2020年新人教版八年级数学下册知识点总结归纳(全面)
- 格式:pdf
- 大小:762.19 KB
- 文档页数:22
八年级数学(下册)知识点总结二次根式【知识回顾】1.二次根式:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a)2=a(a≥0);(2)==aa25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.(a≥0,b≥0);=b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算."【典型例题】1、概念与性质例1下列各式1-,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1)xx--+315;(2)22)-(xa(a>0)¥a-(a<0)0 (a=0);例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x x yy x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )@A. a>bB. a<bC. a ≥bD. a ≤b 2、二次根式的化简与计算例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512,b=512-. 例5、如图,实数a 、b 在数轴上的位置,化简 222()a b a b -"4、比较数值(1)、根式变形法当a>0,b>0时,①如果a>b ,则b a >;②如果a<b ,则b a <。
八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。
2. 一元一次方程的概念、解法和实际应用。
3. 一元一次不等式的概念、解法和实际应用。
4. 一元二次方程的概念、解法和实际应用。
5. 代数式的加减乘除、化简和因式分解。
6. 二元一次方程组的概念、解法和实际应用。
7. 一元二次不等式的概念、解法和实际应用。
8. 质因数分解和最大公因数、最小公倍数的求法。
9. 分式的基本概念和运算方法。
二、几何1. 平面图形的基本性质和分类。
2. 勾股定理及其应用。
3. 三角形的相似性质和判定方法。
4. 三角形的内角和及其计算。
5. 空间图形的基本性质和分类。
6. 直线与平面的位置关系及其应用。
7. 圆的基本性质和相关定理。
8. 空间中直线与平面的交角问题和判定方法。
9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。
三、概率统计1. 事件和概率的基本概念。
2. 古典概型和几何概型的概率计算。
3. 条件概率和独立性的概念和计算方法。
4. 排列和组合的概念和应用。
5. 随机变量和概率分布的定义和联系。
6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。
7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。
8. 正态分布的概念和应用。
9. 假设检验的基本概念和方法。
以上就是八年级数学下册的全部知识点总结。
在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。
同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。
人教版八年级下册数学知识点全面总结一、实数与代数式1.1 有理数- 概念:整数和分数的统称,包括正整数、0、负整数、正分数、负分数。
- 加减乘除法则:同号相加(减)取其相加(减)后的结果,并保留原来的符号;异号相加(减)取其相加(减)后的结果,并保留绝对值较大的数的符号。
乘法法则:同号得正,异号得负。
除法法则:除以一个不等于0的数等于乘这个数的倒数。
1.2 代数式- 概念:由数字、字母和运算符号组成的式子。
- 代数式的运算:加减乘除、乘方、开方等。
二、方程(组)与不等式(组)2.1 方程- 概念:含有未知数的等式。
- 一元一次方程:形式为ax+b=0,解法:移项、合并同类项、化系数为1。
- 二元一次方程:形式为ax+by=c,解法:消元法、代入法、矩阵法等。
2.2 不等式- 概念:含有不等号的式子。
- 一元一次不等式:形式为ax+b>0或ax+bc或ax+by<c,解法:同二元一次方程。
2.3 方程(组)与不等式(组)的应用- 线性方程组的解法:代入法、消元法、矩阵法等。
- 不等式组的解法:同线性方程组。
三、函数3.1 一次函数- 概念:形式为y=kx+b(k、b为常数,k≠0)的函数。
- 图像:一条直线。
- 性质:随着x的增大,y的值会按照k的正负和大小变化。
3.2 二次函数- 概念:形式为y=ax²+bx+c(a、b、c为常数,a≠0)的函数。
- 图像:一个开口向上或向下的抛物线。
- 性质:开口方向由a的正负决定,顶点坐标为(-b/2a, c-b²/4a)。
四、几何4.1 平面几何- 点、线、面的基本概念。
- 线段的性质:长度、中点、垂直平分线等。
- 角的性质:度量、分类、补角、对顶角等。
- 三角形的基本性质:边长、角度、高、中线、角平分线等。
- 四边形的基本性质:边长、对角线、内角和等。
4.2 立体几何- 空间点、线、面的基本概念。
- 三角形、四边形、圆锥、球等立体图形的性质和计算。
八年级下册数学人教版知识点总结数学,既是一门基础性学科又是处处需要的实践性学科。
下面就是八年级(下册)人教版数学知识点总结:
一、量角几何
1.正多边形的特点:正多边形边上的角都是相等的,且有多少边就有几个内角。
2.求多边形外角和:多边形外角和 = (n-2) ×180°,其中n是多边形的边数。
3.两个正多边形间的关系:正多边形之间可以互补。
连接任意一对互补的正多边形的顶点后得到的多边形仍然是正多边形,并且与原来的多边形有相同的形状。
4.正多边形的内角和:正多边形的内角和 = 360°。
五、特殊比较
1.文凭问题:在解决文凭问题之前,可以先将题目中的各项数据按一定的比例大小呈比较关系列出,以方便从全局中搜索出最优解。
2.推理比较:在推理比较问题中,需要通过一定的数量关系或理论结构的物理,来比较题目中的两个事物或数据,以得出问题的答案。
人教版八年级下册数学基础知识归纳
本文档旨在对人教版八年级下册数学基础知识进行归纳总结。
下面将以模块的形式介绍各个知识点。
1. 几何基本概念
- 点:没有长度、宽度和高度,只有位置的概念
- 直线:由无限多个点连成的线,没有弯曲
- 射线:一个端点和无限多个点组成的线段
- 线段:有两个端点的线,有固定长度
2. 图形与运算
- 平面图形:点、线、面构成的图形
- 三角形:有三条边的图形
- 四边形:有四条边的图形
- 圆:由一个点到另一个点的距离相等的所有点组成的图形
3. 相似与全等
- 相似:形状相同但大小不同的图形
- 全等:形状和大小都相同的图形
4. 等腰三角形和等边三角形
- 等腰三角形:有两条边相等的三角形
- 等腰直角三角形:有两边相等且其中一个角为直角的三角形- 等边三角形:三边都相等的三角形
5. 直角三角形和勾股定理
- 直角三角形:其中一个角为直角的三角形
- 勾股定理:c² = a² + b²,其中c为斜边,a和b为直角边
6. 海伦公式
- 海伦公式:S = √[p(p-a)(p-b)(p-c)],其中S为三角形的面积,p为半周长,a、b、c为三边的长度。
7. 三角形面积的计算
- 高度定理:三角形的面积等于底边乘以高的一半:S = 1/2 ×底边 ×高
- 三角形面积公式:S = 1/2 × a × b × sinC,其中a、b为两边的长度,C为夹角的度数。
以上为人教版八年级下册数学基础知识的归纳总结。
希望对您的学习有所帮助!。
全】人教版初中数学八年级下册知识点总结一、二次根式二次根式是指形如a(a≥0)的式子。
其中,a被称为被开方数。
最简二次根式是指被开方数中不含开方开的尽的因数或因式,且不含分母的二次根式。
如果两个二次根式的被开方数相同,那么它们就是同类二次根式。
二次根式具有一些性质,如a(a>0)的平方根是a,a的平方根和-a的平方根相等。
二、勾股定理勾股定理指的是直角三角形的两直角边长分别为a,b,斜边长为c时,a²+b²=c²。
应用勾股定理可以求出直角三角形的第三边长,或者判断一个三角形是否为直角三角形。
勾股定理的逆定理是指如果三角形三边长a,b,c满足a²+b²=c²,那么这个三角形是直角三角形。
勾股数是指能够构成直角三角形的三边长的三个正整数,常见的勾股数有3,4,5;6,8,10;5,12,13;7,24,25等。
直角三角形还有一些其他的性质,需要我们认真研究和掌握。
1.直角三角形的两个锐角互余,即∠A+∠B=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BC=AB/2.3.直角三角形斜边上的中线等于斜边的一半,即CD=AB=BD=AD,其中D为AB的中点。
4.三角形面积公式为AB•CD=AC•BC。
5.直角三角形的判定有三种:有一个角是直角的三角形是直角三角形;如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;勾股定理的逆定理也可以判定直角三角形。
6.命题是对某件事情做出判断的完整句子,分为真命题和假命题。
7.定理是用推理的方法判断为正确的命题,证明是判断命题正确性的推理过程。
8.证明命题的一般步骤是根据题意画出图形,写出已知和求证,找出由已知推出求证的途径并写出证明过程。
9.三角形的中位线平行于第三边,并且等于它的一半,有多种作用和常用结论。
10.数学口诀有助于记忆和理解数学知识,如“勾股三角形,斜边是对角线”等。
人教版八年级数学下册知识点总结和复习要点一、分式1分式的概念概念:一般地,如果A、B表示两个整式,且B中含有字母,那么式子A/B就叫做分式。
2分式的基本性质性质:分式的分子与分母同乘(或除以)一个不等于零的整式,分式的值不变。
3分式的约分与通分约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。
通分:把几个异分母的分式化成与原来的分式相等的同分母的分式,叫做分式的通分。
例子:对于分式(2x^2y)/(4xy^2),我们可以约分为(x/2y)。
二、反比例函数1反比例函数的概念概念:一般地,函数y=k/x (k为常数且k≠0)叫做反比例函数。
2反比例函数的性质性质:反比例函数的图像是双曲线;当k>0时,图像位于第一、三象限;当k<0时,图像位于第二、四象限。
例子:函数y=2/x的图像是一个位于第一、三象限的双曲线。
三、勾股定理1勾股定理的概念概念:直角三角形两直角边的平方和等于斜边的平方。
2勾股定理的逆定理逆定理:如果三角形三边满足两边平方和等于第三边平方,那么这个三角形是直角三角形。
例子:在△ABC中,若AB^2 + BC^2 = AC^2,则△ABC是直角三角形。
四、四边形1平行四边形的性质与判定性质:对边平行且相等;对角相等;邻角互补。
判定:两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
2矩形的性质与判定性质:四个角都是直角;对角线相等且互相平分。
判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形。
3菱形的性质与判定性质:四条边都相等;对角线互相垂直且平分。
判定:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。
4正方形的性质与判定性质:具有矩形和菱形的所有性质。
判定:有一个角是直角的菱形是正方形;对角线相等的菱形是正方形;邻边相等的矩形是正方形。
例子:一个四边形的对角线互相平分且垂直,那么这个四边形是菱形。
初二数学下册知识梳理人教版
初中数学下册知识梳理(人教版)
一、集合
1.1 基本概念:集合的定义、空集的性质、相等的集合的性质;
1.2 集合的运算:并集、交集、差集;
二、函数
2.1 函数的概念:定义、说明和函数解释中的特殊性质;
2.2 函数的增减性及其应用;
2.3 函数的综合应用:函数的变换、解方程、函数的解析图像;
三、代数式
3.1 幂的概念:定义、常用等式及其应用;
3.2 平方差公式:定义、证明及其应用;
3.3 二次函数:定义、说明及其特征、其它特殊函数,如立方函数;
四、不等式
4.1 不等式的概念:定义、性质、关于有理数的不等式及其解;
4.2 奇偶性:定义和大小关系;
4.3 不等式的变换:定义、性质及其应用;
五、行列式
5.1 行列式的概念:定义、计算公式及其应用;
5.2 行列式的性质:跨行变换、跨列变换及其应用;
5.3 扩充行列式:定义、计算方法及其应用;
六、概率
6.1 概率的概念:定义、分步概念及其应用;
6.2 条件概率:定义、性质及其应用;
6.3 独立性的实质及其应用;
本教材集合、函数、代数式、不等式、行列式及概率等内容,是学习初中数学的基础,而不同的教育版本有着不同的教学设计,上述内容是以人教版的教学设计为例所给出的,希望能为初学者在数学学习上提供一定的参考。
人教版八年级下册数学知识点总结(一)勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理) 第十九章四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。
矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。
2.对角线相等的平行四边形是矩形。
3.有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
人教版八年级下册数学知识点总结(二)数据的分析1.加权平均数:加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
学会权没有直接给出数量,而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
2.将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3.一组数据中出现次数最多的数据就是这组数据的众数(mode)。
新人教版数学八年级下册知识点汇总本文档汇总了新人教版数学八年级下册的知识点。
第一章函数与线性方程1. 函数的概念与性质2. 线性方程与函数3. 一次函数4. 函数图像与线性方程的解5. 函数关系与线性方程的解6. 函数的运算第二章四边形1. 任意四边形2. 平行四边形3. 矩形4. 正方形5. 菱形6. 梯形7. 三角形的面积第三章几何变换1. 平移与错切2. 原点对称与轴对称3. 尺规作图第四章图形的相似与尺寸1. 相似的概念与性质2. 相似三角形的判定3. 相似三角形与相似比例4. 对应边成比例与对应角相等第五章数据及其概率1. 数列的概念与表示2. 等差数列3. 概率的概念与计算第六章方程1. 方程的解2. 一元一次方程3. 一元一次方程的应用4. 两个变量的线性方程组5. 二次方程的概念与解法第七章平面直角坐标系中的图形1. 直角坐标系2. 线段的中点3. 相交线与平分线4. 解析几何中的实线和虚线5. 圆第八章有理数和实数1. 有理数2. 实数的简介第九章三角形1. 三角形的元素及其关系2. 三角形的相似判定3. 中线、垂线与高线4. 全等三角形及其判定5. 合同三角形的性质第十章配方法等式1. 用配方法解方程2. 一元二次方程第十一章平面图形的性质1. 线段的垂直平分线2. 过点作圆3. 正多边形4. 螺旋线第十二章多边形的面积1. 平行四边形的面积2. 三角形的面积3. 高度与四边形的面积第十三章浓度和密度1. 浓度与密度的计算第十四章投影与视图1. 平行投影2. 视图第十五章集合1. 集合的概念与表示2. 集合间的关系以上是数学八年级下册的知识点汇总。
请根据具体需求查阅相关章节,以帮助研究和复。
(此文档内容仅适用于新人教版数学八年级下册,不包含其他版本的内容)。
人教版八年级下册数学各单元知识点归纳总结第一章算法初步- 整数、质数、合数、因数、倍数的概念- 分解因数,最大公因数,最小公倍数- 带余除法,求模运算,同余方程- 算术基本定理,一元一次方程,解方程的步骤第二章分数- 分数的基本概念,分数的大小比较- 分数的加减乘除,分数的化简- 分数的整数运算,带分数的简单四则运算- 分数运算的应用第三章代数式- 代数式的基本概念,同类项的概念- 代数式的加减乘除,开平方- 代数式乘法公式,因式分解- 代数式的应用第四章方程式初步- 方程组的基本概念- 二元一次方程组,三元一次方程组- 解方程组的方法- 方程的应用第五章图形初步- 轴对称图形,中心对称图形,旋转图形- 面积的应用- 三角形的分类,特殊的三角形- 四边形的分类,判断各种四边形第六章数据的收集与统计- 数据的收集,数据的整理,数据的描述- 中心值,散布度,直方图- 规律的总结,归纳,样本容量的选择- 无偏性,可靠性,误差分析第七章立体图形的计算- 立体图形的基本概念,正方体,长方体- 表面积,体积的计算- 圆锥、圆柱、金字塔、棱锥的表面积、体积的计算- 建立立体图形的模型第八章概率初步- 随机事件,样本空间的概念- 频率与概率,事件的独立性- 树形图与概率,基本统计数量- 离散型随机变量的分布总结本篇文章总结了人教版八年级下册数学各单元的知识点。
每章节都包括基本概念、计算方法和应用场景等内容。
阅读本文可以使学生更好地掌握知识点,提高学习效率,为考试打下基础。
人教版八年级下册数学知识点总结归纳八班级下册数学重点学问点1一次函数学问点(一)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。
当b=0时,一次函数y=kx,又叫做正比例函数。
(二)一次函数的图像及性质1.在一次函数上的任意一点P(x,y),都满意等式:y=kx+b。
2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。
3.正比例函数的图像总是过原点。
4.k,b与函数图像所在象限的关系:当k0时,y随x的增大而增大;当k0时,y随x的增大而减小。
当k0,b0时,直线通过一、二、三象限;当k0,b0时,直线通过一、三、四象限;当k0,b0时,直线通过一、二、四象限;当k0,b0时,直线通过二、三、四象限;当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。
2分解因式一、公式:1、ma+mb+mc=m(a+b+c);2、a2-b2=(a+b)(a-b);3、a22ab+b2=(ab)2。
二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
1、把几个整式的积化成一个多项式的形式,是乘法运算。
2、把一个多项式化成几个整式的积的形式,是因式分解。
3、ma+mb+mcm(a+b+c)4、因式分解与整式乘法是相反方向的变形。
三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)全部这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)若有-先提取-,若多项式各项有公因式,则再提取公因式.(2)若多项式各项没有公因式,则依据多项式特点,选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法:1、提公因式法.2、运用公式法。
人教版八年级数学下册知识点归纳总结温馨提示:文档内容仅供参考以下是人教版八年级数学下册的知识点归纳总结:一、函数1.函数的概念和表示方法;2.函数的性质:奇偶性、单调性、周期性;3.函数的图像及其特征:零点、最值、拐点、对称轴、渐近线;4.一次函数、二次函数、指数函数、对数函数、三角函数等基本函数的图像及其性质;5.函数的运算:加减、乘除、复合运算等。
二、立体几何1.空间几何图形的基本概念:点、线、面、角、平行、垂直、相交等;2.空间几何图形的投影及其性质;3.空间几何图形的计算:体积、表面积、侧面积等;4.立体几何图形的相似性及其应用;5.空间几何图形的位置关系:平面与平面的位置关系、直线与平面的位置关系、直线与直线的位置关系等。
三、数据的处理1.统计图表的制作与分析:条形图、折线图、饼图、散点图等;2.统计分析中的基本概念:频率、频率分布、平均数、中位数、众数、极差等;3.统计分析中的常见应用:正态分布、抽样等;4.概率的基本概念:样本空间、事件、概率等;5.概率的计算方法:古典概型、几何概型、条件概率等;6.概率的应用:排列组合问题、随机事件的分布等。
四、三角形1.三角形的基本概念:角度、边长、高、中线、中位线、角平分线等;2.三角形的相似性及其应用;3.三角形的面积公式及其应用;4.三角形的角度关系:内角和、外角和、同旁内角等;5.三角形的角度平分线定理、海伦公式等。
五、数系和代数式1.有理数的概念及其运算;2.实数的概念及其运算;3.代数式的概念及其基本性质;4.代数式的加减、乘除、合并同类项、提公因数等运算;5.解一元一次方程、一元二次方程及其应用;6.解一元一次不等式及其应用。
以上是人教版八年级数学下册的主要知识点,希望对您有所帮助。
初二数学下册知识点人教版(优秀5篇)初二下册数学知识点篇一第三章图形的平移和旋转1、图形的平移①在平面内,将一个图形沿某一个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状大小②一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等③一个图形依次沿x轴方向,y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的2、图形的旋转①在平面内,将一个图形绕一个定点按某一个方向转动一个角度,这样的图形运动称为旋转,这个顶点称为旋转中心,转动的角称为旋转角,旋转不改变图形的形状和大小②一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等3、中心对称①如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心②成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分③把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心4、简单的图案设计初二下数学知识总结篇二第四章因式分解1、因式分解①把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,因式分解也可称为分解因式2、提公因式法①多项式ab+bc的各项都含有相同的因式b,我们把多项式各项都含有的相同因式,叫做这个多项式各项的公因式,如b 就是多项式ab+bc各项的公因式②如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来。
从而将多项式化成两个因式乘积的形式。
这种因式分解的方法叫做提公因式法3、公式法①A2-b2=(a+b)(a-b)②当多项式的各项含有公因式时,通常先提出这个公因式,然后再进一步因式分解③a2+2ab+b2=(a+b)2 。
人教版八年级下册数学重点概念(全)一、整数1. 整数的定义:正整数、负整数和0的集合称为整数。
2. 整数的表示:用正整数和负整数表示整数,正整数用+号表示,负整数用-号表示。
3. 整数的比较:对于任意的两个整数a和b,如果a大于b,则记作a > b;如果a小于b,则记作a < b;如果a等于b,则记作a = b。
4. 整数的运算:整数之间可以进行加法、减法、乘法和除法运算。
二、有理数1. 有理数的概念:有理数包括整数和分数,是可以表示两个整数比值的数。
2. 有理数的运算规则:有理数之间可以进行加法、减法、乘法和除法运算,运算结果仍然是有理数。
3. 绝对值:有理数的绝对值是该有理数到0的距离,用|a|表示,其中a为有理数。
三、比例1. 比例的定义:比例是指两个比较相同量类型的比的相等关系。
2. 比例的性质:比例有三个重要性质,分别为比例交叉乘积相等、比例取倒数仍相等和比例成反比。
四、百分数1. 百分数的定义:百分数是以100为基准的分数,百分之一表示为1%,百分之十表示为10%。
2. 百分数的转化:百分数可以转化为小数和分数,小数可以转化为百分数。
五、简单方程与简单不等式1. 简单方程:简单方程是指只含有一个未知数的方程,如3x + 5 = 20。
2. 简单不等式:简单不等式是指只含有一个未知数的不等式,如2x - 7 < 15。
六、统计1. 统计的概念:统计是指通过收集、整理、分析数据来描述和解释现象的方法。
2. 统计图表:统计图表包括条形图、折线图、饼图等,用于直观地表示数据的分布和关系。
七、几何1. 几何的基本概念:几何研究的对象是点、线、面以及它们之间的关系。
2. 基本几何图形:基本几何图形包括直线、线段、射线、平行线、垂直线、角以及各种多边形等。
以上为人教版八年级下册数学的重点概念,希望能对学习有所帮助。
八年级数学(下)知识点人教版八年级下册主要包括了分式、反比例函数、勾股定理、四边形、数据的分析五章内容。
第十六章、分式知识概念1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。
其中A叫做分式的分子,B叫做分式的分母。
2.分式有意义的条件:分母不等于03.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。
4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C为整式,且C≠0)5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b * c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b*d/c7.分式方程的意义:分母中含有未知数的方程叫做分式方程.8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).分式和分数有着许多相似点。
人教版八年级下册数学知识点概述第一章:二次根式
1.1 二次根式的概念与性质
- 二次根式的定义
- 二次根式的性质
1.2 二次根式的运算
- 二次根式的乘法
- 二次根式的除法
- 二次根式的加法和减法
1.3 二次根式在实际问题中的应用
- 利用二次根式求解实际问题
第二章:实数
2.1 实数的概念与分类
- 有理数
- 无理数
- 实数
2.2 实数的运算
- 实数的加法
- 实数的减法
- 实数的乘法
- 实数的除法
2.3 实数与方程
- 线性方程
- 一元二次方程
第三章:平行四边形
3.1 平行四边形的基本性质- 定义与性质
- 平行四边形的判定
3.2 平行四边形的面积
- 平行四边形面积的计算
3.3 平行四边形的应用
- 利用平行四边形解决实际问题第四章:概率初步
4.1 概率的基本概念
- 随机事件
- 必然事件
- 不可能事件
4.2 概率的计算
- 古典概型
- 几何概型
4.3 概率在实际问题中的应用- 利用概率解决实际问题
以上是对人教版八年级下册数学知识点的概述,每个章节都涵盖了基本概念、运算规则、实际应用等方面,帮助学生全面掌握数学知识。
人教版八年级下册数学知识点〔精选5篇〕篇1: 八年级数学知识点下册人教版初二数学下册知识点归纳第一章一元一次不等式和一元一次不等式组一、一般地, 用符号(或), (或)连接的式子叫做不等式.能使不等式成立的未知数的值, 叫做不等式的解.不等式的解不, 把所有满足不等式的解集合在一起, 构成不等式的解集.求不等式解集的过程叫解不等式.由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组不等式组的解集: 一元一次不等式组各个不等式的解集的公共局部.等式根本性质1: 在等式的两边都加上(或减去)同一个数或整式, 所得的结果仍是等式.根本性质2: 在等式的两边都乘以或除以同一个数(除数不为0), 所得的结果仍是等式.二、不等式的根本性质1: 不等式的两边都加上(或减去)同一个整式, 不等号的方向不变.(注: 移项要变号, 但不等号不变.)性质2: 不等式的两边都乘以(或除以)同一个正数, 不等号的方向不变.性质3: 不等式的两边都乘以(或除以)同一个负数, 不等号的方向改变.不等式的根本性质1.假设ab, 那么a+cb+c;2.假设ab, c0那么acbc假设c0, 那么ac不等式的其他性质: 反射性: 假设ab, 那么bb, 且bc, 那么ac三、解不等式的步骤: 1.去分母;2、去括号;3、移项合并同类项;4、系数化为1.四、解不等式组的步骤: 1.解出不等式的解集2、在同一数轴表示不等式的解集.五、列一元一次不等式组解实际问题的一般步骤: (1)审题;(2)设未知数, 找(不等量)关系式;(3)设元, (根据不等量)关系式列不等式(组)(4)解不等式组;检验并作答.六、常考题型: 1、求4x-67x-12的非负数解.2、3(x-a)=x-a+1r的解合适2(x-5)8a, 求a的范围.3、当m取何值时, 3x+m-2(m+2)=3m+x的解在-5和5之间.第二章分解因式一、公式: 1.ma+mb+mc=m(a+b+c)2.a2-b2=(a+b)(a-b)3.a22ab+b2=(ab)2二、把一个多项式化成几个整式的积的形式, 这种变形叫做把这个多项式分解因式.1.把几个整式的积化成一个多项式的形式, 是乘法运算.2.把一个多项式化成几个整式的积的形式, 是因式分解.3.ma+mb+mcm(a+b+c)4.因式分解与整式乘法是相反方向的变形.三、把多项式的各项都含有的一样因式, 叫做这个多项式的各项的公因式.提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式.找公因式的一般步骤: (1)假设各项系数是整系数, 取系数的公约数;(2)取一样的字母, 字母的指数取较低的;(3)取一样的多项式, 多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.四、分解因式的一般步骤为:(1)假设有-先提取-, 假设多项式各项有公因式, 那么再提取公因式.(2)假设多项式各项没有公因式, 那么根据多项式特点, 选用平方差公式或完全平方公式.(3)每一个多项式都要分解到不能再分解为止.五、形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.分解因式的方法: 1、提公因式法.2、运用公式法.第三章分式注: 1对于任意一个分式, 分母都不能为零.2分式与整式不同的是: 分式的分母中含有字母, 整式的分母中不含字母.3分式的值为零含两层意思: 分母不等于零;分子等于零.(中B0时, 分式有意义;分式中, 当B=0分式无意义;当A=0且B0时, 分式的值为零.)常考知识点:1、分式的意义, 分式的化简.2、分式的加减乘除运算.3、分式方程的解法及其利用分式方程解应用题.八年级数学知识点1.在同一平面内不相交的两条直线叫做平行线, 也可以说这两条直线互相平行。
第十六章二次根式1.二次根式:一般地,式子)0a(,a≥叫做二次根式.2.3)0.(3)积的算术平方根:)0ab≥a⋅=,≥b,0a(b积的算术平方根等于积中各因式的算术平方根的积;4.二次根式的乘法法则:)0≥=a≥⋅.,0ba(abb5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.67(1(389.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.二次根式化简题的几种类型:(111. 12(1(213平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
第十七章勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。
,那么这个三角形是直角三角形。
(3)、直角三角形斜边上的中线等于斜边的一半∠ACB=90°1AB=BD=AD可表示如下:D为AB的中点⇒CD=25、常用关系式(等面积法)由三角形面积公式可得:AB•CD=AC•BC7、直角三角形的判定所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
(2)原命题、逆命题题设与结论正好相反(互逆命题)6、证明的一般步骤(1)根据题意,画出图形。
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
一基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,※1※2.. ※3.1ab=ch.(a、b为菱形的对角线,c为菱形的边长,h为c边上的高)1.S菱形=22.S平行四边形=ah.a为平行四边形的边,h为a上的高)四常识:1.若n 是多边形的边数,则对角线条数公式是:2)3n (n −.2.规则图形折叠一般“出一对全等,一对相似”.※6.几个常见的面积等式和关于面积的真命题:平行四边形矩形菱形正方形BAEFCD BACD函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用二次根式表示的函数,自变量的取值范围是被开方数a≥0。
(4)(51注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:(1)列表法(2)图像法(3)解析式法数。
当(1)称它为直线y=kx。
(2)性质:当k>0时,直线y=kx经过第一,三象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y=kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。
九、求函数解析式的方法:1.2.3.4.求5.6.一次函数与一元一次不等式:解不等式ax+b>0(a,b是常数,a≠0).从“数”的角度看,x为何值时函数y=ax+b的值大于0.4.解不等式ax+b>0(a,b是常数,a≠0).从“形”的角度看,求直线y=ax+b在x 轴上方的部分(射线)所对应的的横坐标的取值范围.十、一次函数与正比例函数的图象与性质当0b =时,一次函数y kx =,又叫做正比例函数。
⑴⑵ 次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.注:正比例函数一般形式y=kx(k 不为零)①k 不为零②x 指数为1③b 取零 (1)(2) 解析式:y=kx (k 是常数,k ≠0) (3)(4) 必过点:(0,0)、(1,k ) (5)(6)(7)(8) (9)(10)3当注:y=kx+b,(1(3b>0⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限⇔⎩⎨⎧<0b 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限(4)增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.蚈b>0袅b<0蚆b=0蒄k>0螁经过第一、二、三象限袅经过第一、三、四象限袃经过第一、三象限羂图象从左到右上升,y 随x 的增大而增大蒀k<0羅经过第一、二、四象限芄经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到 (当b>0时,向上平移;当b<0时,向下平移) 6、正比例函数和一次函数及性质 正比例函数一次函数概念一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数.自变量 范围 X 为全体实数 图象 一条直线必过点 (0,0)、(1,k )(0,b )和(-kb,0) 走向k>0时,直线经过一、三象限; k<0时,直线经过二、四象限k >0,b >0,直线经过第一、二、三象限 k >0,b <0直线经过第一、三、四象限 k <0,b >0直线经过第一、二、四象限 k <0,b <0直线经过第二、三、四象限111222(1)两直线平行⇔21k k =且21b b ≠(2)两直线相交⇔21k k ≠(37 (1 (2 (3 (412.(1)(23.众数与中位数:众数:中位数:(1)排序(小到大或大到小)(2)确定位置注意:平均数、众数、中位数都是用来描述数据集中趋势的量。
1、平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,2、当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
(中位数与数据排列有关,个别数据的波动对中位数没影响);3、当一组数据中不少数据多次重复出现时,可用众数来描述。
7.极差:用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
8.方差与标准差:用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=[(x1-)2+(x2-)2+…+(x n-)2];方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。