋白)形成分支的链索条,与相邻的细胞质膜上的链索条对应结合,将细胞间隙封闭。
2) 锚定连接:通过中间纤维(桥粒、半桥粒)或微丝(粘着带和粘着斑)将相邻细胞或细胞与基质连接在一起,以形成坚挺有序的细胞群体、组织与器官。
3) 通讯连接:包括间隙连接和化学突触,是通过在细胞之间的代谢偶联、信号传导等过程中起重要作用的连接方式。
4) 胞间连丝连接:是高等植物细胞之间通过胞间连丝来进行物质交换与互相联系的连接方式。
第五章物质的跨膜运输与信号传递6、物质跨膜运输有哪几种方式?它们的异同点。
跨膜运输:直接进行跨膜转运的物质运输,又分为简单扩散、协助扩散和主动运输。
1) 简单扩散:顺物质电化学梯度,不需要膜运输蛋白,利用自身的电化学梯度势能,不耗细胞代谢能;2) 协助扩散:顺物质电化学梯度,需要通道蛋白或载体蛋白,利用自身的电化学梯度势能,不耗细胞代谢能;3) 主动运输:逆物质电化学梯度,需要载体蛋白,消耗细胞代谢能。
细胞生物学习题库一、名词:1.分辨率2.细胞株 .细胞系 4.细胞融合5.脂质体6.细胞外基质7.细胞识别8.第一信使9.第二信使10.细胞融合11.信号肽12.天线色素13.常染色质14.异染色体15.兼性异染色质16.多聚核糖体17.核纤层18.踏车行为19.微管组织中心20.细胞骨架21.细胞周期22.G0期细胞23.联会复合体24.细胞分化25.管家基因26.组织特异性基因27.癌基因28.Hayflick界线29.细胞凋亡30.动粒31.着丝粒32.胞间连丝33.桥粒34.半桥粒35.粘着带36.粘着斑二、填空:1. 按核酸类型病毒分为、。
2. 细胞是构成的基本单位,是的基本单位,是的基本单位,是的基本单位。
3. 目前发现最小、最简单的细胞是。
4. 电镜主要分和。
5. 生物学上常用的电镜技术包括、、冷冻断裂和、技术。
6. 真核细胞的三大功能体系是系统、系统和系统。
7. 细胞是发现的。
8. 细胞基本共性是、、、细胞分裂以的方式增殖。
9. 生物膜的基本特征是和。
10. 锚定连接中,桥粒连接的骨架系统是,粘着带连接的骨架系统是,锚定连接的两种形式为和。
11. 膜蛋白分为和。
12. 细胞连接分为、和。
13. 一般将细胞外信号分子叫,将细胞内最早产生的信号分子叫。
14. 被动运输可分为和。
15. 生物体的化学信号分子分为、和。
16. 溶酶体的标志性酶是。
17. 蛋白质的糖基化的修饰包括和。
18. ATP酶合成ATP直接能源来自。
19. 内质网上合成蛋白质主要包括、和。
20. 根据接受代谢物上脱下的H原子初受体的不同,可将细胞的呼吸链分为和两种类型。
21. 电子经光合电子传递链传递时,据最终电子受体不同,光合磷酸化可分为光合磷酸化和光合磷酸化两种类型。
22. 叶绿体由发育分化而来。
23. 叶绿体在显微结构上分为、和。
24. 细胞核内定位的蛋白,其一级结构上都有。
25. 真核细胞核糖体沉降系数为,原核为。
【氧化磷酸化、底物水平磷酸化、光合磷酸化的异同】1. 氧化磷酸化(oxidative phosphorylation)是细胞内线粒体内外膜蛋白质复合物将NADH 和FADH2原子分别经线粒体內膜氧化还原(redox)反应,最终与氧发生反应,合成 ATP的过程。
氧化磷酸化产生能量最多,效率最高,产生ATP 最多。
2. 底物水平磷酸化(substrate-level phosphorylation)是指磷酸化过程发生在进行酶催化的反应过程中。
例如在糖酵解和三羧酸循环过程中,葡萄糖分解产生丙酮酸,磷酸化形成ATP,其中没有氧气参与。
3. 光合磷酸化(photosynthetic phosphorylation)是指在植物叶绿体叶绿体的膜系统中,光能转化为生化能的过程膜蛋白质复合物将NADPH和ATP提供给细胞利用。
4. 三种磷酸化的不同点:- 发生位置不同:氧化磷酸化发生在线粒体内外膜蛋白质复合物中;底物水平磷酸化发生在酶催化的反应过程中;光合磷酸化发生在叶绿体膜系统中。
- 物质来源不同:氧化磷酸化的物质来源是NADH和FADH2;底物水平磷酸化的物质来源是底物;光合磷酸化的物质来源是光合作用产生的NADPH和ATP。
- 发生过程不同:氧化磷酸化需要氧气参与;底物水平磷酸化不需要氧气参与;光合磷酸化需要光能转化为生化能。
5. 三种磷酸化的相同点:- 目的都是产生ATP,提供细胞所需能量。
- 都是细胞内能量代谢过程的重要环节。
6. 个人理解:- 氧化磷酸化是细胞内产生ATP最重要的途径,也是维持细胞正常功能的必要过程。
- 底物水平磷酸化在缺氧情况下也能产生ATP,对一些特殊环境下的生物生存起着重要作用。
- 光合磷酸化是植物细胞内利用光能进行能量代谢的关键过程,支持了整个植物生物体的生长和发育。
通过以上探讨和总结,我们更深入地了解了氧化磷酸化、底物水平磷酸化和光合磷酸化三者之间的异同,也对细胞内能量代谢过程有了更全面、深刻和灵活的理解。