人教版八年级数学上册12.2 第3课时 “角边角”、“角角边”2
- 格式:doc
- 大小:1.03 MB
- 文档页数:4
第3课时 利用“角边角”“角角边”判定三角形全等一,选择题1.在△ABC 和△A'B'C'中,①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列条件中不能保证△ABC ≌△A'B'C'的是( ).A.①②③B.①②⑤C.①⑤⑥D.①②④2.若按给定的三个条件画一个三角形,图形惟一,则所给条件不可能是( )A.两边一夹角B.两角一夹边C.三边D.三角3. 在△△中,已知,,要判定这两个三角形全等,还需要条件( )A .B .C .D .4.如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中和△ABC 全等的图形是( )A.甲乙B.甲丙C.乙丙D.乙5.对于下列各组条件,不能判定的一组是( )A. ,,B. ,,ABC 和DEF C D ∠=∠B E ∠=∠AB ED =AB FD =AC FD =A F ∠=∠ABC A B C '''△≌△A A '∠=∠B B '∠=∠AB A B ''=A A '∠=∠AB A B ''=AC A C ''=C. ,,D. ,,6在和中,已知,,在下列说法中,错误的是( )A. 如果增加条件,那么()B. 如果增加条件,那么()C. 如果增加条件,那么()D. 如果增加条件,那么()7.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是( ).A.AB=ACB.BD=CDC.∠B=∠CD.∠BDA=∠CDA二,填空题8.如图,小聪房子上的一块玻璃碎成了三块,他手头没有测量的工具,于是他想带着玻璃去配一块.同学们想一想,小聪需要带着第 块玻璃.(填序号)9.如图,点B 、E 、F 、C 在同一直线上. 已知∠A =∠D ,∠B =∠C ,要使△ABF ≌△DCE ,需要补充的一个条件是 (写出一个即可).A A '∠=∠AB A B ''=BC B C ''=AB A B ''=AC A C ''=BC B C ''=ABC △A B C 111△1A A ∠=∠11AB A B =11AC A C =111ABC A B C △≌△SAS 11BC B C =111ABC A B C △≌△SAS 1B B ∠=∠111ABC A B C △≌△ASA 1C C ∠=∠111ABC A B C △≌△AAS10.如图,直线L过正方形ABCD 的顶点B , 点A、C 到直线L 的距离分别是AE=1 ,CF=2 , EF长三,简答题11.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.12.为了测量一个池塘的两端A,B之间的距离,小亮设计了如下方案:如图,过点A作AB的垂线AF,在AF上取两点C,D,使过点D作AF的垂线DG,并在DG上取一点E,使点B,C,E在同一条直线上.此时,测量出DE的长度就是A,B之间的距离.这个方案是否可行?说明理由.13.如图,已知△ABC≌△A'B'C',AD,A'D'分别是△ABC和△A'B'C'的高.求证:AD=A'D',并用一句话说明你的结论.14.如图,已知AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.15.如图,∠BCA=∠α,CA=CB,C,E,F分别是直线CD上的三点,且∠BEC=∠CFA=∠α,请提出对EF,BE,AF三条线段数量关系的合理猜想,并证明.参考答案1.D用①②④时,属于“边边角”,而“边边角”是不能用来判定两个三角形全等的. 2.D 3.C 4.C 5.C 6.B 7.B8.③9.AB = DC(填AF=DE或BF=CE或BE=CF也对)10.311.证明∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°.在△ABD和△ACE中,∴△ABD≌△ACE(ASA).∴AB=AC.又AD=AE,∴AB-AE=AC-AD,即BE=CD.12.解方案可行.理由如下:∵AB⊥AF,DG⊥AF,∴∠BAC=∠GDC=90°.在△ABC和△DEC中,∴△ABC≌△DEC(ASA),∴AB=DE.13.证明∵△ABC≌△A'B'C',∴AB=A'B',∠B=∠B'.∵AD,A'D'分别是△ABC,△A'B'C'的高, ∴∠ADB=∠A'D'B'=90°.在△ABD和△A'B'D'中,∴△ABD≌△A'B'D'(AAS).∴AD=A'D'.结论:全等三角形对应边上的高相等. 14.证明∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°,∴∠CAD+∠BAD=∠BAE+∠BAD.∴∠CAB=∠DAE.在△ABC与△AED中,∵∠CAB=∠DAE,∠B=∠E,CB=DE,∴△ABC≌△AED.∴AD=AC.15.解猜想:EF=BE+AF.证明:∵∠BCE+∠CBE+∠BEC=180°,∠BCE+∠FCA+∠BCA=180°,∠BCA=∠α=∠BEC, ∴∠CBE=∠FCA.∵∠BEC=∠CFA=∠α,CB=CA,∴△BEC≌△CFA(AAS),∴BE=CF,EC=FA,∴EF=EC+CF=BE+FA.。
第3课时 “角边角”“角角边”1.理解并掌握三角形全等的判定方法——“角边角”,“角角边”.(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(重点)3.“角边角”和“角角边”判定方法的探究以及适合“角边角”判定方法的条件的寻找.(难点)一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:应用“角边角”、“角角边”判定三角形全等【类型一】 应用“ASA”判定两个三角形全等如图,AD ∥BC ,BE ∥DF ,AE =CF ,求证:△ADF ≌△CBE .解析:根据平行线的性质可得∠A =∠C ,∠DFE =∠BEC ,再根据等式的性质可得AF =CE ,然后利用ASA 可证明△ADF ≌△CBE .证明:∵AD ∥BC ,BE ∥DF ,∴∠A =∠C ,∠DFE =∠BEC .∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .在△ADF 和△CBE 中,∵⎩⎪⎨⎪⎧∠A =∠C ,AF =CE ,∠DFA =∠BEC ,∴△ADF ≌△CBE (ASA). 方法总结:在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA ”中,“边”必须是“两角的夹边”. 【类型二】 应用“AAS ”判定两个三角形全等如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于E .AD 与BE 交于F ,若BF =AC,求证:△ADC ≌△BDF .解析:先证明∠ADC =∠BDF ,∠DAC =∠DBF ,再由BF =AC ,根据AAS 即可得出两三角形全等. 证明:∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC +∠AEF +∠AFE =180°,∠BDF +∠BFD +∠DBF =180°,∴∠DAC =∠DBF .在△ADC 和△BDF 中,∵⎩⎪⎨⎪⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,∴△ADC ≌△BDF (AAS). 方法总结:在“AAS ”中,“边”是“其中一个角的对边”.【类型三】 灵活选用不同的方法证明三角形全等如图,已知AB=AE,∠BAD=∠CAE,要使△ABC≌△AED,还需添加一个条件,这个条件可以是______________.解析:由∠BAD=∠CAE得到∠BAC=∠EAD,加上AB=AE,所以当添加∠C=∠D时,根据“AAS”可判断△ABC≌△AED;当添加∠B=∠E时,根据“ASA”可判断△ABC≌△AED;当添加AC=AD时,根据“SAS”可判断△ABC≌△AED.方法总结:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.探究点二:运用全等三角形解决有关问题已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;(2)DE=BD+CE.解析:(1)由垂直的关系可以得到一对直角相等,利用同角的余角相等得到一对角相等,再由AB=AC,利用AAS即可得证;(2)由△BDA≌△AEC,可得BD=AE,AD=EC,根据DE=DA+AE等量代换即可得证.证明:(1)∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠ABD+∠BAD=90°.∵AB⊥AC,∴∠BAD+∠CAE=90°,∴∠ABD=∠CAE.在△BDA和△AEC中,∵⎩⎪⎨⎪⎧∠ADB=∠CEA=90°,∠ABD=∠CAE,AB=AC,∴△BDA≌△AEC(AAS);(2)∵△BDA≌△AEC,∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.三、板书设计“角边角”“角角边”1.角边角:两角及其夹边分别相等的两个三角形全等.简记为“角边角”或“ASA”.2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等.简记为“角角边”或“AAS”.3.三角形全等是证明线段相等或角相等的常用方法.本节课的教学借助于动手操作、分组讨论等探究出三角形全等的判定方法.在寻找判定方法证明两个三角形全等的条件时,可先把容易找到的条件列出来,然后再根据判定方法去寻找所缺少的条件.从课堂教学的情况来看,学生对“角边角”掌握较好,达到了教学的预期目的.存在的问题是少数学生在方法“AAS”和“ASA”的选择上混淆不清,还需要在今后的教学中进一步加强巩固和训练.。
第十二章全等三角形...猜想:两角及夹边对应相等的两个三角形_______.三、我的疑惑__________________________________________________________________________________________ ____________________________________________________________一、要点探究探究点1:三角形全等的判定定理3--“角边角”活动:先任意画出一个△ABC.再画一个△A′B′C′,使A ∠B′=∠B.把画好的△A′B′C′剪下,放到△ABC结论?要点归纳:相等的两个三角形全等(几何语言:如图,在△ABC和△DEF中,∴△ABC≌△DEF.例1:如图,已知:∠ABC=∠DCB,∠ACB=∠DBC例2:如图,点D在AB上,点E在AC上,AB=AC, ∠B=如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.探究点2:三角形全等的判定定理3的推论--“角角边”做一做:已知一个三角形的两个内角分别是60°和45°,且45°所对的边的边长为3cm,你能画出这个三角形吗?追问:这里的条件与“角边角”中的条件有什么相同点与不同点?你能将它转化为“角边角”中的条件吗?要点归纳:相等的两个三角形全等(简称“角角边”或“AAS”).几何语言:如图,在△ABC和△DEF中,∴△ABC≌△DEF.例3:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.例4:如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;(2)DE=BD+CE.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是( )“角角边”是利用三角形内角和定理转化成“角边角”证明两个三角形全等当堂检测,判别下面的,AB=AD.拓展提升6.已知:如图,△ABC ≌△A′B′C′,AD、A′D′分别是△ABC 和△A′B′C′的高.试说明AD=A′D′,并用一句话说出你的发现.。
第十二章全等三角形..猜想:两角及夹边对应相等的两个三角形_______.三、我的疑惑_________________________________________________________________________________________ _____________________________________________________________一、要点探究探究点1活动:先任意画出一个△∠B ′=∠B.把画好的△A 结论?要点归纳:相等的两个三角形全等几何语言:如图,在△ABC 和△ ∴△ABC ≌△DEF. 例1:如图,已知:∠ABC例2:如图,点D 在AB B=∠C,求证:AD=AE.. 如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.探究点2:三角形全等的判定定理3的推论--“角角边”做一做:已知一个三角形的两个内角分别是60°和45°,且45°所对的边的边长为3cm,你能画出这个三角形吗?追问:这里的条件与“角边角”中的条件有什么相同点与不同点?你能将它转化为“角边角”中的条件吗?要点归纳:相等的两个三角形全等(简称“角角边”或“AAS”).几何语言:如图,在△ABC和△DEF中,∴△ABC≌△DEF.例3:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.例4:如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;(2)DE=BD+CE.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是( )“角角边”是利用三角形内角和定理转化成“角边角”证明两个三角形全等当堂检测,判别下面的,AB=AD.拓展提升6.已知:如图,△ABC ≌△A′B′C′,AD、A′D′分别是△ABC 和△A′B′C′的高.试说明AD=A′D′,并用一句话说出你的发现.。
第3课时“角边角”“角角边”1.理解并掌握三角形全等的判定方法——“角边角”,“角角边”.(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(重点)3.“角边角”和“角角边”判定方法的探究以及适合“角边角”判定方法的条件的寻找.(难点)一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:应用“角边角”、“角角边”判定三角形全等【类型一】如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.解析:根据平行线的性质可得∠A=∠C,∠DFE=∠BEC,再根据等式的性质可得AF=CE,然后利用ASA可证明△ADF≌△CBE.证明:∵AD∥BC,BE∥DF,∴∠A=∠C,∠DFE=∠BEC.∵AE=CF,∴AE+EF=CF +EF ,即AF =CE .在△ADF 和△CBE 中,∵⎩⎨⎧∠A =∠C ,AF =CE ,∠DFA =∠BEC ,∴△ADF ≌△CBE (ASA).方法总结:在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA ”中,“边”必须是“两角的夹边”.【类型二】 如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于E .AD 与BE 交于F ,若BF =AC ,求证:△ADC ≌△BDF .解析:先证明∠ADC =∠BDF ,∠DAC =∠DBF ,再由BF =AC ,根据AAS 即可得出两三角形全等.证明:∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC +∠AEF +∠AFE =180°,∠BDF +∠BFD +∠DBF =180°,∴∠DAC =∠DBF .在△ADC 和△BDF 中,∵⎩⎨⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,∴△ADC ≌△BDF (AAS).方法总结:在“AAS ”中,“边”是“其中一个角的对边”.【类型三】 灵活选用不同的方法证明三角形全等如图,已知AB =AE ,∠BAD =∠CAE ,要使△ABC ≌△AED ,还需添加一个条件,这个条件可以是______________.解析:由∠BAD =∠CAE 得到∠BAC =∠EAD ,加上AB =AE ,所以当添加∠C =∠D 时,根据“AAS ”可判断△ABC ≌△AED ;当添加∠B =∠E 时,根据“ASA ”可判断△ABC ≌△AED ;当添加AC =AD 时,根据“SAS ”可判断△ABC ≌△AED .方法总结:判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.探究点二:运用全等三角形解决有关问题已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:(1)△BDA ≌△AEC ;(2)DE =BD +CE .解析:(1)由垂直的关系可以得到一对直角相等,利用同角的余角相等得到一对角相等,再由AB =AC ,利用AAS 即可得证;(2)由△BDA ≌△AEC ,可得BD =AE ,AD =EC ,根据DE =DA +AE 等量代换即可得证.证明:(1)∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠ABD +∠BAD =90°.∵AB ⊥AC ,∴∠BAD +∠CAE =90°,∴∠ABD =∠CAE .在△BDA 和△AEC 中,∵⎩⎨⎧∠ADB =∠CEA =90°,∠ABD =∠CAE ,AB =AC ,∴△BDA ≌△AEC (AAS);(2)∵△BDA ≌△AEC ,∴BD =AE ,AD =CE ,∴DE =DA +AE =BD +CE .方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.三、板书设计“角边角”“角角边”1.角边角:两角及其夹边分别相等的两个三角形全等.简记为“角边角”或“ASA ”.2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等.简记为“角角边”或“AAS ”.3.三角形全等是证明线段相等或角相等的常用方法.本节课的教学借助于动手操作、分组讨论等探究出三角形全等的判定方法.在寻找判定方法证明两个三角形全等的条件时,可先把容易找到的条件列出,然后再根据判定方法去寻找所缺少的条件.从课堂教学的情况看,学生对“角边角”掌握较好,达到了教学的预期目的.存在的问题是少数学生在方法“AAS”和“ASA”的选择上混淆不清,还需要在今后的教学中进一步加强巩固和训练.。
第3课时“角边角”“角角边”1.理解并掌握三角形全等的判定方法——“角边角”,“角角边”.(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(重点)3.“角边角”和“角角边”判定方法的探究以及适合“角边角”判定方法的条件的寻找.(难点)一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:应用“角边角”、“角角边”判定三角形全等【类型一】如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.解析:根据平行线的性质可得∠A=∠C,∠DFE=∠BEC,再根据等式的性质可得AF=CE,然后利用ASA可证明△ADF≌△CBE.证明:∵AD∥BC,BE∥DF,∴∠A=∠C,∠DFE=∠BEC.∵AE=CF,∴AE+EF=CF +EF ,即AF =CE .在△ADF 和△CBE 中,∵⎩⎨⎧∠A =∠C ,AF =CE ,∠DFA =∠BEC ,∴△ADF ≌△CBE (ASA).方法总结:在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA ”中,“边”必须是“两角的夹边”.【类型二】 应用“AAS ”判定两个三角形全等如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于E .AD 与BE 交于F ,若BF =AC ,求证:△ADC ≌△BDF .解析:先证明∠ADC =∠BDF ,∠DAC =∠DBF ,再由BF =AC ,根据AAS 即可得出两三角形全等.证明:∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC +∠AEF +∠AFE =180°,∠BDF +∠BFD +∠DBF =180°,∴∠DAC =∠DBF .在△ADC 和△BDF 中,∵⎩⎨⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,∴△ADC ≌△BDF (AAS).方法总结:在“AAS ”中,“边”是“其中一个角的对边”.【类型三】 灵活选用不同的方法证明三角形全等如图,已知AB =AE ,∠BAD =∠CAE ,要使△ABC ≌△AED ,还需添加一个条件,这个条件可以是______________.解析:由∠BAD =∠CAE 得到∠BAC =∠EAD ,加上AB =AE ,所以当添加∠C =∠D 时,根据“AAS ”可判断△ABC ≌△AED ;当添加∠B =∠E 时,根据“ASA ”可判断△ABC ≌△AED ;当添加AC =AD 时,根据“SAS ”可判断△ABC ≌△AED .方法总结:判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.探究点二:运用全等三角形解决有关问题已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:(1)△BDA ≌△AEC ;(2)DE =BD +CE .解析:(1)由垂直的关系可以得到一对直角相等,利用同角的余角相等得到一对角相等,再由AB =AC ,利用AAS 即可得证;(2)由△BDA ≌△AEC ,可得BD =AE ,AD =EC ,根据DE =DA +AE 等量代换即可得证.证明:(1)∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠ABD +∠BAD =90°.∵AB ⊥AC ,∴∠BAD +∠CAE =90°,∴∠ABD =∠CAE .在△BDA 和△AEC 中,∵⎩⎨⎧∠ADB =∠CEA =90°,∠ABD =∠CAE ,AB =AC ,∴△BDA ≌△AEC (AAS);(2)∵△BDA ≌△AEC ,∴BD =AE ,AD =CE ,∴DE =DA +AE =BD +CE .方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.三、板书设计“角边角”“角角边”1.角边角:两角及其夹边分别相等的两个三角形全等.简记为“角边角”或“ASA ”.2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等.简记为“角角边”或“AAS ”.3.三角形全等是证明线段相等或角相等的常用方法.本节课的教学借助于动手操作、分组讨论等探究出三角形全等的判定方法.在寻找判定方法证明两个三角形全等的条件时,可先把容易找到的条件列出,然后再根据判定方法去寻找所缺少的条件.从课堂教学的情况看,学生对“角边角”掌握较好,达到了教学的预期目的.存在的问题是少数学生在方法“AAS”和“ASA”的选择上混淆不清,还需要在今后的教学中进一步加强巩固和训练.。
第十二章全等三角形12.2 三角形全等的判定第三课时“角边角”(ASA)和“角角边”(AAS)判定1 教学目标1.1 知识与技能:[1]掌握全等三角形的“角边角”(ASA)判定定理,并能运用其解决问题。
[2]熟练掌握“角角边”(AAS)定理,并能运用其解决问题。
1.2过程与方法:[1]通过探究过程,观察并归纳出ASA定理。
[2]通过结合ASA定理及三角形内角和定理,推出AAS定理。
1.3 情感态度与价值观:[1]通过学习AAS,ASA定理,运用其进行几何证明,在逻辑推导中培养良好的数学思维。
2 教学重点/难点/易考点2.1 教学重点[1]ASA,AAS判定定理。
2.2 教学难点[1]数学语言表达和证明三角形全等。
[2]区分ASA和AAS定理,避免在证明过程中标错原由3 专家建议ASA和AAS定理非常相似,只是相等的角的位置是不同的,因此教师应该在教学中注意强调这两个定理的区别,防止学生混淆定理运用错误。
此外,用数学语言证明全等也是一大挑战,学生因为此前的几何基础还不牢固,需要强调和巩固。
4 教学方法观察归纳——得到结论——补充讲解——练习提高5 教学用具多媒体,教学用尺规,学生课前准备好尺规。
6 教学过程6.1 引入新课【师】同学们好。
上节课我们学习了判定三角形全等的SAS定理,大家还记得么?【生】两边和它们的夹角分别相等的两个三角形全等。
【师】那如果相等的角不是夹角,能不能判定两个三角形全等呢?【生】不能,没有边边角定理。
【师】没错。
那我们今天来继续学习两种新的判定三角形全等的方法。
【板书】第十二章全等三角形12.2 三角形全等的判定第三课时6.2 新知介绍[1]探究活动:带走哪一块玻璃碎片最方便【师】毛手毛脚的小明又回来了,这次他打碎了教室的一块三角形玻璃。
请大家看投影,现在只有这三块碎片,如果小明要再配一模一样的,至少要带走哪块儿呢?我们一块一块地来分析,首先看,只带走第一块可以吗?【生】相当于只知道一个角,只带第一块不行。
a a
c 丙︒72︒
50 乙
︒
50甲a
︒
507250︒︒︒58c b
a C
B A
第3课时 “角边角”、“角角边”
一、选择题
1.若按给定的三个条件画一个三角形,图形惟一,则所给条件不可能是( )
A.两边一夹角 B.两角一夹边 C.三边 D.三角 2. 在△ABC 和△DEF 中,已知C D ∠=∠,B E ∠=∠,要判定这两个三角形全等,还需要条件( )
A .A
B ED = B .AB FD =
C .AC F
D = D .A F ∠=∠
3.如图,已知△ABC 的六个元素,则下列甲、乙、丙三个三角形中
和△ABC 全等的图形是( )
A 、甲乙
B 、甲丙
C 、乙丙
D 、乙 4.对于下列各组条件,不能判定ABC A B C '''△≌△的一组是( ) A.A A '∠=∠,B B '∠=∠,AB A B ''= B.A A '∠=∠,AB A B ''=,AC A C ''= C.A A '∠=∠,AB A B ''=,BC B C ''=
D.AB A B ''=,AC A C ''=,BC B C ''=
5.在ABC △和A B C 111△中,已知1A A ∠=∠,11AB A B =,在下列说法中,错误的是( )
A.如果增加条件11AC A C =,那么111ABC A B C △≌△(SAS ) B.如果增加条件11BC B C =,那么111ABC A B C △≌△(SAS ) C.如果增加条件1B B ∠=∠,那么111ABC A B C △≌△(ASA ) D.如果增加条件1C C ∠=∠,那么111ABC A B C △≌△(AAS )
二、填空题
6.如图,点B 、E 、F 、C 在同一直线上. 已知∠A =∠D,∠B =∠C,要使△ABF≌△DC E ,需要补充的一个条件是
(写出一个即可).
7.如图,直线 L 过正方形 ABCD 的顶点 B , 点A 、C 到直线 L 的距离分别是AE=1 ,CF=2 , 则EF 长
三、解答题
8.如图,点D E ,分别在AB AC ,上,且AD AE =,BDC CEB ∠=∠. 求证:BD CE =.
A
D
E
B
A
B E
F
C
D
9. 如图,已知AC 平分∠BAD ,∠1=∠2,求证:AB=AD
参考答案
1.D 2.C 3.C 4.C 5.
B
6.AB = DC (填AF=DE 或BF=CE 或BE=CF 也对) 7.3 8.180ADC BDC ∠+∠=,180BEC AEB ∠+∠=, 又BDC CEB ADC AEB ∠=∠∴∠=∠
()()
()A A ADC AEB AD AE ADC AEB ∠=∠⎧⎪
=⎨⎪∠=∠⎩
公共角已知已证在△和△中, (ASA)ADC AEB AB AC ∴∴=△≌△
AB AD AC AE ∴-=-,即BD CE =.
9. 证明:∵AC 平分∠BAD ∴∠BAC=∠DAC.∵∠1=∠2∴∠ABC=∠ADC.
在△ABC和△ADC中,
,BAC DAC ABC ADC AC AC ∠=∠⎧⎪
∠=∠⎨⎪=⎩
∴△ABC≌△ADC(AAS).∴AB=AD.。