《算法设计与分析》--最优二叉排序树
- 格式:doc
- 大小:66.00 KB
- 文档页数:6
算法分析与设计课程教案课程编号:50c24037-01总学时:51 周学时:4适用年级专业(学科类):2007级计科专业开课时间:2010-2011 学年第1 学期使用教材:王晓东编著计算机算法设计与分析第3版章节第1章1.1~ 1.2 第2 章2.1 课时 2教学目的理解程序与算法的概念、区别与联系;掌握算法在最坏情况、最好情况和平均情况下的计算复杂性概念;掌握算法复杂性的渐近性态的数学表述;理解递归的概念。
教学重点及突出方法重点:程序与算法的概念、算法的时间复杂性、算法复杂性的渐近性态的数学表述以及递归的概念。
通过讲解、举例方法。
教学难点及突破方法难点:算法复杂性与递归通过讲解、举例、提问与引导方法。
相关内容此部分内容基础知识可参考清华大学出版社出版严蔚敏编著的《数据结构》教学过程(教师授课思路、设问及讲解要点)回顾数据结构课程中的算法概念、排序算法等知识,从而引出本课程内容。
提问算法与程序的区别、联系以及算法具有的特性。
讲解算法的复杂性,主要包括时间复杂性与空间复杂性。
讲解最坏情况、最好情况与平均情况的时间复杂性。
讲解算法复杂性在渐近意义下的阶,主要包括O、Ω、θ与o,并通过具体例子说明。
通过具体例子说明递归技术。
主要包括阶乘函数、Fibonacci数列、Ackerman函数、排列问题、整数划分问题、Hanoi塔问题等。
第页章节第2 章2.2~2.5 课时 2 教学目的掌握设计有效算法的分治策略,并掌握范例的设计技巧,掌握计算算法复杂性方法。
教学重点及突出方法重点:分治法的基本思想及分治法的一般设计模式。
通过讲解、举例方法。
教学难点及突破方法难点:计算算法复杂性。
通过讲解、举例、提问与引导方法。
相关内容素材教(教师授课思路、设问及讲解要点)学过程通过生活中解决复杂问题的分解方法,引出分治方法。
讲解分治法的基本思想及其一般算法的设计模式,介绍分治法的计算效率。
通过具体例子采用分治思想来设计有效算法。
最优⼆叉树(哈夫曼树)的构建及编码参考:数据结构教程(第五版)李春葆主编⼀,概述1,概念 结点的带权路径长度: 从根节点到该结点之间的路径长度与该结点上权的乘积。
树的带权路径长度: 树中所有叶结点的带权路径长度之和。
2,哈夫曼树(Huffman Tree) 给定 n 个权值作为 n 个叶⼦结点,构造⼀棵⼆叉树,若该树的带权路径长度达到最⼩,则称这样的⼆叉树为最优⼆叉树,也称为哈夫曼树。
哈夫曼树是带权路径长度最短的树,权值较⼤的结点离根较近。
⼆,哈夫曼树的构建1,思考 要实现哈夫曼树⾸先有个问题摆在眼前,那就是哈夫曼树⽤什么数据结构表⽰? ⾸先,我们想到的肯定数组了,因为数组是最简单和⽅便的。
⽤数组表⽰⼆叉树有两种⽅法: 第⼀种适⽤于所有的树。
即利⽤树的每个结点最多只有⼀个⽗节点这种特性,⽤ p[ i ] 表⽰ i 结点的根节点,进⽽表⽰树的⽅法。
但这种⽅法是有缺陷的,权重的值需要另设⼀个数组表⽰;每次找⼦节点都要遍历⼀遍数组,⼗分浪费时间。
第⼆种只适⽤于⼆叉树。
即利⽤⼆叉树每个结点最多只有两个⼦节点的特点。
从下标 0 开始表⽰根节点,编号为 i 结点即为 2 * i + 1 和 2 * i + 2,⽗节点为 ( i - 1) / 2,没有⽤到的空间⽤ -1 表⽰。
但这种⽅法也有问题,即哈夫曼树是从叶结点⾃下往上构建的,⼀开始树叶的位置会因为⽆法确定⾃⾝的深度⽽⽆法确定,从⽽⽆法构造。
既然如此,只能⽤⽐较⿇烦的结构体数组表⽰⼆叉树了。
typedef struct HTNode // 哈夫曼树结点{double w; // 权重int p, lc, rc;}htn;2,算法思想 感觉⽐较偏向于贪⼼,权重最⼩的叶⼦节点要离根节点越远,⼜因为我们是从叶⼦结点开始构造最优树的,所以肯定是从最远的结点开始构造,即权重最⼩的结点开始构造。
所以先选择权重最⼩的两个结点,构造⼀棵⼩⼆叉树。
然后那两个最⼩权值的结点因为已经构造完了,不会在⽤了,就不去考虑它了,将新⽣成的根节点作为新的叶⼦节加⼊剩下的叶⼦节点,⼜因为该根节点要能代表整个以它为根节点的⼆叉树的权重,所以其权值要为其所有⼦节点的权重之和。
分治法1、二分搜索算法是利用(分治策略)实现的算法。
9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。
通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。
二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。
三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。
递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。
分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。
设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。
●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。
这个开始节点就成为一个活结点,同时也成为当前的扩展结点。
在当前的扩展结点处,搜索向纵深方向移至一个新结点。
这个新结点就成为一个新的或节点,并成为当前扩展结点。
分治法1、二分搜索算法是利用(分治策略)实现的算法。
9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
《算法分析与设计》
实验报告
题目:
姓名:
班级:
学号:
指导教师:
完成时间:
一、实验题目
给定一系列键值和权重,构造最优二叉排序树,使得总的查找次数最少。
二、实验目的
1. 理解时间复杂度的概念。
2. 深入地掌握C语言编程。
3. 通过编程直观地理解算法分析的意义
三、实验要求
给定一系列键值和权重,构造最优二叉排序树,使得总的查找次数最少。
要求的输出格式为:第一行为最优的查找次数,第二行为最优二叉排序树的前序遍历得到的序列,然后一个空行,随后为源代码。
算法的输入如下(冒号前为键值,冒号后为权重):1:0 2:56 3:19 4:80 5:58 6:47 7:35 8:89 9:82 10:74 11:17 12:85 13:71 14:51 15:30 16:1 17:9 18:36 19:14 20:16 21:98 22:44 23:11 24:0 25:0 26:37 27:53 28:57 29:60 30:60 31:16 32:66 33:45 34:35 35:5 36:60 37:78 38:80 39:51 40:30 41:87 42:72 43:95 44:92 45:53 46:14 47:46 48:23 49:86 50:20 51:77 52:84 53:99 54:99 55:61 56:39 57:26 58:29 59:84 60:2 61:37 62:9 63:67 64:5 65:0 66:91 67:27 68:27 69:58 70:69 71:83 72:72 73:48 74:20 75:74 76:46 77:45 78:94 79:74 80:10 81:59 82:38 83:73 84:60 85:57 86:36 87:15 88:22 89:42 90:80 91:51 92:98 93:75 94:34 95:16 96:65 97:49 98:6 99:69 100:50 101:14 102:94 103:14 104:90 105:69 106:30 107:42 108:7 109:96 110:68 111:15 112:87 113:82 114:58 115:19 116:17
117:81 118:47 119:15 120:50 121:73 122:40 123:27 四、程序流程图
五、程序代码
#include<stdio.h>
#include<string.h>
struct node{
int key;
int v;
};
int sum[1000],c[1000][1000],y[1000][1000];
struct node a[10000];
int n,ans;
void df(int left,int right)
{
if(left>right) return ;
int k=y[left][right];
printf("%d ",k);
df(left,k-1);
df(k+1,right);
}
void fi(int left,int right,int t)
{
if(left>right) return ;
ans=ans+t;
int k=y[left][right];
fi(left,k-1,t+1);
fi(k+1,right,t+1);
}
void in()
{
char ch;
freopen("input.txt","r",stdin);
n=1;
while(1)
{
do{
if( scanf("%c",&ch) ==EOF) return ;
if(ch!=':') a[n].key=a[n].key*10+(ch-'0');
}while(ch!=':');
do{
if( scanf("%c",&ch) ==EOF) return ;
if(ch!=' ') a[n].v=a[n].v*10+(ch-'0');
}while(ch!=' ');
n++;
}
n--;
}
int main()
{
int i,j,k,u;
in();
sum[0]=0;
for(i=1;i<=n;i++) sum[i]=sum[i-1]+a[i].v;
for(i=0;i<=n;i++)
for(j=0;j<=n;j++) c[i][j]=0;
for(i=1;i<=n;i++)
{
y[i][i]=i;
c[i][i]=0;
}
for(u=2;u<=n;u++)
{
for(i=1;i<=n-u+1;i++)
{
j=i+u-1;
c[i][j]=10000000;
for(k=i;k<=j;k++)
if(c[i][k-1]+c[k+1][j]+sum[j]-sum[i-1]-a[k].v<c[i][j])
{
c[i][j]=c[i][k-1]+c[k+1][j]+sum[j]-sum[i-1]-a[k].v;
y[i][j]=k;
}
}
}
ans=0;
fi(1,n,1);
printf("%d",ans);
df(1,n);
printf("\n");
return 0;
}
六、实验结果
七、实验体会
通过本次上机实验,我在编写算法的过程中,了解到了二叉排序树通常采用二叉链表作为存储结构。
中序遍历二叉排序树可得到一个依据关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即是对无序序列进行排序的过程。
每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,
由空变为非空即可。
搜索、插入、删除的时间复杂度等于树高,期望O(logn),最坏O(n)(数列有序,树退化成线性表,如右斜树)。