轧制工艺参数测试技术
- 格式:ppt
- 大小:407.50 KB
- 文档页数:2
《轧钢测试技术》要点本文由整理编写!1.测试技术包括两个方面的含义:一是对物理现象的定性了解,二是对物理现象的定量掌握。
2.测量就是在某一特定条件下,通过实验的方法,将被测的物理量与所规定的标准量进行比较的过程。
3.直接测量被测的物理量可直接与标准量进行比较的测量方式称为直接测量。
4.间接测量被测的物理量不能够或不易于直接与标准量进行比较,但它与几个有关变量呈函数关系,可对这几个变量直接测量,然后再代入函数式中,求出被测的物理量。
5.广义上的测量仪表包括敏感器、传感器、变换器、运算器、显示器、数据处理器装置等。
测量仪表的好坏直接影响测量结果的可信性。
了解测量仪表的功能和构成原理,有助于正确选用仪表。
6.测量过程中测量仪表完成的主要任务有:物理变换功能、信号的传输和测量结果的显示。
依据一定的物理定律,将难于直接同标准量“并列”比较的被测物理量经过一次或多次的信号能量转换,变换成便于处理、传输和测量的信号能量形式。
7.测量仪表的特性,一般分为静特性和动特性两种,当测量仪表进行测量的参数不随时间而变化或随时间变化很慢,可不必考虑仪表输入量与输出量之间的动态关系而只需考虑输入量与输出量之间的静态关系时,联系输入量与输出量之间的关系式是代数方程,不含时间变量,这就是所谓的静特性。
8.当测量随时间变化很快,必须考虑测量仪表输入量与输出量之间的动态时间关系时,联系输入量与输出量的关系是微分方程,含有时间变量,这就是所谓的动特性。
9.测量系统的主要技术指标有:仪表量程、准确度、灵敏度、稳定性等。
10.一个完善的测量系统应包括信息的获得,转换、显示和处理等几部分。
11.传感器的作用:将感受到的非电量转换成电量,以便进一步放大、记录或显示。
12.传感器由两部分组成:一部分是直接承受非电量作用的机械零件或专门设计的弹性元件;另一部分是敏感元件(如应变片等)。
13.测量系统的作用:把传感器的输出变量变成电压或电流信号,以便能在指示仪上指示或记录仪中记录。
角钢轧制工艺技术规程最新角钢轧制工艺技术规程一、工艺流程1. 材料准备:选用符合标准要求的碳素钢板材作为原料,进行剪切和切边处理。
2. 热轧加热:将原料钢板送入加热炉进行预热,使其达到适宜的轧制温度。
3. 轧制初轧:将预热后的钢板送入初轧机进行第一次轧制,通过辊道调整,控制流程。
4. 轧制再轧:经过初轧的角钢再经过再轧机进行第二次轧制,进一步调整角钢的尺寸和形状。
5. 冷却处理:将轧制好的角钢送入冷却装置进行快速冷却,使角钢达到要求的力学性能。
6. 精修:对冷却后的角钢进行修整,去除表面缺陷,使其表面平整光滑。
7. 钢材质检:对角钢进行尺寸、外观和化学成分进行质检,确保产品符合标准要求。
8. 包装运输:经过质检合格的角钢,进行包装和标识,方便运输。
二、工艺参数1. 加热温度:根据角钢材料的不同种类和规格,选取适宜的加热温度,以保证钢材良好的延展性和塑性。
2. 轧制温度:根据角钢的尺寸和形状要求,确定合适的轧制温度范围,确保轧制过程中钢材的塑性和变形能力。
3. 辊道调整:通过调整辊道的间隙和角度,控制角钢的尺寸和形状,以满足产品的要求。
4. 冷却速率:根据角钢的不同材质和尺寸,控制冷却速率,使得角钢获得合适的强度和韧性。
5. 精修要求:对角钢的表面进行打磨和修整,使其表面平整光滑,不得有明显的锈蚀、气泡和裂纹等缺陷。
6. 质检标准:根据相关国家标准和技术要求,对角钢进行尺寸、外观和化学成分的质检,保证产品符合标准要求。
7. 包装要求:将质检合格的角钢进行包装,采用适当的包装材料和方式,以防止角钢在运输过程中受到损坏。
三、安全措施1. 操作人员必须熟知工艺流程和操作规程,严禁违规操作和擅自调整设备参数。
2. 加热炉和冷却装置必须经过定期维护和检修,确保正常运行。
3. 操作人员必须穿戴好安全防护用具,避免发生工伤事故。
4. 严禁在工作区域内吸烟、玩耍和乱扔废料,保持工作环境整洁有序。
5. 定期进行设备的维修和保养,确保设备的正常运行和安全使用。
轧机工艺参数轧机工艺参数是指在金属轧制过程中,对轧机进行调整和控制的一些关键参数。
这些参数的选择和调整直接影响到轧机的工作效果和产品质量。
本文将从轧机速度、轧制压力、轧辊直径和材料温度等方面介绍轧机工艺参数的重要性及其对轧制过程的影响。
首先是轧机速度。
轧机速度是指轧机轧制工作时金属材料的进给速度。
轧机速度的选择要根据金属材料的性质、厚度和轧制要求等因素进行调整。
过高的轧机速度会导致轧制过程中产生过大的热量,可能引起材料内部结构的改变,从而影响产品的力学性能。
而过低的轧机速度则会导致生产效率低下。
因此,合理选择适当的轧机速度是保证轧机工艺顺利进行的重要因素之一。
其次是轧制压力。
轧制压力是指轧机在轧制过程中对金属材料施加的压力。
轧制压力的大小决定了金属材料的变形程度和轧制效果。
过大的轧制压力会导致轧制过程中金属材料的塑性变形过大,可能引起内部裂纹和变形不均匀等问题。
而过小的轧制压力则会导致轧制效果不理想,产品表面质量不达标。
因此,合理选择适当的轧制压力对保证产品质量和工艺效果至关重要。
轧辊直径也是轧机工艺参数中的重要因素。
轧辊直径的选择与轧制材料的厚度和硬度密切相关。
较小直径的轧辊适用于轧制较薄的材料,能够提供更高的轧制压力,但对轧辊的耐用性要求较高。
而较大直径的轧辊适用于轧制较厚的材料,能够提供较大的轧制力,但对轧机的承载能力要求较高。
因此,在轧机工艺中,合理选择适当的轧辊直径能够提高轧制效果,保证产品质量。
最后是材料温度。
材料温度是指轧制过程中金属材料的温度。
材料温度的控制对轧制过程中的变形能力、力学性能和表面质量等方面都有重要影响。
过高的材料温度会导致材料塑性变形能力增加,但容易引起材料表面氧化和热裂纹等问题。
而过低的材料温度会导致材料的塑性变形能力降低,轧制效果不理想。
因此,在轧机工艺中,合理控制金属材料的温度对保证轧制过程的顺利进行和产品质量的提高至关重要。
轧机工艺参数是保证金属轧制过程顺利进行和产品质量的关键因素。
实验一电阻应变片的粘贴工艺一、实验目的1.了解电阻应变片的结构2.通过实验熟悉胶基式电阻应变片的粘贴工艺及粘贴质量检查方法3.为后续电阻应变测量的实验做好实验准备二、实验内容1. 应变片的外观检查及阻值分选2. 应变片的粘贴工艺3. 粘贴后的质量检查三、实验仪器、工具及材料1.胶基式电阻应变片(120Ω),每组4片2.数字万用表、镊子、放大镜等3.丙酮或酒精、脱脂棉、砂纸、502粘接剂等4.测力压头,每组一只四、实验操作过程1.外观检查和阻值分选1)外观检查用10倍以上放大镜或实物显微镜检查应变片是否完整,有无断路、短路、霉点、锈斑等缺陷。
要求敏感栅排列整齐平直,引线牢固,粘贴牢固等。
否则不能使用。
2)应变片阻值分选用惠斯登电桥及晶体管数字欧姆表等仪器逐片测量,并按其阻值大小分类、编号、登记、包装。
3)配桥要求:组成电桥的各臂阻值大致相等(R1 = R2 = R3 = R4),或相对两臂之积大致相等(R1 R3 = R22. 选择应变片的粘贴位置贴片位置应尽量离开应力集中处(测定应力集中情况除外),首先对被测零件进行受力分析,找到试件主应力方向,使主应力方向与应变片轴线平行。
对于本实验采用的圆筒形弹性元件,应将应变片贴在弹性元件的中间,均布于四周且横、竖交错(见图1),这样可以消除圆筒体端面上接触摩擦、不均匀载荷和温度的影响。
3.贴片处的表面处理图1 贴片位置示意图图2贴片位置打磨示意图1)机械清洗对贴片表面进行机械清洗,去除表面上的氧化铁皮、铁锈、污垢等。
据其表面状态选用砂布进行打磨,打磨的面积约为贴片面积的2~3倍。
其表面光洁度为4~6左右,太粗糙或太光滑,都不易使应变片贴劳。
最后用砂纸或细砂布将贴片表面打成与应变片轴线呈45°角的交叉纹路,以增加滑动阻力,提高粘附力(见图2)。
这对提高应变片的粘接强度和测量精度很有益处。
若打磨后的表面,不立即贴片,可涂上一层凡士林油或黄油,以防生锈,这对于潮湿的夏天很有必要。
5 轧制工艺参数设计轧制工艺参数设计主要包括压下制度、速度制度、温度制度。
我们知道轧制工艺参数是中厚板生产的核心部分,直接关系着轧机的产量和产品的质量。
轧制工艺参数设计的主要内容就是要由所需的产品选出合适的坯料,确定由这一坯料轧制成成品总共需要多少道次、每道次的压下量等内容,具体到操作上就是要计算出每道次压下螺丝的升降位置。
同时,为了轧制出合格的产品,还要确定轧制的开轧温度、终轧温度,各道次的轧制速度分配等。
另外,还应包括轧辊的辊型制度。
这样才能在生产中制定出合理的轧制制度,达到既产量和质量,又实现操作方便、设备安全等目的。
本设计的产品是ss400,42×2850×9000mm 厚板轧制工艺参数设计。
5.1 坯料的选择选择坯料是中厚钢板生产中的重要环节之一。
坯料选择是否合理,将影响轧机的生产率、成材率、钢板质量及成本,应予重视。
5.1.1 原料的种类如前所述,所以本设计选择连铸坯作为原料。
5.1.2 原料的尺寸本次设计原料的厚度选择260 mm 。
原料的宽度尺寸尽量大,考虑到展宽比1.4和实际情况,使横轧操作容易,由常用规格,原料宽度选择2030mm 。
切边100mm ,切头尾400mm 。
原料的长度尺寸应尽可能接近原料的最大允许长度。
根据生产实际情况ss400的烧损率为0.6%,并由体积不变的原则:260×2030×l =42×(2850+100)×(9000+400)×1.006mm l 22202030260006.1)4009000()1002850(42=⨯⨯+⨯+⨯=即l 取2220.00mm 。
所以坯料规格取为mm 22202030260⨯⨯。
根据钢的成分和铁碳相图以及控制控冷的要求定出开轧温度分别为1050℃。
5.2 轧制制度由轧制方式,本设计中采用横—纵轧制方式,由于横—纵轧法板坯宽度不受钢板宽度的限制,比较灵活;轧件在横向有一定的延伸,改善了钢板的横向性能。
名词解释1. 测试技术(检测技术):测量技术和试验技术的总称2. 虚拟仪器:由计算机、仪器硬件和应用软件构成的通过不同的软件处理模块组合实现多功能测试。
3. 测试系统:通常是指为完成一定测试任务而使用的测试仪器、设备的组合4. 传感器是:感受被测量,并转换成另一种物理量的元件、器件或装臵的总称。
5. 敏感元件:指传感器中直接与被测介质接触,进而承受被测量的非电量作用的专门设计的元件6. 传感元件:指传感器中能将敏感元件输出的非电量直接转换为适于传输和测量的电量的器件7. 测量电路:又叫信号调理与转换电路,通常包括测量电桥、调制、放大、解调、滤波、微分、积分、模/数或数/模转换等电路。
8. 采样:按一定时间间隔不断对一个连续的时间函数周期性接通开关,在短时间内取出该时刻的数值成为脉冲序列,因而原来连续变化的模拟量函数成为离散的时间函数。
9. 量化:是用已知数字量去逼近被测信号的过程。
编码:将离散幅值经过量化后为二进制数的过程。
10. 真值:在某一时刻和某一位臵的某个物理量客观存在的真实值。
误差:测试值与真值之差。
11. 绝对误差:测量值x 与真值0x 之差。
相对误差:绝对误差x 与真值0x 之比12. 辊缝:又叫轧辊开口度,指两辊之间的缝隙。
13. 轧辊测量仪:用来测量轧辊开口度的绝对值。
填空题1、 测试方法按是否随时间变化分类:动态测量、静态测量 ;按测量原理分类:机械测量法、光测法(光弹法/云纹法)、声测法(超声波)、非电量电测法。
2、 测试系统包括传感器、调理电路、数据采集、微处理器(微型计算机)以及显示装臵等。
三个基本环节:系统的输入(或激励)、系统的输出(或响应)、测试系统。
3、 传感器通常由敏感元件、传感元件和测量电路三部分组成。
作用:把感受到的非电量转换为电量输出。
传感器工作原理:电阻式传感器是把被测量转换为电阻变化的一种传感器4、 敏感元件作用是把感受到的非电量(如力、压力等)转变为另一种形式的、易于变为电量的非电量(如应变、位移等),然后再利用传感元件,将这种非电量变换成电量。
轧制参数自动检测与信号分析实验实验一、电阻应变片的粘贴技术一、实验目的熟悉常温电阻应变片的粘贴工艺及粘贴前后的检查工作。
二、实验内容1.电阻应变片的外观检查及阻值分选;2.贴片后的质量检查;3.粘贴后的质量检查;4.组桥接线;5.粘贴后的防潮处置。
三、实验设备和器材1.常温电阻应变片若干片;2.电阻测试仪表:数字万用表;3.电烙铁(20W)、镊子、放大镜等工具;4.等强度梁;温度补偿板;5.丙酮或无水乙醇、石蜡、脱脂棉、纱布等;6.小刀、砂纸四、实验步骤1.外观检查和阻值分选(1)用五倍以上放大镜检查应变片体是不是完整;有否霉点、锈斑、引线是不是牢固,要求敏感栅排列整齐。
(2)用万用表测量应变计是不是短路、短路、再用惠斯登电桥逐片测量阻值并记录其数值。
(3)配桥:要求组成电桥各臂的阻值大致相等或对二臂之积大致相等,其最大误差限制在Ω之内。
阻值选配好以后,将各片引出线头,挂锡。
穿套管等待利用。
2.贴片处表面清理(1)对贴片表面进行机械清理,去氧化皮、油污、铁锈等。
用砂纸将贴片部位打光至V6,再交又打磨成与应变片轴线方向呈45°的交叉纹路。
(2)化学清理,用镊子夹丙酮棉球或酒精棉球,清理其表面,直到所用棉球和没用过的棉球一样时为止。
3.贴片双手维持清洁,严禁用手指摸清洗过的表面,或用嘴吹气,贴片前最好将,贴片部位预热驱潮。
用501(502)胶水涂在应变片的背面,再往被贴表面涂,然后将应变片对准方位贴在被贴表面,此时在应变片上面放一小块聚四氟乙烯薄膜后,用拇指压紧应变片的一端,从这一端向另一端挤压数次。
挤出多余的胶水和气泡,轻轻掀开薄膜后,检查有无气泡、翘曲、脱胶等现象,不然需重贴。
注意:粘接剂要用得适当。
过量时,胶层太厚影响应变片性能;过少则粘结不牢,不能准确传递变形。
指压时使劲要适当,避免胶液全数被挤出或压坏敏感栅。
不要将胶液弄得手上。
4.检查粘贴质量(1)检查贴片下有无气泡,准确与否,引线不能贴在试件上;(2)贴片前后,应变片阻值不该有转变;(3)应变片与试件间绝缘电阻一般在200MΩ以上。
实验一 最大咬入角及摩擦系数的确定一、实验目的通过实验进一步加深对咬入角、摩擦系数、稳定轧制等基本概念的理解,并用实验方法测出铅试样的最大咬入角及摩擦系数。
二、实验原理实验自然咬入的条件为:βα≤。
在临界条件咬入情况下,轧辊咬入轧件的咬入角即为最大咬入角max α。
根据力的平衡条件:βα=max 。
而f tg =β,因此知道max α就可求得f 。
max α可根据下式求得:图1 轧件咬入时力平衡条件三、实验设备与材料1.Φ130mm 实验轧机2.游标卡尺、锉刀、20#机油、200#溶剂汽油或丙酮,粉笔3.H=10mm ,B H =15mm ,L H =75mm 铅试件两块。
四、实验步骤1.将试件用锉刀锉去飞翅,保证端面成直角,两力相互平行;2.用汽油将试件表面油污擦净,并留有时间发挥掉;3.将试件测量的尺寸记录在表内;4.用干净棉纱蘸汽油在出口方向把轧辊表面擦净。
5.调整好轧机,使上下轧辊平行,并调整辊缝。
6.把试件放在机前工作台上,再用木板将试件很缓慢地推向轧辊,然后将上辊缓慢地抬高,直到试件尾部发生抖动时,便表示快要咬入,这时要特别注意缓慢上台轧辊,当轧件刚DhH D h --=∆-=11cos max α一被咬入时就应迅速停止抬辊。
7.用同样方法在涂粉辊面上进行轧制,并将相应尺寸记入表内。
表1 不同实验条件下矩形试件轧制数据记录1.实验前必须了解实验内容,要记录哪些数据,要观察那些现象,预计得什么结果,以便实验时心中有数。
2.实验前必须了解轧机性能和操作规程,能正确调整轧机及控制压下量,特别要注意安全操作。
3.操作时,试件要送正,避免用推力,短试件要用木板送,以免发生危险。
4.上抬轧辊要特别精心,否则得不到临界条件。
5.尺寸测量要认真,以求正确。
六、实验报告1.整理实验数据,算出摩擦系数f。
2.讨论各种轧制条件对咬入的影响。
实验二 轧制宽展测定分析一、实验目的:在简单轧制条件下,测定宽展量和分析影响宽展的因素,初步掌握研究宽展的最基本的科学方法。
轧制测试技术课程(考查)一、简述题1. 简述电阻应变片的粘结工艺及步骤。
答:1)应变片的检查与选择首先要对采用的应变片进行外观检查,观察应变片的敏感栅是否整齐、均匀,是否有锈斑以及短路和折弯等现象。
其次要对选用的应变片的阻值进行测量,阻值选取合适将对传感器的平衡调整带来方便。
2)试件的表面处理为了获得良好的黏合强度,必须对试件表面进行处理,清除试件表面杂质、油污及疏松层等。
一般处理方法可采用砂纸打磨,较好的处理方法是采用无油喷砂法,这样不但能得到比抛光更大的表面积,而且可以获得质量均匀的效果。
为了表面的清洁,可用化学清洗剂如氯化碳、丙酮、甲苯等进行反复清洗,也可采用超声波清洗。
值得注意的是,为避免氧化,应变片的粘贴尽快进行。
如果不立刻贴片,可涂上一层凡士林暂作保护。
3)底层处理为了保证应变片能牢固地贴在试件上,并具有足够的绝缘电阻,改善胶结性能,可在粘贴位置涂上一层底胶。
4)贴片将应变片底面用清洁剂清洗干净,然后在试件表面和应变片底面各涂上一层薄而均匀的黏合剂。
待稍干后,将应变片对准划线位置迅速贴上,然后盖一层玻璃纸,用手指或胶辊加压,挤出气泡和多余的胶水,保证胶层尽可能薄而均匀。
5)固化黏合剂的固化是否完全,直接影响到胶的物理机械性能。
关键是要掌握好温度、时间和循环周期。
无论是自然干燥还是加热固化都要严格按照工艺规范进行。
为了防止强度降低、绝缘破坏及电化腐蚀,在固化后的应变片上应涂上防潮保护层,防潮层一般可采用稀释的黏合剂。
6)粘贴质量检查首先是从外观上检查粘贴位置是否正确,黏合层是否有气泡、漏粘,破损等。
然后是测量应变片敏感栅是否有断路或短路现象以及测量敏感栅的绝缘电阻。
7)引线焊接与组桥连线检查合格后既可焊接引出导线,引线应适当加以固定。
应变片之间通过粗细合适的漆包线连接组成桥路、连接长度应尽量一致,且不宜过长。
2.电桥的和差(加减)特性。
答:1)相邻桥臂的电阻有大小相等、符号一致的变化,或相对桥臂的电阻有大小相等、符号相反的变化,不影响电桥的输出。
课程实验指导书院(系)材料与冶金工程系专业金属材料工程年级四年级课程名称轧制测试技术实验孙斌主编2008年11月17日前言实验和试验研究是理工大学生必备的知识能力,也是学习知识、掌握技能的重要环节。
金属材料工程专业在本着加强理论教学的同时,大力加强实验教学,以培养学生既有深厚的理论功底,又有多方面的动手试验研究能力为目标,编写了“轧制测试技术实验”一书。
本书是参照了一些国内外的有关资料,以及我们在教学和科学研究实践中的粗浅体会编写的,目的在于使学生掌握有关测试技术的基本理论和方法,并通过实际操作培养学生具有一定的实验技能。
本实验主要包括:电阻应变片粘贴技术、电阻应变片的接法以及电桥的和差特性、动态电阻应变仪的使用与传感器标定、实测轧制压力、轧机扭转力矩测量等五项实验。
本实验指导书是根据金属材料工程专业轧制测试技术课程等教学大纲要求编写。
在编写此指导书时,得到了黄佩武老师、李康情老师的大力支持,在此表示衷心感谢!由于编者水平所限,经验不足,加之时间仓促,书中错误和不当之处在所难免,敬请读者批评指正。
编者:孙斌二00八年十一月金属材料工程专业实验教学大纲课程编号:课程名称:轧制测试技术实验实验时间/学分:共10学时适用专业:金属材料工程一、实验的性质和目的金属材料工程专业实验是一项与工程实践密切联系的科学技术课程,是理论联系实际的教学活动,是本专业最重要的实践性教学环节之一。
通过专业综合实验帮助金属材料工程专业学生掌握实验的基本方法,掌握实验研究的基本内容,了解金属材料加工的实验以及当代研究的新方法,掌握实验报告的写作程序和规范,以提高学生的理论功底和专业素养,培养他们的动手和操作实验的能力,提高他们的科学思维能力和分析判断能力,形成科学严谨的研究态度。
二、实验基本要求1、在实验中,教师要本着准确、严谨、科学态度指导学生认识、了解各种实际问题;2、严格遵守各项规章制度、作息时间、实验安排,服从统一安排,不得无故缺席;3、注意安全用电,离岗及时断电;4、在规定实验时间内完成实验任务,不得拖延;5、要求实验内容丰富,具有实际意义;6、专业综合实验完毕后要求学生写出实验报告。
轧制工艺技术轧制工艺技术,是指通过机械力将金属坯料进行连续轧制、变形和压制,使其从粗糙的坯料变成平整、有形状的金属条、板、管等材料的过程。
轧制工艺技术是金属加工中常用的一种工艺方法,广泛应用于冶金、机械制造、船舶、汽车等领域。
轧制工艺技术主要包括轧制方法、轧制设备和工艺参数三个方面。
轧制方法主要有热轧和冷轧两种。
热轧是将金属加热到一定温度后进行轧制,适用于低碳钢、合金钢等材料的加工。
热轧工艺具有高产量、易控制等优点,但也会引起材料强度下降、变形度不定等缺点。
冷轧是将金属在室温下进行轧制,适用于不锈钢、铝合金等材料的加工。
冷轧工艺具有制品质量好、表面光洁等优点,但也会引起轧制力大、设备损坏等缺点。
轧制设备主要包括轧机和辅助设备。
轧机是轧制过程中最重要的设备之一,它主要由辊子、辊架、传动装置等组成。
根据轧机的结构和原理的不同,可以分为压下式轧机、抓下式轧机和压痕式轧机三种。
辅助设备主要包括卷板机、脱碳炉、退火炉等,它们的作用是为轧机提供原料和对轧制过程进行辅助处理。
工艺参数是指在轧制过程中需要控制的各项参数。
工艺参数的选择直接影响到轧制产品的质量和性能。
常见的工艺参数有轧制温度、轧制力、轧制速度等。
轧制温度是指轧制过程中金属的温度,不同的材料对轧制温度有不同的要求,过高或过低的温度都会影响到轧制产品的质量。
轧制力是指轧制时作用在轧辊上的力,它的大小直接影响到轧制产品的变形度和机械性能。
轧制速度是指轧制辊的线速度,不同的产品对轧制速度有不同的要求,过快或过慢的速度都会影响到轧制产品的表面质量。
轧制工艺技术的应用可以使金属材料获得更好的性能和表面质量,有助于提高产品的竞争力和降低成本。
同时,轧制工艺技术也对轧制设备和工艺参数的要求提出了挑战。
为了更好地应对这些挑战,需要不断改进和创新轧制工艺技术,提高轧制产品的质量和生产效率。
轧制工艺参数测试技术在轧制工艺中,各种参数的测试对于保证产品质量和提高生产效率都具有非常重要的意义。
以下将详细介绍轧制工艺参数测试技术的主要方面。
1.轧制力测试轧制力是轧制过程中最重要的参数之一,它直接反映了轧机对材料的加工能力。
测试轧制力可以帮助操作人员了解轧机的负载状态,防止过载或欠载,从而提高生产效率。
常用的轧制力测试方法包括电阻应变片法和液压传感器法。
2.轧制速度测试轧制速度是衡量轧机生产效率的重要参数。
通过测试轧制速度,可以了解轧机的运转情况,判断生产线的流畅程度。
一般采用编码器和测速发电机等方法进行测试。
3.轧制温度测试轧制温度是影响材料塑性和变形抗力的关键因素。
测试轧制温度可以帮助操作人员调整工艺参数,控制材料变形和组织转变,提高产品质量。
常用的轧制温度测试方法包括热电偶法和红外测温法。
4.轧制变形量测试轧制变形量是衡量材料在轧制过程中变形程度的重要参数。
测试轧制变形量可以帮助操作人员了解材料的加工性能,控制产品的形状和尺寸精度。
常用的轧制变形量测试方法包括位移传感器法和电阻应变片法。
5.轧制材料性能测试在轧制过程中,材料的性能对产品质量和生产效率有着重要影响。
测试轧制材料性能可以帮助操作人员了解材料的力学性能和组织结构,从而更好地调整工艺参数。
常用的轧制材料性能测试方法包括拉伸试验、冲击试验和硬度试验等。
6.轧制润滑条件测试在轧制过程中,润滑条件对产品的表面质量和生产效率具有重要影响。
测试轧制润滑条件可以帮助操作人员了解润滑剂的润滑效果和对环境的影响,从而更好地选择和使用润滑剂。
常用的轧制润滑条件测试方法包括摩擦系数测试和润滑剂性能测试等。
7.轧制坯料尺寸测试在轧制过程中,坯料的尺寸对产品的形状和尺寸精度有着重要影响。
测试坯料尺寸可以帮助操作人员了解坯料的形状和尺寸精度,从而更好地控制产品的加工过程。
常用的坯料尺寸测试方法包括卡尺测量法和磨床测量法等。
总之,对轧制工艺参数进行测试是保证产品质量和提高生产效率的关键手段。
7 轧制工艺参数设计7.1 压下规程设计冷轧板带压下规程的设计一般包括原料规格的选择、轧制方案的确定、各道次压下量的分配与计算以及轧制速度的确定等。
7.1.1 坯料厚度选择在选择原料厚度时主要考虑冷轧总变形程度对性能及结构的影响。
由于对一定钢种、规格的产品,必须有一定的冷轧总变形程度,才能通过热处理获得所需要的一定的晶粒组织和性能。
坯料最大厚度受咬入能力和设备条件的限制;坯料最小厚度应考虑热轧带钢的供应情况,成品厚度和组织性能。
此外,选择原料厚度时,还要考虑生产能力的提高,故应根据具体情况做出选择。
本设计的代表产品是920×0.49 1020×0.95 1120×1.35 1220×1.75 1320×2.15 本设计选用厚度2.1 mm的带钢生产厚度为0.49mm成品板带钢,4.0 mm生产厚度为0.95mm的成品带钢,5.5mm生产厚度为1.35mm的成品带钢,4.0 mm生产厚度为1.75 mm的成品带钢,4.5mm生产厚度为2.15mm的成品带钢[4]。
7.1.2 轧制方案冷轧轧程是冷轧过程中每次中间退火所完成的冷轧工作。
冷轧轧程的确定主要取决于所轧钢种的软硬特性,坯料与成品的厚度,所采用的冷轧工艺和冷轧制度以及轧机的能力等因素,并随着工艺和设备的改进,轧制方案也在不断的变化。
例如选用润滑性能更好的工艺润滑剂或采用直径更小的高硬度工作辊都能减少所需要的轧程数。
因此,在确定冷轧轧程方案时,需要考虑已有的设备与工艺条件,还应充分研究各种提高冷轧效率的措施。
7.1.3 压下量的分配与计算在选择压下制度时,第一、二机架为利用金属的塑性,可以给予较大压下量,但往往受到咬入条件的限制,在有良好润滑研磨的轧辊允许咬入角3°到4°,而表面比较粗糙的轧辊为5°到8°,第一机架考虑到热轧来料的厚度偏差不宜采用过大压下量。
轧机工艺参数轧机工艺参数是指在轧制过程中所使用的各种参数和设定值,它们直接影响着轧制质量和生产效率。
轧机工艺参数的正确设定,对于保证产品质量、提高生产效率至关重要。
轧机工艺参数中最重要的参数之一是轧制力。
轧制力是指轧制过程中所施加在金属材料上的力,它直接影响着轧制后的产品尺寸和形状。
轧制力的大小取决于材料的硬度、轧辊的几何形状和轧辊之间的间隙等因素。
合理控制轧制力的大小,可以保证产品的尺寸精度和表面质量。
轧机工艺参数中的轧制速度也是十分重要的。
轧制速度是指轧机在单位时间内轧制材料的长度。
轧制速度的大小直接影响着轧制过程中的塑性变形和金属的组织结构。
过高的轧制速度会导致金属材料的晶粒细化不充分,从而影响产品的性能;而过低的轧制速度则会降低生产效率。
因此,合理设定轧制速度是保证产品质量和提高生产效率的关键。
除了轧制力和轧制速度,轧机工艺参数中还包括轧辊直径、轧辊转速、冷却方式等。
轧辊直径的大小会影响轧制力的大小和分布,以及轧制后的产品尺寸精度;轧辊转速的大小则会影响轧制速度和轧制力的大小;冷却方式的选择会影响轧制过程中的温度分布和金属的组织结构。
合理选择和设定这些参数,可以有效控制产品质量和生产效率。
轧机工艺参数的设定还要考虑到金属材料的性质和轧制目标。
不同的材料具有不同的塑性和硬度,因此需要根据具体材料的性质来设定轧机工艺参数。
同时,轧制目标也是设定轧机工艺参数的重要参考。
例如,如果要生产高强度的产品,就需要设定较大的轧制力和较低的轧制速度。
轧机工艺参数的正确设定对于保证产品质量和提高生产效率至关重要。
合理设定轧制力、轧制速度、轧辊直径、轧辊转速和冷却方式等参数,可以有效控制产品的尺寸精度、表面质量和金属的组织结构。
因此,在轧机生产中,必须重视轧机工艺参数的设定和调整,以提高产品质量和生产效率。
轧制力测量实验报告研究目的及背景轧制是金属加工中最常见的方法之一,其目的是通过将金属材料经过多次轧制来改变其形状和尺寸。
轧制力是指轧制过程中对金属材料施加的力,它是衡量轧制过程中金属材料变形程度的重要参数。
准确测量轧制力对于轧制过程的优化和金属材料的性能评估具有重要意义。
因此,本实验旨在通过一种新的方法来测量轧制力,并比较其结果与传统方法的差异。
实验设计和材料实验设计本实验分为两个部分。
第一部分是比较传统的压力传感器法和负载传感器法,两种方法分别测量轧制力,并分析其差异。
第二部分是运用负载传感器法测量不同工况下的轧制力。
材料- 实验机组:用于模拟轧制过程的机器。
- 传感器:压力传感器和负载传感器。
- 金属材料:经过预处理的铝合金板。
- 数据采集系统:用于记录传感器输出的设备。
实验步骤实验前准备1. 确保实验机组和传感器处于正常工作状态。
2. 对金属材料进行预处理,确保其表面清洁且平整。
第一部分:比较两种测量方法1. 将压力传感器安装在实验机组上。
在进行轧制过程中,记录传感器输出的轧制力数据。
2. 将负载传感器安装在实验机组上,同样记录轧制力数据。
3. 将两种方法得到的数据进行对比分析,比较其差异。
第二部分:测量不同工况下的轧制力1. 设置实验机组的轧制参数,例如轧制速度、轧制压力等。
2. 将负载传感器安装在实验机组上,记录轧制力数据。
3. 重复步骤1和2,调整轧制参数,记录相应的轧制力数据。
4. 对不同工况下得到的数据进行分析,研究轧制参数对轧制力的影响。
实验结果与讨论第一部分:比较传统方法经过对比分析发现,负载传感器法相较于传统的压力传感器法在测量轧制力方面具有更好的性能。
负载传感器能够更准确地测量出轧制力的实时变化,并能够提供更多的数据用于分析。
而传统的压力传感器法则容易受到机械振动和外界干扰的影响,测量结果相对不够精确。
第二部分:不同工况下的轧制力通过实验发现,不同的轧制参数会对轧制力产生明显的影响。