循环流化床燃烧技术旋风分离器
- 格式:doc
- 大小:34.50 KB
- 文档页数:6
动力与电气工程56科技资讯 SCIENCE & TECHNOLOGY INFORMATIONDOI:10.16661/ki.1672-3791.2017.28.056循环流化床锅炉高温绝热旋风分离器超温分析及技术改造浅谈①高贵君 王鹏(神华国神集团郭家湾电厂 陕西榆林 719408)摘 要:目前国内循环流化床锅炉旋风分离系统大多采用汽冷旋风分离器和高温绝热旋风分离器两种形式,而高温绝热分离器存在外表温度高,散热损失大的缺点,尤其在北方全封闭结构厂房中显得更加突出。
本文分析了某电厂旋风分离器表面超温的原因,并对试验性技术改造方案提出了改进建议。
关键词:旋风分离器 炉墙衬里 保温绝热材料 技术改造中图分类号:TK229.66文献标识码:A文章编号:1672-3791(2017)10(a)-0056-021 设备概况与现状某电厂2台锅炉为循环流化床锅炉,采用高温绝热旋风分离器,其外部安装金属护板,内衬整体为砖砌结构,从上到下依次为:筒体炉墙、锥体炉墙和料腿。
筒体炉墙直径9000m m,总厚350m m,采用砖砌结构,分3层,内层为113m m 耐磨耐火砖,中间层为116m m 耐火保温砖,外层为116m m保温砖。
烟气入口两侧有两道止推板,筒体烟气入口下面以及筒体与锥体交界处各布置一圈支撑托板。
筒体砖采用拉钩固定,其他不规则部分采用“Y”形抓钉固定的浇注料。
筒体砖与顶部浇注料以及托板之间均留有不同宽度的膨胀缝,所有膨胀缝内填充硅酸铝耐火纤维毡。
锥体炉墙厚度为350m m,结构与筒体炉墙一致,总高10951mm,分三段,每段之间布置一层支撑托板,采用不同尺寸的楔形砖和矩形砖来保证其形状并实现分层卸载,安装时要求砖缝均匀,均为1~2m m。
料腿直径1900m m同样采用砖砌结构,厚度300mm,外层保温砖厚度由116mm缩减为66mm,其他不变。
料腿最下方布置一层支撑托板,结构与锥体炉墙一致。
自投产以来该厂旋风分离器外壁温度超温严重,经现场测量冬季(环境温度为13℃)平均温度92.5℃,夏季(环境温度为35℃)平均温度115.2℃,折算后冬夏季温度均超过《火力发电厂保温油漆设计规程》DL/T5072-2007中:锅炉正常运行条件下,环境温度不高于27℃时,设备和管道结构外表面温度不应超过50℃,环境温度高于27℃时,保温结构外表面温度可比环境温度高25℃的规定。
旋风分离器发展及工作原理摘要:综述了旋风分离器的发展概况,并从气体、粉尘运动的工作原理以及分类等方面介绍了。
一、旋风分离器的发展旋风分离器的应用已有近百年的历史,因其结构简单,造价低廉,没有活动部件,可用多种材料制造,操作条件范围宽广,分离效牢较高,所以至今仍是化工、采矿、冶金、机械、轻工等工业部门里最常用的一种除尘、分离设备。
随着工业发展的需要,为使旋风分离器达到高效低阻的目的,自1886年Morse的第一台圆锥形旋风分离器问世以来百余年里,由于分离器的结构、尺寸、流场特性的不同,出现了许多不同用途的旋风分离器,现从两个方面来进行概述。
1.气体、粉尘运动的研究旋风分离器内颗粒流体的流动属于稀浓度颗粒流体力学,故可先分析纯气体流场,再计及颗粒在其中的运动。
在1949年,TerLinden研究得出切向速度轴对称分布,在同一断面随其与轴心的距离减小而增大,达到最大值后又逐渐减小;径向速度在中心区方向朝外,在外围区方向朝内,形成源汇流;轴向速度在外部区域气流向下,在轴心区域气流向上;压力分布是壁面处大于中心处。
1962年,Lewellen把不可压缩流体的连续性方程和Navier-stokes方程在圆柱坐标系和轴对称定常流动下进行了简化,通过引入流函数和环量,得到了强旋转简化层流模型。
1975年Bloor、Ingham运用普朗特提出的混合长理论确定湍流表观粘度,并对水力旋流器流场进行了分析,建立了适合于工程应用的初级湍流模型。
1982年Boysan等人利用Rodi推得的关于雷诺应力的近似代数关系式,得到了高级湍流模型。
用这些模型计算得到的切向速度数值解与实验测定结果较吻合。
2.旋风分离器内气固流况的剖析通过对旋风分离器内气固流况的剖析,针对影响旋风分离器效率的顶部上涡流和下部的二次带尘,影响动力消耗的进口膨胀损失和出口旋转摩擦等因素,人们进行改进。
为了消除因上涡流而引起粉尘从出口管短路逃逸的现象,Cardiff 大学的Biffin等人研制的新型带集涡室的旋风分离器、德国西门子公司顶端带导向叶片的旋流分离器、日本专利多头切向进口的多管分离器,以及国内的倾斜螺旋形进口的CLT/A、CLG、DⅠ型等也都是为了削弱上涡流的带尘。
循环流化床锅炉燃烧改性高硫煤的污染物排放特性摘要:随着煤炭资源开采的不断延长和开采年限的增加,晚下石炭统煤层逐步开采时,高硫煤将逐渐增多。
当上部煤被充分开采时,该矿只能生产高硫煤。
另一方面,高硫煤是我国部分地区的主要煤炭资源。
强制使用低硫煤的,必须从其他地方运来。
这不仅会浪费当地资源,还会造成能源消耗和交通污染。
显然,高硫煤是我国重要的能源资源。
如何高效、清洁利用高硫煤是关系到能源安全、环境保护和国民经济可持续发展的重大问题,也是洁净煤技术面临的技术挑战。
关键词:循环流化床锅炉燃烧改性高硫煤;污染物排放特性;前言:锅炉排气损失是锅炉运行中最重要的热损失,占锅炉热损失的60% - 70%。
目前,为了减少烟气的温度,减少烟气的热损失,提高电厂的经济,低温保温材料,来提高烟气余热利用的效率,火电行业得到了广泛的关注。
然而,对于高硫燃煤电厂,由于烟气腐蚀问题尚未得到解决,很少有项目采用烟气余热回收利用。
1 燃用高硫煤造成的危害1.1 对锅炉自身的危害锅炉燃烧时最常见的问题是高温加热器腐蚀、高温加热表面腐蚀、热源尾部氧化、污渍、设备和系统的消毒不能安全工作,锅炉的总体经济效率也在下降。
1.2 对环境的危害锅炉燃烧高硫煤燃烧和脱硫效率,不含硫化物烟气太高,而二氧化硫(SO2),进入大气层,溶于少量水蒸汽冷凝液滴入并不断与氧化剂反应进入云,导致pH降低,氧化失云、云的表面上。
酸雨的形成损害了农作物的生长,导致了作物和纪念碑的侵蚀。
在低温和潮湿的大气中,含硫酸和硫酸盐的气溶胶形成,这些气溶胶聚集在地下以污染烟雾,危害人类健康,特别是对呼吸系统造成严重损害。
二氧化硫、灰尘、氮氧化物和各种重金属颗粒聚集在云层和云层之间,污染混合大气,吸入肺部,刺激人类的气道,引起肺气肿、气管、哮喘等。
2 循环流化床锅炉燃烧改性高硫煤的污染物排放特性2.1 原料改良过的高硫化煤,由清洁煤炭研究生产。
它有复合的化学添加剂和高硫化煤炭,其中包括碱性和碱性金属,具有可在不同温度范围内抵抗污染的反应性,这与传统的混合方法不同,这与传统的混合方法不同。
循环流化床锅炉与常规煤粉锅炉不但在结构上有所不同,而且在其燃烧方式和调节手段也有自身的特点。
循环流化床锅炉正常运行调整的主要参数除了汽温、汽压、炉膛负压之外,还应重点监视床温、床层压力、炉膛压差、旋风分离器灰温、旋风分离器料层高度、冷渣器工作状态、布风板压力、渣温、排渣温度等。
第一:床温控制床温是循环流化床锅炉需要重点监视的主要参数之一,床温的高低直接决定了整个锅炉的热负荷和燃烧效果,这是由床温是循环流化床锅炉的特点(动力控制燃烧)所决定的。
根据燃用煤种的不同,床温的控制范围一般在850~950。
C左右,对于挥发分高的煤种,可以适当地降低,而对于挥发分低的煤种则可能要在900℃以上。
但不宜过高或过低过低可能会造成不完全燃烧损失增大,脱硫效果下降,降低了传热系数,严重时会使大量未燃烧的煤颗粒聚集在尾部烟道发生二次燃烧,或者密相区燃烧分额不够使床温偏高而主汽温度偏低;床温过高则可能造成床内结焦,损坏风帽,被迫停炉。
一般应保证密相区温度不高于灰的变形温度ιoo~150。
C或更多。
调节床温的主要手段是调整给煤量和一、二次风量配比。
如果保持过剩空气量在合适范围内,增加或减少给煤量就会使床温升高或降低。
但此时要注意煤颗粒度的大小,颗粒过小时,煤一进入炉膛就会被一次风吹至稀相区,在稀相区或水平烟道受热面上燃烧,而不会使床温有明显地上升。
当煤粒径过大时,操作人员往往会采用较大的运行风量来保持料层的流化状态,否则会出现床料分层,床层局部或整体超温结焦,这样就会推迟燃烧时间,床温下降,炉膛上部温度在一段时间后升高。
当一次风量增大时,会把床层内的热量吹散至炉膛上部,而床层的温度反而会下降,反之床温会上升。
当然,一次风量一旦稳定下来,一般不要频繁调整,否则会破坏床层的流化状态,所以很多循环流化床锅炉都把一次风量小于某一值作为主燃料切除(MFT)动作的条件。
但在小范围内调节一次风量却仍是调整床温的有效手段。
二次风可以调节氧量,但不如在煤粉炉当中那么明显,有时增加二次风后就加强了对炉膛上部的扰动作用,会出现床温暂时下降的趋势,但过一段时间后因氧量的增加,床温总体上会呈现上升势头。
循环流化床锅炉低氮燃烧的技术改造实践发布时间:2022-08-31T03:18:58.308Z 来源:《当代电力文化》2022年第8期作者:刘鑫东[导读] 循环流化床锅炉是一种高效、低污染的节能炉型。
自问世以来,在国内外得到了迅速的推广与发展刘鑫东国家电投集团内蒙古能源有限公司赤峰热电厂内蒙古赤峰市 024000摘要:循环流化床锅炉是一种高效、低污染的节能炉型。
自问世以来,在国内外得到了迅速的推广与发展,也是作为我国推广的洁净煤燃烧技术发展方向之一。
为了改善人们的生活环境,我国对环境保护提出了更高的强制性要求,要求企业的各项污染物排放必须达到环境质量标准和污染物排放标准。
为了符合可持续发展的要求,减少环境污染,有必要对锅炉烟气净化系统进行改造,减少锅炉烟气排放。
其中低氮燃烧技术在减低循环流化床锅炉烟气的方面表现突出,研究其技术应用的途径可以实现减少烟气排放的目标。
针对流化床锅炉的燃烧特点,低氮燃烧技术被开发出来,并得到很好的实际运用。
关键词:超低排放;燃煤锅炉;节能环保随着经济的快速发展,对能源和环境的压力逐渐增大。
因此,中国提出了可持续发展的战略目标。
社会和经济发展的同时,我们还必须注意环境的保护,为了适应时代发展的新要求工业企业污染物排放要求严格按照有关标准,并继续研究新型燃烧技术从根本上减少污染物的产生。
在研究过程中,通过实验得出氮氧化物是工业排放污染物的主要物质之一,必须采取措施减少氮氧化物的排放,才能有效实现工业生产节能减排的目标。
循环流化床是一种高效、洁净的燃烧技术。
已广泛应用于多家发电企业,并采用SNCR 脱硝系统与低氮燃烧技术相结合,有效地达到了减少污染物排放的目的。
一、锅炉低氮燃烧技术改造方案根据该公司的锅炉运行特点,制定了锅炉的低氮燃烧技术改造方案。
方案主体:锅炉烟气脱硝以SNCR 为主,低氮改造为辅,方案的优点就是锅炉的改造工程量不会很大,主要包含部分:1、二次风系统改造。
循环流化床锅炉燃烧一、循环流化床锅炉燃烧特点(一)、循环流化床锅炉燃烧采用流态化燃烧方式,其主要特征是颗粒在离开炉膛出口以后,经旋风分离器收集,由返料器不断返回炉膛参加二次燃烧,因此,循环流化床锅炉具有低温、强化燃烧的特点,床内温度850oC---950oC。
在循环流化床锅炉中,流化床本身是一个积累了大量灼热物料的蓄热容量很大的热源,有利于燃料的稳定、迅速着火燃烧,即使燃用低热值的燃料时,每秒种新加入的燃料还远小于灼热床料的1%,这些灼热床料大多为惰性物料,他们并不与新加入的燃料争氧,却提供了一个丰富的热源,将新加入的煤粒迅速加热,使之析出挥发份并稳定的着火燃烧,煤粒中的挥发份和固定碳燃烧后释放的热量,其中一部分又来加热床料,使炉内温度始终保持在一个稳定的水平。
同时,一些未完全燃尽的颗粒随烟气被携带出炉膛,被旋风分离器收集,由返料器返回炉膛参加二次燃烧。
所以,循环流化床锅炉对燃料的适应性强,不仅能烧优质燃料,也能烧劣质燃料,而且燃烧效率非常高,可达98%。
(二)、循环流化床锅炉优、缺点:1、优点:1)对燃料的适应性好。
2)燃烧效率高。
3)高效脱硫。
4)氮氧化物(NO x)排放低。
5)燃烧强度高,炉膛截面积小。
6)负荷调节范围大,负荷调节快。
7)燃料预处理及给煤系统简单。
8)易于实现灰渣综合利用。
缺点:1)飞灰的再循环燃烧,一次风机压头高,电耗大。
2)膜式水冷壁变节处和裸露在烟气中冲刷的耐火材料砌筑部件磨损大。
3)高温分离器和返料器内有耐火材料砌体冷热惯性大,给支撑和快速启停带来困难。
4)循环流化床锅炉对燃煤粒度及分布要求较高。
若燃料制备不完善,带来的普遍的问题是:锅炉达不到设计出力,磨损严重,燃烧效率不高和运行可靠性差。
二、循环流化床锅炉的燃烧区域循环流化床锅炉在使用二次风以后,一般就将其燃烧区域分为下部的密相区(二次风口以下)、上部的稀相区(二次风口以上)和高温气固分离器区及返料器区。
(一)、密相区在密相区内,由一次风将床料和加入的煤粒流化。
浅析循环流化床锅炉旋风分离器安装刘贵明(青海火电工程公司810003)摘要:青海盐湖三期4×480T/H循环流化床锅炉布置了汽冷式旋风分离器。
本文详细论述了旋风分离器的安装步骤及注意事项,为火电安装单位安装同类或相似设备具有重要的参考价值。
1、概述:旋风分离器上半部分为圆柱形,下半部分为锥形,为膜式包墙过热器结构(也有钢板卷制成圆桶形状的,安装相对简单,不在本文论述之例),其顶部与底部均与环形集箱相连,墙壁管子在顶部向内弯曲,使得在旋风分离器管子和烟气出口圆筒之间形成密封结构。
烟气出口为圆筒形钢板件,形成一个端部敞开的圆柱体。
细颗粒和烟气先旋转下流至圆柱体的底部,而后向上流动离开旋风分离器。
粗颗粒落入直接与J型回料器相连接的立管。
另有进口烟道与出口烟道分别与直段管屏和分离器中心筒相连接,形成通向尾部的烟气通道。
旋风分离器由 42的管子与扁钢包覆,并通过上、下环形集箱联系。
旋风分离器内表面敷设防磨材料,其厚度距管子外表面25mm,采用高密度销钉固定。
旋风分离器设备在循环流化床锅炉的安装中是一个非常关键的部件。
在以往的工程施工中,因为采取的施工措施不当,曾经造成工期迟滞拖延,质量问题频仍,运行事故不断的“顽症”。
如何提高分离器的安装效率和质量,是所有火电安装单位面临的一个亟需解决的重要课题。
本文尝试就分离器的安装步骤和安装要点做一浅要分析,旨在抛砖引玉,共同提高对分离器安装工作的认识。
例图一:旋风分离器及下部J阀回料装置2、安装步骤:2.1、旋风分离器进口烟道安装:分离器主体筒身在安装前应先将分离器进口烟道与非金属膨胀节组合在一起先行吊装。
如果这部分工作放在主体部件吊装之后进行,将造成进口烟道安装困难,使安装成本增大。
尤其是非金属膨胀节,因为其自身刚性较差,在无足够的安装空间的情况下,会造成设备的破损变形,以至于无法正常使用。
因此,将其与进口烟道在地面组合在一起吊装,既能保证膨胀节的外观形状不被破坏,又能使该部件的安装工效达到事半功倍的效果。
循环流化床锅炉旋风分离器中的事故分析循环流化床锅炉技术是近二十年来迅速发展的一项高效低污染清洁燃烧枝术。
它在运行当中暴露出了若干问题并逐一得到了解决。
旋风分离器是循环流化床锅炉的重要设备之一。
在循环流化床锅炉的运行当中回料装置将会遇到一系列的故障,由于回料装置常常出现各种问题,引起锅炉的非计划性停炉,给企业带来直接的经济损失。
2.回料裝置出现故障的表现形式回料装置的问题主要表现为:2.1 回料器床料不均匀回料不均的现象,回料器本体剧烈振动,回料器床压、床温大幅度波动,导致锅炉被迫减负荷运行。
此外炉膛内循环物料入口正对的布风板风帽受到循环物料的长期冲击,部分风帽从根部折断,致使炉膛布风板漏渣、流化风带渣及布风不均匀等一系列现象发生。
2.2 U阀回料器的磨损U阀回料器中耐磨材料及回料腿处的磨损较为严重,从而有一些非常坚硬的防磨材料脱落,炉膛出口处水平烟道内也会发现同类防磨材料。
在回料腿内部的浇注料出现大面积脱落现象。
2.3 返料装置床层结焦结焦是高温分离器回料系统内经常出现的故障。
原因是循环物料在炉膛内停留时间短温度过高,灰渣超过了自身的软化温度而粘结在床层上。
结焦后导致物料不能正常流化,形成的大渣块堵塞物料流通回路。
2.4 回料装置辅助部件的故障回料装置辅助部件的问题表现为U阀风的流量表计实测误差大,流化风的控制门设置不合理,无法实现风量的平稳调节,不能使风机的风门在关闭状态下实现快速启动。
3.返料装置中回料器的结构U型回料器由立管、布风板、松动室、回料室、风室、舌板等组成。
U型回料器的结构如图1所示。
4.返料器投运时的注意事项及处理措施分离器工作时分离下来的物料落入U型回料器立管,立管下方为松动风侧,以舌板为分界线,另一侧为流化风侧。
实际上,旋风分离器就是一个小型流化床。
在运行时,由于分离器分离下来的物料在立管内聚积,所以松动风侧的压力大于流化风侧的压力。
因此物料在松动风、流化风的作用下,依靠压差的作用顺利的进入料腿,物料经过回料腿进入炉膛进一步燃烧,从而完成整个物料循环过程。
循环流化床锅炉旋风分离器气流温度性能研究摘要:本文在对江苏某电厂循环流化床旋风分离器数值研究的基础上,结合生产现场实践,对分离器气流温度的性能特性进行研究分析,研究结果表明:随着入口温度的升高,旋风分离器内部轴向速度升高,切向速度减小,压力损失与分离效率减小,但是幅度均不明显。
因而在保证锅炉稳定燃烧基础上的实际运行中,提高入口处温度不能够达到提高旋风分离器分离效率的目的,同时还会出现分离器内壁形成结渣等状况,对旋风分离器的运行安全造成影响。
关键词:循环流化床旋风分离器性能研究旋风分离器是循环流化床锅炉的主要部件之一,其性能对循环流化床锅炉的燃烧及效率有着十分重要的影响。
而旋风分离器作为一种重要的分离设备,虽其结构简单,但内部三维湍流流场十分复杂,对此,本文选用FLUENT流体分析软件,采用计算流体力学方法,从计算模型入手,同时以电厂75 t/h循环流化床锅炉的旋风分离器实际运行参数为基础,分析研究在额定工况下温度变化对旋风分离器性能的影响,并通过飞灰含碳量的测定数据对其性能影响进行了分析验证。
1 旋风分离器数值模拟1.1 数值模拟理论基础本文对江苏徐州大屯某电厂75 t/h循环流化床锅炉锅炉额定负荷的实际数据进行了计算,为旋风分离器进行数值模拟提供了理论基础。
1.2 湍流模型本文选取连续性方程、动量方程以及能量方程等对控制流体运动的方程进行描述,并采用SIMPLEC算法求解控制方程。
一般的,对于旋风分离器气相流场多使用标准模型,模型以及RSM模型进行模拟。
但标准模型与模型都主要基于各项同性的模型,对此,本文选用了更适合强旋流场模拟的雷诺应力模型(RSM)。
1.3 计算模型与网格划分1.3.1 几何模型与网格划分本文选用的是现场实际的直切式旋风分离器为模型,其模型和结构尺寸如图1所示。
同时针对其筒体与进气管连接处形状尖锐等结构特点,采用了分块生成网格的办法。
对于分离特性比较明显的区域如旋风分离器内部、圆筒体以及圆锥体,本文选取了Y=3 m和Y=9 m两个曲线对旋风分离器的性能进行研究,并将坐标轴的横坐标定为曲线长度,具体曲线起点至终点的长度如图1所示。
循环流化床旋风分离器是一种常用于固体颗粒分离的设备,但由于颗粒的高速旋转和碰撞,容易导致设备磨损。
为了防止磨损,可以采取以下措施:
1. 选择耐磨材料:选择耐磨性能好的材料作为旋风分离器的内部衬板和叶片材料,例如高铬合金钢、陶瓷等。
2. 衬板保护:在旋风分离器的内部衬板上安装耐磨保护层,如橡胶衬板、陶瓷涂层等,以增加其耐磨性能。
3. 减少颗粒速度:通过调节气体流速和分离器的结构参数,减少颗粒的速度,降低颗粒对设备的冲击力,从而减少磨损。
4. 增加分离效率:提高旋风分离器的分离效率,减少颗粒在设备内的停留时间,降低颗粒对设备的磨损。
5. 定期维护:定期对旋风分离器进行检查和维护,及时清理堵塞的颗粒,修复磨损的部件,保持设备的正常运行状态。
6. 控制颗粒粒径:通过控制颗粒的粒径分布,减少大颗粒对设备的冲击力,降低磨损。
7. 加装过滤器:在旋风分离器的出口处加装过滤器,可以进一步过滤颗粒,减少颗粒对设备的磨损。
总之,通过选择合适的材料、加装保护层、调节流速和结构参数、定期维护等措施,可以有效地防止循环流化床旋风分离器的磨损。
480t h循环流化床锅炉旋风分离器中心筒改造摘要:保德神东发电有限责任公司2×480t/h循环流化床锅炉旋风分离器中心筒因设计缺陷,锅炉运行中中心筒变形严重,甚至出现中心筒脱落。
针对问题的原因进行了详细分析后,对中心筒的结构和安装方式两个方面提出了改造方案,经过改造的中心筒运行稳定,未出现变形、脱落等现象。
关键词:循环流化床锅炉中心筒改造Abstract:Due to design defects,the central cylinders of 2×480t/h CFB cyclone separators are always seriously deformed and even fall off in Baode Shendong Power Plant.Carrying on detailed analysis,we provide improvement schemes for the structure and installation of the central cylinders.After these improvements,the central cylinders operate stably and avoid deforming and falling off.Key words:CFB Central Cylinder Transformation循环流化床是一种新型的洁净煤技术,在我国近几年得到飞速发展,我国已是世界上循环流化床锅炉最多的国家,我国是产煤、用煤大国,煤炭的开采必然有煤矸石的产生,大量煤矸石堆积,给环境造成严重的污染。
由于我国重视环保事业的发展,煤矸石再利用受到社会各界的关注,利用循环流化床燃烧高热值的煤矸石在我国许多产煤区得到推广,效果显著。
但是我国的循环流化床技术还不太成熟,许多锅炉厂设计的锅炉存在缺陷,给机组安全稳定运行带来了极大的障碍。
循环流化床燃烧技术一、概念循环流化床(CFB)燃烧技术是一项近二十年发展起来的清洁煤燃烧技术。
它具有燃料适应性广、燃烧效率高、氮氧化物排放低、低成本石灰石炉内脱硫、负荷调节比大和负荷调节快等突出优点。
自循环流化床燃烧技术出现以来,循环床锅炉在世界范围内得到广泛的应用,大容量的循环床锅炉已被发电行业所接受。
循环流化床低成本实现了严格的污染排放指标,同时燃用劣质燃料,在负荷适应性和灰渣综合利用等方面具有综合优势,为煤粉炉的节能环保改造提供了一条有效的途径。
二、循环流化床燃烧技术发展历史回顾主循环回路是循环流化床锅炉的关键,其主要作用是将大量的高温固体物料从气流中分离出来,送回燃烧室,以维持燃烧室稳定的流态化状态,保证燃料和脱硫剂多次循环、反复燃烧和反应,以提高燃烧效率和脱硫效率。
分离器是主循环回路的关键部件,其作用是完成含尘气流的气固分离,并把收集下来的物料回送至炉膛,实现灰平衡及热平衡,保证炉内燃烧的稳定与高效。
从某种意义上讲,CFB锅炉的性能取决于分离器的性能,所以循环床技术的分离器研制经历了三代发展,而分离器设计上的差异标志了CFB燃烧技术的发展历程。
●(一)绝热旋风筒分离器德国Lurgi公司较早地开发出了采用保温、耐火及防磨材料砌装成筒身的高温绝热式旋风分离器的CFB锅炉[1]。
分离器入口烟温在850℃左右。
应用绝热旋风筒作为分离器的循环流化床锅炉称为第一代循环流化床锅炉,目前已经商业化。
Lurgi公司、Ahlstrom公司、以及由其技术转移的Stein、ABB-CE、AEE、EVT等设计制造的循环流化床锅炉均采用了此种形式。
这种分离器具有相当好的分离性能,使用这种分离器的循环流化床锅炉具有较高的性能。
但这种分离器也存在一些问题,主要是旋风筒体积庞大,因而钢耗较高,锅炉造价高,占地较大,旋风筒内衬厚、耐火材料及砌筑要求高、用量大、费用高启动时间长、运行中易出现故障;密封和膨胀系统复杂;尤其是在燃用挥发份较低或活性较差的强后燃性煤种时,旋风筒内的燃烧导致分离下的物料温度上升,引起旋风筒内或回料腿回料阀内的超温。
这些问题在我国实际生产条件下显得更突出。
Circofluid的中温分离技术在一定程度上缓解了高温旋风筒的问题,炉膛上部布置较多数量的受热面,降低了旋风筒入口烟气温度和体积,旋风筒的体积和重量有所减小,因此相当程度上克服了绝热旋风筒技术的缺陷,使其运行可靠性提高,但炉膛上部布置有过热器和高温省煤器等,需要采用塔式布置,炉膛较高,钢耗量大,锅炉造价提高。
同时,它的CO排放及检修问题在一定程度上限制了该技术的发展。
●(二)水(汽)冷旋风筒分离器为保持绝热旋风筒循环流化床锅炉的优点,同时有效地克服该炉型的缺陷,Foster Wheeler公司设计出了堪称典范的水(汽)冷旋风分离器。
应用水(汽)冷分离器的循环流化床锅炉被称为第二代循环流化床锅炉。
该分离器外壳由水冷或汽冷管弯制、焊装而成,取消绝热旋风筒的高温绝热层,代之以受热面制成的曲面及其内侧布满销钉涂一层较薄厚度的高温耐磨浇注料,壳外侧覆以一定厚度的保温层。
水(汽)冷旋风筒可吸收一部分热量,分离器内物料温度不会上升,甚至略有下降,同时较好地解决了旋风筒内侧防磨问题。
该公司投运的循环流化床锅炉从未发生回料系统结焦的问题,也未发生旋风筒内磨损问题,充分显示了其优越性。
这样,高温绝热型旋风分离循环床的优点得以继续发挥,缺点则基本被克服。
当然,任何一种设计都难以尽善尽美,FW式水(汽)冷旋风分离器的问题是制造工艺及生产成本,这使其商业竞争力下降,通用性和推广价值受到了限制。
同时该分离器的结构形式与高温绝热旋风筒并无本质差异,因此锅炉结构仍未恢复到传统锅炉完美的形式。
为了各部件的热膨胀而设置的大型膨胀节成为该炉型最薄弱的环节,损坏事故频繁发生(见第15届FBC国际会议Operator Section)。
因此调整分离器的形状,进一步提高紧凑性和可靠性问题成为循环流化床燃烧技术发展的关键。
●(三)方型水冷分离器为克服汽冷旋风筒锅炉的结构问题及制造成本高的问题,芬兰Ahlstrom公司创造性地提出了Pyroflow Compact设计构想。
Pyroflow Compact循环床锅炉采用其独特专利技术的方型分离器,分离器的分离机理与圆形旋风筒本质上无差别,壳体仍采用FW式水(汽)冷管壁式,但因筒体为平面结构而别具一格。
这就是第三代循环流化床锅炉。
它与常规循环流化床锅炉的最大区别是采用了方型的气固分离装置,分离器的壁面作为炉膛壁面水循环系统的一部分,因此与炉膛之间免除热膨胀节。
同时方型分离器可紧贴炉膛布置从而使整个循环床锅炉的体积大为减少,布置显得十分紧凑。
借鉴汽冷旋风筒成功的防磨经验,方型分离器水冷表面敷设了一层薄的耐火层,分离器成为受热面的一部分,为锅炉快速启停提供了条件。
三、方型分离器循环床技术url]芬兰Ahlstrom公司的方型分离器紧凑型设计推出之后,立即引起了广泛的重视。
但人们对该技术一直持观望态度。
但经过多台锅炉5年的运行实践,已经为人们所接受,其标志为1999年5月第15届国际流化床燃烧会议上该专利持有人Timo荣获唯一的ASME最高贡献奖。
Foster Wheeler公司和Ahlstrom 公司合并后即将方型分离器循环流化床锅炉作为大型化方向予以重点发展。
采用方型分离器的紧凑型布置循环床锅炉的市场份额逐年增加。
目前各循环流化床锅炉制造厂家和研究机构都十分重视循环流化床锅炉的大型化,方型分离器在大型化方面具有很大的优势。
1993年清华大学在实验室对国外方型分离器专利进行了验证实验,并改进了入口段设计,实验表明这个改进是完全正确的,这个改进最终取得了中国专利—“水冷异型分离器”。
为进一步优化分离器的效果和验证改进可靠性,在实验室冷态实验、热态实验的基础上应用于75t/h完善化循环流化床锅炉,并取得成功。
该分离器是四周用膜式水冷壁组成的方型分离器,烟气入口加速段由水冷壁管弯制成圆弧形。
该设计低成本有效地克服了绝热旋风筒的后燃结焦问题和圆形汽(水)冷旋风筒的结构问题,被认为达到九十年代国际先进水平。
对几种不同当量尺寸的方型分离器进行了一些卓有成效的试验和较为深入的研究,取得了许多有价值的结果。
对这些成果进行较全面的分析、整理和比较表明,方型分离器的放大性能要优于圆形旋风分离器,至少绝不逊于后者,特征尺寸在10m以内的方型分离器大型化的前景相当乐观。
清华大学在该方面的研究成果以及220t/h、410t/h采用方型分离器的循环流化床锅炉设计得到国际同行的充分肯定和高度评价,在15届FBC国际会议上被评为最佳论文。
四、循环流化床锅炉的效率循环流化床燃烧技术具有以下特点:气固混合很好;燃烧速率高,特别是对粗颗粒燃料;绝大部分未燃烬的燃料被再循环至炉膛,因而其燃烧效率可与煤粉炉相媲美,通常达到97.5%~99.5%。
根据统计资料,循环流化床燃烧效率受煤种影响较大。
对较为年轻的褐煤、泥煤,燃烧效率可达到98%以上;而对于变质程度较高的无烟煤到烟煤,飞灰含碳量往往高达10%以上。
一般来讲,各种形式的旋风筒对100μm以下的细颗粒分离效率不可能很高,因此旋风筒对细颗粒燃尽是无能为力的,应当采取飞灰回送等措施解决难燃煤种燃烬问题,而这是目前国际上比较成熟的技术。
关于提高循环流化床锅炉效率的问题,目前比较一致的看法是提高参数。
据分析,超临界循环流化床锅炉电厂的效率可达43%~44%。
根据法国Stein Industrie公司对超临界参数Lurgi循环流化床锅炉的研究,由于Lurgi型循环流化床锅炉有外置换热器,而外置换热器的工作温度在700°C左右,使用清洁空气流化,在外置换热器内布置高温换热器可防止高温腐蚀,因而采用超临界参数比煤粉炉更为有利。
采用超临界参数可使发电效率提高约6%。
五、煤粉炉改造为循环流化床锅炉的方案煤粉炉改造为循环流化床锅炉是一项复杂的工作,因为不同煤粉炉的型号规格不同,同一型式的锅炉运行时间不同,受热面的寿命也不一定相同,这样改造方法和难易程度就有可能不同。
目前国内技术用于410t/h及以下煤粉炉的改造是有把握的。
●(一)410t/h煤粉炉简介单锅筒自然循环高压煤粉炉,膜式壁双框架,半露天布置;燃料室为正方形,煤粉燃烧器四角布置,燃烧室上部布置有后屏过热器,水平烟道依次布置二级过热器和一级过热器。
尾部竖井为轻型护板炉墙,分别布置高温省煤器、高温空气预热器、低温省煤器和低温空预器。
●(二)改造方案研究考虑各部分承压受热面在改造中利用的可能性。
现有钢架以及基础不变动,原场地布置已经比较紧凑,改造不增加占地面积。
对流管束烟气速度应保证长期稳定运行的可靠性。
改造后的出力不变。
考虑到上述要求,在原有钢结构范围内进行改造。
由于场地的限制,采用单炉膛、四个方型分离器前后布置、过顶烟道的总体方案。
采用单炉筒自然循环,自前向后依次布置前分离器、燃烧室及过顶烟道、后分离器、尾部竖井。
膜式壁采用悬吊结构,省煤器及空气预热器采用支撑结构。
在原有钢架范围内重新布置各部分受热面。
燃烧室为膜式壁,净高度30951mm,截面积维持原形状结构,为利用原水冷壁创造条件。
燃烧室前后均布置两个当量直径为4990mm的水冷异型分离器,前分离器出口烟气流经过顶烟道与后分离器出口烟气汇合进入转向室和尾部竖井。
燃烧室标高21.000m以上由水冷屏将燃烧室前后方向分为两部分,通过前后分离器阻力设计不同以及水冷屏的分隔作用解决前后分离器烟气平衡问题。
垂直于水冷屏方向布置了过热屏,过热屏穿越过顶烟道。
燃烧室侧水冷壁、分离器侧水冷壁、前分离器的后水冷壁向上延伸组成侧墙,和顶部汽冷包墙以及分离器顶棚、燃烧室顶棚构成过顶烟道。
尾部竖井自上向下依次布置末级过热器,一级过热器、省煤器、一次风空气预热器热段、二次风空气预热器、一次风空气预热器冷段。
其中末级过热器和初级过热器位于汽冷包墙内。
包墙的前墙一部分在转向室进口穿越烟道形成吊挂管,另一部分向前形成水平烟道的下包墙,在后分离器处向上吊挂。
省煤器、空预器均为护板炉墙。
尾部对流受热面均为前后方的出管,末级过热器为f 42´ 5的五管圈两管组构成;初级过热器为f 38´ 5的双管圈、三管组。
省煤器为f 32´ 4,双管圈三管组;空气预热器采用水平卧式,以有效解决漏风问题。
对流受热面的改造均可由原受热面改造形成。
全部高温受热面区域均采用膜式壁炉墙,避免使用膨胀节,以解决密封问题,采用固定膨胀中心。
Z1至Z3柱钢架不变,Z4、Z5需增加高度至50850mm与原Z1平齐。
经核算,钢架改造后基础仍然是安全的。
为充分节约启动用油,采用水冷布风板,床下点火。