(课堂设计)-高中数学 第二章 数列本章回顾 新人教A版必修5
- 格式:doc
- 大小:143.50 KB
- 文档页数:7
(新课标)2015-2016学年高中数学第二章数列(一)教学设计新人教A版必修5从容说课本章通过生产实际和社会生活中的实际引入了等差数列与等比数列这两种特殊数列的概念、有关知识和方法.重点研究了等差数列与等比数列的通项公式、基本性质、前n项和公式以及用上述知识解决生产实际与社会生活中有关的实际问题.数列在现实世界中无处不在,等差数列与等比数列是其中的两种特殊的数列,发现数列的等差关系或等比关系是首先遇到的问题,也是学习中需要培养的最基本的能力.只有在观察和思考过程中迅速发现等差关系或等比关系,才能进一步地建立等差数列或等比数列的数学模型,接下来再用等差数列或等比数列的通项公式和有关的性质分析问题和解决问题.数列实际上是特殊的函数,是定义在正整数集N*(或它的有限集{1,2,3,…,n})上的函数.数列的项实际上是定义域为正整数集N*(或它的有限集{1,2,3,…,n})的函数当自变量从小到大依次取值时对应的一列函数值.学习中学会用函数的观点认识数列,是理解数列的概念和性质的有效途径.尤其对等差数列与等比数列这两种特殊数列,更需要清楚地认识到它们与一次函数与指数函数的对应关系.进而,还可以将知识拓展到等差数列的前n项和与二次函数的关系.数列的通项公式描述的是数列的第n项与序号n之间的函数关系,它是研究数列性质的载体,也是联系问题的已知条件与所要解决的问题的桥梁.它是分析问题与解决问题过程中最受关注的目标.等差数列与等比数列的通项公式的推导,采用了不完全归纳法;等差数列与等比数列的前n项和公式的推导分别采用了“倒序相加”和“错位相减”的方法;本章在有关的问题的探索过程中还蕴含着更多的数学思想方法,如函数与方程的思想、数形结合的思想、转化与化归的思想、算法的思想、分类讨论的思想方法等等.所有蕴含这些思想方法的问题,都是培养和提高学生的数学素养的极好素材,需要我们潜心探究,以更好地体现新课程标准的理念.学习过程中,用数列这个数学模型研究和解决生产实际与社会生活中的现实问题,是本章的一个重要内容,通过对“教育储蓄问题”“住房贷款问题”等问题的探究,既巩固了数学知识,又培养了学生的人生观和价值观,收到的效果是不可估量的,这类问题值得我们高度重视.数列学习中,学生将在理解概念和性质的基础上,结合对具体教学实例的分析,体验数列这个数学模型在解决问题中的特殊作用;通过合作交流、独立思考、自主探索,发展有条理的思考与表达能力,提高逻辑思维能力.数列,特别是等差数列与等比数列,既有知识性,又有趣味性和实用性,在物理、化学、生物等学科,以及经济、天文、历法等领域,都有它的身影.我们应当适当地引导学生拓展知识的空间,更好地应用知识,乃至于更好地提高思想水平和能力水平.在实例的选择中,我们要把握这样一些原则:亲和原则.选取的例子要贴近学生,或者来自学生的生活实践,或者使用学生所学过的数学.趣味性原则.选取的实例一般要有丰富的背景,本身要有趣味性.基础性原则.问题本身并不难,但要蕴涵丰富的思想方法.本节课作为本章的小结,旨在和学生一起站在全章的高度,以问题解决为主线,以典型例习题为操作平台,以巩固知识、发展能力、提高素养为目的对本章作全面的复习总结,帮助学生进一步提高对数列的理解和认识,优化知识结构.鉴于本节课是复习课,小结应主要由学生来完成,教师帮助其完善和补充,练习题也放手由学生来完成,教师做好组织者和引导者的工作.教学重点1.系统化本章的知识结构;2.提高对几种常见类型的认识;3.优化解题思路和解题方法,提升数学表达的能力.教学难点解题思路和解题方法的优化.教具准备多媒体课件,投影胶片,投影仪等三维目标一、知识与技能1.进一步理解数列基础知识和方法,能清晰地构思解决问题的方案;2.进一步学习有条理地、清晰地表达数学问题,提高逻辑思维能力;3.加强对等差数列与等比数列的性质的理解,提高“知三求二”的熟练程度;4.在理解的基础上进一步熟练地构建数列模型解决实际问题.二、过程与方法1.通过实例,发展对解决具体问题的过程与步骤进行分析的能力;2.通过独立思考、合作交流、自主探究的过程,发展应用数列基础知识的能力;3.在解决具体问题的过程中更进一步地感受数列问题中蕴含的思想方法.三、情感态度与价值观1.通过具体实例,感受和体会数列在解决具体问题中的意义和作用,认识数列知识的重要性;2.感受并认识数列知识的重要作用,形成自觉地将数学知识与实际问题相结合的思想;3.在解决实际问题过程中形成和发展正确的价值观.教学过程导入新课数列是高中代数的重要内容之一,也是高考考查的重点.它的主要内容主要有两个方面:第一方面是数列的基本概念,如等差数列的定义、等比数列的定义、通项公式、等差中项、等比中项、数列的性质以及数列的前n项和公式等;第二方面是数列的运算和实际应用,即运用通项公式、前n项和公式以及数列的性质求一些基本量,运用数列的基础知识探究与解决实际问题.应用本章知识要解决的主要问题有:(1)对数列概念理解的题目;(2)等差数列和等比数列中五个基本量a1,a n,d(q),n,S n“知三求二”的问题;(3)数列知识在实际方面的应用.在解决上述问题时,一是要用函数观点来分析解决有关数列问题;二是要运用方程的思想来解决“知三求二”的计算问题;三是能自觉地运用等差、等比数列的特征来化简计算;四是树立应用意识,能用数列有关知识解决生产生活中的一些问题.推进新课师出示多媒体课件一:(请同学们自己将框中的公式补充完整)师等差数列与等比数列的通项公式与前n项和公式都不止一种形式,请同学们在总结的时候不要忘记它们中的任何一种形式.[回顾与思考]1.知识的发生发展过程:师你能从函数的观点认识数列吗?你能体会学习数列与学习实数之间的异同吗?等差数列与等比数列的通项公式反映了什么函数关系?它们的图象各有什么特点呢?生思考.师请看下面的结构框图(出示多媒体课件二):师请同学们理解并解释框图的结构及其含义.2.通项公式与前n项和公式的推导中的思想方法:师你能清楚地说出等差数列、等比数列的通项公式与前n项和公式的一种推导方法吗?每一个公式的推导能说出几种方法吗?生回忆学习过程中自己已经掌握的方法,并积极发言.师在它们的前n项和公式的推导中,请大家特别注意其中的两种推导方法:等差数列的前n项和公式推导中的“倒序相加法”与“叠加法”;等比数列的前n项和公式推导中的“错位相减法”与“叠乘法”;另外,还应该知道,对于任何数列{a n},S n与a n有以下关系:a n=S1,n=1,S n-S n-1,n>1.师你知道这个公式在解决问题中有哪些作用吗?生思考,回答.3.应用本章知识要解决的主要问题:师你明确应用本章知识要解决哪些问题吗?生应用本章知识要解决的主要问题有:(1)对数列概念理解的题目;(2)等差数列和等比数列中五个基本量a1,a n,d(q),n,S n“知三求二”的问题;(3)数列知识在生产实际和社会生活中的应用.师肯定学生的回答,必要时给予补充.师出示投影胶片1:例题1.【例1】 设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,求q 的值. [合作探究]师 这是一个关于等差数列与等比数列的基本概念和基本性质的基本题,起点比较低,入手的路子宽.你如何想? 生 独立思考,列式、求解.师 组织学生交流不同的解题思路,概括出典型的解题方法的过程. 参考答案如下:(投影胶片2)解法一:利用定义,∵{S n }是等差数列,∴a n =S n -S n -1=…=S 2-S 1=a 2. ∴a 1·q n -1=a 1·q.∵a 1≠0,∴qn -2=1.∴q=1.解法二:利用性质,∵{S n }是等差数列,∴a n =S n -S n -1=S n -1-S n -2=a n -1,a 1·q n -1=a 1·q n -2.∵a 1≠0,q≠0,∴q=1.解法三:利用性质,∵2S 2=S 1+S 3,∴2(a 1+a 2)=a 1+a 1+a 2+a 3, 即a 2=a 3.∴q=1.师 点评:还可以用求和公式、反证法等. 师 出示投影胶片3:例题2.【例2】 设数列{a n }的前n 项和为S n =n 2+2n +4(n ∈N ). (1)写出这个数列的前三项;(2)证明数列除去首项后所成的数列a 2,a 3,…,a n ,…是等差数列. [合作探究]师 第1个问题很容易思考,请同学们独立完成. 生 迅速作答.解:(1)a 1=S 1=7,a 2=S 2-S 1=22+2×2+4-7=5,a 3=S 3-S 2=32+2×3+4-(7+5)=7,即a 1=7,a 2=5,a 3=7.师 第2个问题是要证明一个数列是等差数列,这里的关键是要注意条件中的“除去首项后”,你能把握好这个条件的运用吗?生 自主探究,组织数学语言,准确表达推理过程. 参考答案:(投影胶片4) (2)∵⎩⎨⎧-=-,1,11n n S S n S n >1,∴当n >1时,a n =S n -S n -1=n 2+2n +4- [(n -1)2+2(n -1)+4]=2n +1.a n +1-a n =2(定值),即数列{a n }除去首项后所成的数列是等差数列. 师 点评:a n =S 1,n =1,S n -S n -1,n >1 是一个重要的关系式,要充分发挥它的作用. 还有其他不同的证法,请同学们多交流. 师 出示投影胶片5:例题3.【例3】 有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. [合作探究]师 三个数成等差数列,在设法上应根据条件的特殊性考虑特殊的设法,同样,三个数成等比数列,也要注意兼顾前三个数已经设出来的形式. 生 积极思考,列式探究,踊跃发言.师 观察学生的思考情况,指点学生寻找合理的思路. 归纳、概括、总结学生的解题结果,给出如下两种典型解法. 投影胶片6解法一:设四个数依次为a -d ,a ,a +d ,a d a 2)(+,依题意有 (a -d )+ad a 2)(+=16,①a +(a +d )=12,②由②式得 d =12-2a .③将③式代入①式整理得a 2-13a +36=0. 解得a 1=4,a 2=9. 代入③式得d 1=4,d 2=-6.从而所求四个数为0,4,8,16或15,9,3,1. 投影胶片7解法二:设四个数依次为x ,y ,12-y ,16-x ,依题意有⎩⎨⎧-=-=-+②①2)12()16(,2)12(y x y y y x由①式得x =3y-12.③将③式代入②式得y(16-3y +12)=(12-y)2. 整理得y 2-13y +36=0, 解得y 1=4,y 2=9, 代入③式得x 1=0,x 2=15.从而得所求四个数为0,4,8,16或15,9,3,1.师 点评:本题若采用其他设求知量的方法列方程,解题过程会是怎么样的呢?请同学们课外探究一下,并在本题上述设求知量的方法的基础上,思考四个数成等差数列的常见设法,以及四个数成等比数列的常见设法. 师 出示投影胶片8:例4.【例4】 设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0, (1)求公差d 的取值范围;(2)指出S 1,S 2,…S 12中哪一个值最大,并说明理由. [合作探究]分析:本题的条件形式上比较特殊,属于同学们不太熟悉的面孔,思考应该从最熟悉的角度入手.师 引导:第1个问题,目标是关于d 的范围的问题,故应当考虑到合理的选用等差数列的前n 项和的哪一个公式.其次,条件a 3=12可以得出a 1与d 的关系,列式中可以用来代换掉另一个量,起到减少求知量的作用.生 在教师的引导下,列出式子,将问题化归为一个关于d 的不等式. 参考答案:投影胶片9 解:(1)依题意有S 12=12a 1+21×12×11d >0, S 13=13a 1+21×13×12d <0, 即2a 1+11d >0,①a 1+6d <0.②由a 3=12,得a 1=12-2d ,③将③式分别代入①②式得24+7d >0且3+d <0,∴724-<d <-3为所求. 师 对第2个问题的思考,可以有较多的角度,请同学们合作探究,交流你们的想法,寻找更好的思路.生 积极活动,在交流中受到启发,得到自己的成功的解法.师 收集、整理出学生的不同思路,公布优秀的思考方法和解题过程,归纳出如下几种解法: 投影胶片10(2)解法一:由(1)知d <0,∴a 1>a 2>a 3>……>a 12>a 13,因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0,则S n 就是S 1,S 2,…,S 12中的最大值, 由于S 12=12a 1+21×12×11d =6(2a 1+11d )=6(a 6+a 7)>0,S 13=13a 1+21×13×12d =13(a 1+6d )=13a 7<0,∴a 6>0,a 7<0,故在S 1,S 2,…,S 12中,S 6最大. 投影胶片11 解法二:S n =na 1+21n (n -1)d =n (12-2d )+21 (n 2-n )d =2)245()2245(222d d d n d ----. ∵d <0,∴2)2245(d n --最小时,S n 最大, 而当724-<d <-3时,有6<2245d -<6.5,且n ∈N , ∴当n =6时,(n -2245d -)2最小,即S 6最大. 投影胶片12解法三:由d <0,可知a 1>a 2>a 3>…>a 12>a 13,因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0, 则S n 就是S 1,S 2,…,S 12中的最大值, 由S 12>0,S 13<0,有 12a 1+21×12×11d >0a 1+5d >-2d>0;13a 1+21×13×12d <0a 1+6d <0. ∴a 6>0,a 7<0,故在S 1,S 2,…,S 12中,S 6最大. 投影胶片13解法四:同解法二得S n =2d(n -2245d -)2-2245d -.∵d <0,故S n 的图象是开口向下的一条抛物线上的一些点,注意到S 0=0,且S 12>0,S 13<0,知该抛物线与横轴的一个交点是原点,一个在区间(12,13)内,于是抛物线的顶点在(6,6.5)内,而n ∈N ,知n =6时,有S 6是S 1,S 2,…,S 12中的最大值. 课堂小结本节学习了如下内容:1.第二章“数列”一章知识和方法的概括性回顾与思考.2.运用中典型例题的探究.布置作业1.独立完成复习参考题A 组题.2.开展探究活动,思考更深刻的数列知识运用的问题.板书设 本章复习(一)本章知识结构 典型例题剖析回顾与思考 例1 例3例2 例4习题详解(课本第75页复习参考题)A 组1.(1)B ;(2)B ;(3)B ;(4)A .2.(1)a n =nn 212-; (2)a n =1+21)2()1(n n --;(3)a n =(10n-1)97; (4) n n a )1(1-+=,或πn a n cos 1+=. 以上各题的通项公式不一定唯一. 3.4.如果a ,b ,c 成等差数列,则b =5;如果a ,b ,c 成等比数列,则b =1或b =-1.5.a n 按顺序输出的值为:12,36,108,324,972.SUM =86 093 436.6.138.1·(1+0.13%)8=1 396.3.7.从12月20日到次年的1月1日,共13天,每天领取的奖品价值呈等差数列分布.d =10,a 1=100.由S n =a 1n +2)1(-n n d 得S 13=100×13+21213⨯×10=2 080>2 000,所以第二种领奖方式获奖受益更多. 9.15天.10.(1)S 2=a n +1+a n +2+…+a 2n =(a 1+nd )+(a 2+nd )+…+(a n +nd )=a 1+a 2+…+a n +n ×nd =S 1+n 2d . S 3=a 2n +1+a 2n +2+…+a 3n =(a 1+2nd )+(a 2+2nd )+…+(a n +2nd )=a 1+a 2+…+a n +n ×2nd =S 1+2n 2d . 容易验证2S 2=S 1+S 3,所以S 1,S 2,S 3也是等差数列,公差为n 2d . (2)S 2=a n +1+a n +2+…+a 2n =(a 1×q n )+(a 2)×q n +…+(a n )×q n=(a 1+a 2+…+a n )q n =S 1×q n.S 3=a 2n +1+a 2n +2+…+a 3n =(a 1×q 2n)+(a 2×q 2n)+…+(a n ×q 2n)=(a 1+a 2+…+a n )q 2n=S 1×q 2n. 容易验证:S 22=S 1×S 3,所以S 1,S 2,S 3也是等比数列,公比为q n. 11.a 1=f(x+1)=(x+1)2-4(x+1)+2=x 2-2x-1,a 3=f(x-1)=(x-1)2-4(x-1)+2=x 2-6x+7,因为{a n }是等差数列,所以a 1,a 2,a 3也是等差数列,所以2a 2=a 1+a 3,即0=2x 2-8x+6.解得x=1或x=3.x=1时,a 1=-2,a 2=0,a 3=2,由此可求出a n =2n -4.x=3时,a 1=2,a 2=0,a 3=-2,由此可求出a n =4-2n .备课资料一、备用例题一次人才招聘会上,有A 、B 两家公司分别开出了它们的工资标准:A 公司允诺第一个月工资为1 500元,以后每年月工资比上一年月工资增加230元;B 公司允诺第一年月工资数为2 000元,以后每年月工资在上一年的月工资基础上递增5%,设某人年初被A 、B 两家公司同时录取.试问:(2003年春上海(22)4+6+8=18分)(1)若该人分别在A 公司或B 公司连续工作n 年,则他在第n 年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不记其他因素),该人应该选择哪家公司,为什么?(3)在A 公司工作比在B 公司工作的月工资收入最多可以多多少元?(精确到1元)并说明理由.解:(1)在A 公司连续工作n 年,则第n 年的月工资为 a n =1 500+230(n -1)=230n +1 270(元);在B 公司连续工作n 年,则第n 年的月工资为b n =2 000(1+1005) n -1=2 000×1.05 n -1(元). (2)在A 公司连续工作10年,则其工资总收入为S 10=21[12×(1 500+1 500+9×230)×10]=304 200(元). 在B 公司连续工作10年,则其工资总收入为S 10′=05.11)05.11(20001210--⨯≈301 869(元). S 10>S 10′,故仅从工资收入总量来看,该人应该选择A 公司.(3)a n -b n =230n +1 270-2 000×1.05n -1,记为f(n ).要使得f(n )最大,需满足f(n )>f(n -1)且f(n )>f(n +1),于是f(n )-f(n -1)>0⇒1.05n -2<2.3;f(n +1)-f(n )<0⇒1.05 n -1>2.3.解得1+log 1.052.3<n <2+log 1.052.3.经计算得lg2.3=0.361 7,lg1.05=0.021 2(注:上海市高考允许使用计算器). 从而得18.07<n <19.07,n =19.∴f(n ) m a x =f(19)=230×19+1 270-2 000×1.05 18≈827(元).答:(略) 二、阅读材料关于等差数列与等比数列的对比等差数列和等比数列,在数列中起着举足轻重的作用.它们如同一对亲兄弟,再仔细对比就会发现许多有趣的东西,本文略举一二,供大家欣赏.1.若a n +1-a n =d (d 为常数,n ∈N *),则{a n }为等差数列,d 为公差;若nn a a 1+=q(q 为常数,n ∈N *),则{a n }为等比数列,q 为公比. 其中,差与商,d 与q 相对比.2.若d =0,则{a n }为等差数列;若q=1,则{a n }为等比数列.其中0与1相对比(0与1恰是二进制中表示数的两数).3.若l 、m 、n 、p∈N *,m+n =l+p,则当{a n }为等差数列时,a m +a n =a l +a p ;当{a n }为等比数列时,a m ·a n =a l ·a p .其中和与积相对比.特别地,若m,l,n 为正整数,m+n =2l,则当{a n }为等差数列时,a m +a n =2a l ;当{a n }为等比数列时,a m ·a n =a l 2.其中和与积,倍数与乘方相对比.4.若{a n }为等差数列,则⎭⎬⎫⎩⎨⎧+++n a a a n ...21为等差数列; 若{a n }为正数等比数列,则{}n n a a a ...21为等比数列.其中算术平均数与几何平均数相对比.5.若a >0,b >0,n 为正整数,a n >0,则当a ,a 1,a 2,…,a n ,b 成等差数列时,a 1,a 2,…,a n 的算术平均数等于a ,b 的算术平均数,即2...21b a n a a a n +=+++;当a ,a 1,a 2,…,a n ,b 成等比数列时,a 1,a 2,…,a n 的几何平均数等于a ,b 的几何平均数,即ab a a a n n =...21.其中算术平均数与几何平均数,等差中项与等比中项相对比.6.若n ∈N *,k∈N *,则当{a n }为等差数列时,S n ,S 2n -S n ,S 3n -S 2n ,…,S (k+1)n -S k n ,…为等差数列;当{a n }为等比数列时,S n ,S 2n -S n ,S 3n -S 2n ,…,S (k+1)n -S k n ,…为等比数列.其中等差与等比相对比.7.三个数成等差数列可设为:a -d ,a ,a +d ,此时公差为d .等差数列有奇数项时均为可类似假设.四个数成等差数列时可设为a -3d ,a -d ,a +d ,a +3d ,此时公差为2d .等差数列有偶数项时均可类似假设.三个数列成等比数列可设为qa ,a ,a q ,此时公比为q.等比数列有奇数项时,均可类似假设.四个数成等比数列可设为3qa , q a ,a q,a q 3,此时公比为q 2.等比数列有偶数项时可类似假设. 其中d 与q ,差与商相对比.8.等差数列前n 项和公式推导方法:倒序相加法;等比数列(公比不为1)前n 项和公式推导方法:错位相减法.其中倒序与错位,加与减相对比.9.在等差数列{a n }中,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=d +d +…+d +d +a 1=a 1+(n -1)d .在等比数列中{a n }中,a n =1-n n a a ·21--n n a a ·…·23a a ·12a a ·a 1=q·q·…·q·q·a 1=a 1q n -1. 其中差之和与商之积相对比.当然,等差数列与等比数列还有众多可对比之处,在此就不一一列举了,不足之处,请多加指教.。
人教版高中必修5第二章数列课程设计一、课程背景本课程是人教版高中数学必修5第二章数列课程设计,适用于高一学生。
数列是高中数学的重要内容,通过本章的学习,能够加深学生对数列的认识和理解,掌握数列的概念、性质和应用。
同时,数列也是高考数学的热门考点之一,学好数列对于高考取得好成绩非常重要。
二、教学目标1.掌握数列的概念及其分类;2.掌握数列的通项公式、通项公式的和式及其应用;3.理解等差数列和等比数列的性质及其应用;4.培养学生解决实际问题的数学思维能力。
三、教学内容及进度安排第一课时:数列的概念•数列的定义;•数列的分类;•数列的通项公式。
第二课时:数列的通项公式•等差数列的通项公式;•常数项等差数列的通项公式;•等比数列的通项公式。
第三课时:数列的和式•等差数列的和式;•常数项等差数列的和式;•等比数列的和式。
第四课时:等差数列•等差数列的性质;•等差数列的应用。
第五课时:等比数列•等比数列的性质;•等比数列的应用。
第六至七课时:热身练习与综合应用•课堂练习;•综合应用。
四、教学方法本课程采用“让学生自己去发现、自己去试错”的教学方法,在教师的引导下,让学生通过自己的思考和探究,体会数学的美妙和思维的乐趣。
在课程设计中,注重培养学生的解决实际问题的能力,提高学生的实际运用能力。
同时,体现数学思维的性质和思想方法,培养学生的创造性思维和批判性思维。
五、教学评价通过对学生的课堂发言、课堂作业和课后作业的评价,反映学生在数列概念、性质和应用方面的掌握情况和思维能力的提高情况。
同时,通过对学生在实际问题中的解决能力、创造能力、批判能力和实际运用能力的评价,反映学生在数学思维方面的提高情况。
六、教学资源本课程主要使用以下教学资源:1.人教版高中数学必修5教材;2.PPT资源;3.电子版教学资料。
七、课程总结本课程通过对数列概念、性质和应用方面的教学,旨在帮助学生掌握数列的相关知识,提高实际问题的解决能力和数学思维能力,为高考数学的顺利通过打下基础。
数学5 第二章数列一、课程要求数列作为一种特殊的函数,是反映自然规律的基本模型。
在本模块中,学生将通过对日常中大量实际问题的分析,建立等差数列和等比数列这两种模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。
1、了解数列的概念,概念2、理解等差数列的概念,探索并掌握等差数列的通项公式,体会等差数列的通项公式与一次函数之间的关系。
3、探索并掌握等差数列的前n项和公式,体会等差数列的前n项和公式与二次函数之间的关系。
4、理解等比数列的概念,探索并掌握等比数列的通项公式,体会等比数列的通项公式与指数函数之间的关系。
5、探索并掌握等比数列的前n项和公式,体会等比数列的前n项和公式与指数型函数之间的关系。
6、能在具体的问题情境中,发现数列的等差或等比关系,并能用有关知识解决相应的问题。
二、编写意图:1、数列是刻画离散过程的重要数学模型,数列的知识也是高等数学的基础,它可以看成是定义在正整数集或其有限子集的函数,因此,从函数的角度来研究数列,即是对函数学习的延伸,也是一种特殊的函数模型。
2、本章力求通过具体的问题情景展现,帮助学生了解数列的概念,通过对具体问题的探究,理解与掌握两类特殊的数列,并应用它们解决实际生活中相关的一些问题。
编写中体现了数学来源于生活,又服务于生活的这种基础学科的特点,使学生感觉到又亲切又好奇,充满魅力。
3、教材在例题、习题的编排上,注重让学生重点掌握数列的概念、特殊数列的通项公式、求和公式等,并应用这些知识解决实际生活中的问题,渗透函数思想解决问题。
4、教材在内容设计上突出了一些重要的数学思想方法。
如类比思想、归纳思想、数形结合思想、算法思想、方程思想、特殊到一般等思想贯穿于全章内容的始终。
5、教材在知识内容设计上,注意了数列与函数、算法、微积分、方程等的联系,适度应用现代信息计术,帮助学生理解数学,提高数学学习的兴趣。
三、教学内容及课时安排建议本章教学时间约12课时2.1数列的概念与简单表示法约2课时2.2等差数列约2课时2.3等差数列的前n项和约2课时2.4等比数列约2课时2.5等比数列的前n项和约2课时问题与小结约2课时四、评价建议1、重视对学生数学学习过程的评价关注学生在数列知识学习过程中,是否对所呈现的现实问题情境充满兴趣;在学习过程中,能否发现数列的等差关系或等比关系,体会等差数列、等比数列与一次函数、指数函数的关系。
第二章数列
本章概览
三维目标
1.通过对生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,利用它们解决一些实际问题.培养我们从实际问题中抽象出数学模型的能力,认识数学的应用价值.
2.了解数列的概念和几种简单的表示方法,会用通项公式写出数列的任意一项,根据其前几项写出它的一个通项公式;了解数列的递推公式,明确其与通项公式的异同,会根据数列的递推公式写出数列的前几项,培养我们的推理能力,提高观察、抽象的能力.
3.明确等差、等比数列的定义,等差、等比数列的通项公式及推导公式,会解决:知道
a n,a1,d(q),n中的三个,求另外一个的问题,明确等差、等比中项的概念.自觉探究现实世界中的一些数量关系,帮助我们建立解决实际问题的意识.
4.掌握等差、等比数列前n项和公式及其获取思路,会用等差、等比数列的前n项和公式解决一些简单的与前n项和有关的问题.培养积极参与,大胆探索的精神,体验探究的乐趣,增强学习数学的兴趣.
5.数列是培养数学能力的良好题材.学习数列,需要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于数学能力的提高.
知识网络。
(新课标)2015-2016学年高中数学第二章数列(二)教学设计新人教A版必修5从容说课在上节课的内容安排的基础上,本节课安排等差数列与等比数列的综合训练,目标是使学生更熟练地运用等差、等比数列的概念、通项公式、前n项和公式以及有关性质,分析和解决等差、等比数列的综合问题,提高运算速度和运算能力.教学重点熟练运用知识,探索解题思路,优化解题步骤.教学难点解题思路和解题方法的优化.教具准备多媒体课件,投影胶片,投影仪等三维目标一、知识与技能1.熟练地运用等差、等比数列的概念、通项公式、前n项和公式以及有关性质,分析和解决等差、等比数列的综合问题;2.提高运算速度和运算能力.二、过程与方法1.精选例题,通过对例题的分析与探究,优化解题步骤;2.在优化解题步骤的过程中提高运算速度与运算能力.三、情感态度与价值观1.在理解题意、探索思路的过程中学会思考,培养敢于思考、善于思考的思维品质;2.在解决问题的过程中,学会快速地运算、严密地推理、精确地表达,增强速度意识、效率意识.教学过程导入新课师这节课我们要运用等差、等比数列的概念、性质及有关公式,解决一些等差、等比数列的综合问题.首先我们再来明确一下有哪些问题.生(1)对数列概念理解的题目;(2)等差数列和等比数列中五个基本量a1,a n,d(q),n,S n“知三求二”的问题;(3)数列知识在生产实际和社会生活中的应用.师 是的,这是我们前一节课中已经归纳出来的应用本章知识要解决的问题.我们前一节课上已经探讨了几个典型例题,本节课我们进一步探讨.推进新课师 出示投影胶片1:例题1:【例1】 已知公差不为零的等差数列{a n }和等比数列{b n }中,a 1=b 1=1,a 2=b 2,a 8=b 3,试问:是否存在常数a ,b ,使得对于一切自然数n ,都有a n =log a b n +b 成立?若存在,求出a ,b 的值;若不存在,请说明理由. [合作探究]师 这道题涉及到两个数列{a n }和{b n }之间的关系,而已知中的三个等式架起了两个数列间的桥梁,要想研究a n ,b n 的性质,应该先抓住数列中的什么量?生 由于{a n }是等差数列,{b n }是等比数列,所以应该先抓住基本量a 1、d 和q.由已知a 1=b 1=1,a 2=b 2,a 8=b 3,可以列出方程组⎩⎨⎧=+=+2711qd q d . 解出d 和q ,则a n ,b n 就确定了.师 如果a n 和b n 确定了,那么a n =log a b n +b 就可以转化成含有a ,b ,n 的方程,如何判断a ,b 是否存在呢?生 如果通过含有n ,a ,b 的方程解出a 和b ,那么就可以说明a ,b 存在;如果解不出a 和b ,那么解不出的原因也就是a 和b 不存在的理由.师 分析得很好.让我们一起来实施刚才分析的思路,看看结论到底是什么?解:设等差数列{a n }的公差为d (d ≠0),等比数列{b n }的公比为q ,则解得d =5,q=6.所以a n =5n -4.而b n =6 n -1,若存在常数a ,b ,使得对一切自然数n ,都有a n =log a b n +b 成立, 即5n -4=log a 6 n -1+b ,即5n -4=(n -1)log a 6+b ,即(log a 6-5)n +(b -log a 6+4)=0.对任意n ∈N *都成立. 只需 ⎩⎨⎧=+-=-046log 056log a a b 成立. 解得a =661,b =1.所以存在常数a ,b ,使得对于一切自然数n ,都有a n =log a b n +b 成立.师 本题的关键是抓住基本量:首项a 1和公差d 、公比q ,因为这样就可以求出a n 和b n 的表达式.a n 和b n 确定了,其他的问题就可以迎刃而解.可见:抓住基本量,是解决等差数列和等比数列综合问题的关键.师 出示投影胶片2:例题2:【例2】 某工厂三年的生产计划规定:从第二年起,每一年比上一年增长的产值相同,三年的总产值为300万元,如果第一年、第二年、第三年分别比原计划产值多10万元、10万元、11万元,那么每一年比上一年的产值增长的百分率相同,求原计划中每一年的产值. [合作探究]师 对应用问题,同学们要认真分析,把实际问题转化成数学问题,用学过的数学知识求解. 请学生读题,并逐句分析已知条件.生甲 由每一年比上一年增长的产值相同可以看出,原计划三年的产值成等差数列,由三年的总产值为300万元,可知此等差数列中S 3=300,即如果设原计划三年的产值分别为x-d ,x ,x +d ,则x-d +x +x +d =300.生乙 由产值增长的百分率相同可以知道,实际三年的产值成等比数列,可以设为x-d +10, x +10,x +d +11,则(x +10)2=(x-d +10)(x +d +11).师 甲、乙两位同学所列方程联立起来,即可解出x ,d . 板 书:解:设原计划三年的产值为x-d ,x ,x +d ,则实际三年产值为x-d +10,x +10,x +d +11. ⎩⎨⎧+=+++-=+++-.)10()11)(10(,3002x d x d x d x x d x 解得x=100,d =10,x-d =90,x+d =110.答:原计划三年的产值分别为90万元、100万元、110万元.师 等差数列和等比数列的知识,在实际生产和生活中有着广泛的应用,在解决这类应用问题时,关键是把实际问题转化成数列问题,分清是等差数列问题,还是等比数列问题,分清a n 和S n ,抓住基本量a 1,d (q),再调用有关的概念和公式求解.师 出示投影胶片3:例题3:【例3】 已知数列{a n }是公差不为零的等差数列,数列{a k n }是公比为q 的等比数列,且k 1=1,k 2=5,k 3=17,求k 1+k 2+k 3+…+k n 的值.[合作探究]师 题目中数列{a k n }与{a n }有什么关系?生 数列{a k n }的项是从数列{a n }中抽出的部分项.师 由已知条件k 1=1,k 2=5,k 3=17可以知道等差数列{a n }中的哪些项成等比数列? 生 a 1,a 5,a 17成等比数列.师 要求的k 1+k 2+k 3+…+k n 的值,实质上求的是什么?生 实质上就是求数列{k n }的前n 项和.师 要求{k n }的前n 项和,就要确定数列{k n }的通项公式.应该从哪儿入手?生 应该从求等比数列{a k n }的公比入手.其公式为15a a . 师 a 5,a 1要由等差数列{a n }的通项公式来确定,问题就转化成求等差数列中的公差d 和a 1了.生 如果设等差数列{a n }的公差为d ,那么a 5=a 1+4d ,a 17=a 1+16d ,由于a 1,a 5,a 17成等比数列,则有(a 1+4d )2=a 1(a 1+16d ),从而a n 应该可以求出了.师 请同学们把刚才的分析整理出来.(投影胶片4)解:设数列{a n }的公差为d ,d ≠0,则a 5=a 1+4d ,a 17=a 1+16d .因为a 1,a 5,a 17成等比数列,则 (a 1+4d )2=a 1 (a 1+16d ),即2d 2=a 1d .又d ≠0,则a 1=2d .所以a n =a 1+(n -1)d =2d +(n -1)d =(n +1)d .因为数列{a k n }的公比为q ,则3)11()15(15=++==d d a a q , 所以a k n =a k1·3 n -1=a 1·3n -1=2d ·3n -1.又a k n =(k n +1)d ,则2d ·3 n -1=(k n +1)d .由d ≠0,知k n =2·3 n -1-1(n ∈N *).因此,k 1+k 2+k 3+…+k n=2·3 0-1+2·31-1+2·32-1+…+2·3n -1-1=2(30+31+32+…+3n -1)-n =2·133-n -n =3n -n -1. 师 此题的已知条件中,抽象符号比较多,但是,只要仔细审题,弄清楚符号的含意,看透题目的本质,抓住基本量,不管多复杂的问题,都是能够解决的.师 出示投影胶片5:例题4.【例4】 已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145.(1)求数列{bn }的通项b n ;(2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1),记S n 是数列{a n }的前n 项和,试比较S n 与3log 1+n a b 的大小,并证明你的结论. [合作探究] 师 数列{b n }的通项容易求得,但是它是攀上这个题目的顶端的第一个台阶,必须走好这一步.请同学们快速准确地求出b n .生 快速求解.(1)解:设数列{b n }的公差是d ,由题意得b 1=1,10b 1+21×10×(10-1)d =145, 解得b 1=1,d =3.∴b n =3n -2.师 在下一个问题中,数列{a n }与数列{b n }具有什么关系呢?数列{a n }具有什么特征? 生 数列{a n }是由数列{b n }生成的一个新的数列?由a n =log a (1+n b 1)=log a (1+231-n ),可知数列{a n }不是特殊数列. 师 题中比较S n 与3log 1+n a b 的大小,你现在能作出预料吗? 生 不能,S n 是什么样子还不清楚.需要得出S n ,才能进一步思考.师 那就请同学们先把S n 求出来.生 写出S n =log a (1+1)+log a (1+41)+…+log a (1+231-n )=log a [(1+1)(1+41)…(1+231-n )]. 发现式中的那个积不太好处理. 师 能不能现在就和3log 1+n a b 联系起来思考一下?要比较两式大小实质是什么? 生 因为3log 1+n a b =log a 313+n ,所以实质上就是在同底数的前提下,比较真数的大小. 师 分析的很好.那么真数的大小如何比较出来?生 陷入沉思,深入思考后,提出自己的想法.师 这个大小的比较有一定的难度,下面我们从不同的途径来解决这个问题.(投影胶片6)(2)解:由b n =3n -2,知S n =log a (1+1)+log a (1+41)+…+log a (1+231-n ) =log a [(1+1)(1+41)…(1+231-n )], 3log 1+n a b =log a 313+n , 因此要比较S n 与3log 1+n a b 的大小,可先比较(1+1)(1+41)…(1+231-n )与313+n 的大小.取n =1,有(1+1)>3113+⨯,取n =2,有(1+1)(1+41)>3123+⨯, ……由此推测(1+1)(1+41)…(1+231-n )>313+n 1.(*) 若(*)式成立,则由对数函数性质可断定:当a >1时,S n >3log 1+n a b , 当0<a <1时,S n <3log 1+n a b . (对于(*)式的证明,提供以下两种证明方法供参考)下面对(*)式加以证明:证法一:记 A n =(1+1)(1+41)…(1+231-n )(1+131+n )=21×45×78×…×2313--n n ,D n =313+n , 再设n n C n n B n n 313...9106734,133...895623+⨯⨯⨯⨯=-⨯⨯⨯⨯=, ∵当k∈N 时,121+++k k k k >恒成立, 于是A n >B n >C n .∴A n 3>A n ×B n ×C n =3n +1=D n 3.∴A n >D n , 即(1+1)(1+41)…(1+231-n )>313+n 成立. 由此证得:当a >1时,S n >3log 1+n a b . 当0<a <1时,S n <3log 1+n a b . 证法二:∵2313...710471413-+⨯⨯⨯⨯=+n n n , 因此只需证1+231-k >332313-+k k 对任意自然数k 成立, 即证2313--k k >332313-+k k ,也即(3k-1)3>(3k +1)(3k-2)2,即9k >5. 该式恒成立,故1+231-k >332313-+k k . 取k =1,2,3,…n 并相乘即得A n >D n .师(*)式的证明还有一些其他的证明思路,比如说,数学归纳法、反证法等.有待于今后的学习中学会了这些方法后再应用.课堂小结等差数列和等比数列的综合问题,涉及的知识面很宽,题目的变化也很多,但是万变不离其宗,只要抓住基本量a 1,d (q),充分运用方程、函数、转化等数学思想方法,合理调用相关知识,这样,任何问题都不能把我们难倒.布置作业1.合作探究复习参考题B 组题.2.开展探究活动,思考并解答补充作业.板书设计本章复习(二)例1 典型例题剖析 例4 例2 例3习题详解(课本第75页复习参考题)B 组1.(1)B ;(2)D .2.(1)不成等差数列.可以从图象上解释.a ,b ,c 成等差数列,则通项公式为y=p n +q 的形式,且a ,b ,c 位于同一直线上,而a 1,b 1 ,c 1的通项公式却是q pn y +=1的形式,a 1,b 1 , c 1不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列.因为a ,b ,c 成等比,有b 2=a c ,又由于a ,b ,c 非零,两边同时取倒数,则有 c a b1112⨯=, 所以a 1, b 1,c1也成等比数列. 3.体积分数:0.033×(1+25%)6≈0.126,质量分数:0.05×(1+25%)6≈0.191.4.设工作时间为n ,三种付费方式的前n 项和分别为A n ,B n ,C n ,第一种付费方式为常数列;第二种付费方式为首项是4,公差也是4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列,则A n =38n ; B n =4n +2)1(-n n ×4=2n 2+2n ; C n =21)21(4.0--n =0.4(2n -1). 下面考察A n ,B n ,C n ,看出n <10时,38n >0.4(2n-1).因此,当工作时间小于10天时,选用第一种付费方式.n ≥10时,A n ≤C n ,B n ≤C n ,因此,选用第三种付费方式.5.第一个星期选择A 种菜的人数为a ,即a 1=a ,选择B 种菜的人数为b 1=500-a ,所以有以下关系式:a 2=a 1×80%+b 1×30%, a 3=a 2×80%+b 2×30%,……a n =a n -1×80%+b n -1×30%,a n +b n =500,所以a n =150+21a n -1,b n =500-a n =350-21 a n -1. 如果a 1=300,则a 2=300,a 3=300,…,a 10=300.6.略7..设这家牛奶厂每年应扣除万元消费基金,2002年底剩余资金是1 000(1+50%)-x ,2003年底剩余资金是[1 000(1+50%)-x ](1+50%)-x,1 000(1+50%)2-(1+50%)x-x,……5年后达到资金1 000(1+50%)5-(1+50%)4x-(1+50%)3x-(1+50%)2x-(1+50%)x=2 000,解得 x=459万元.备课资料备用习题1.公差不为零的等差数列的第2、第3、第6项依次成等比数列,则公比是( )A. 1B. 2C. 3D.4 2.若等差数列{a n }的首项为a 1=1,数列{b n }为等比数列,把这两个数列对应项相加所得的新数列{a n +b n }的前三项为3,12,23,则{a n }的公差与{b n }的公比之和为( )A.-5B.7C.9D.143.在等差数列{a n }中,a 1,a 4,a 25依次成等比数列,且a 1+a 4+a 25=114,求成等比数列的这三个数.4.设数列{a n }是首项为1的等差数列,数列{b n }是首项为1的等比数列,又c n =a n -b n (n ∈N *),已知c 2=61,c 3=92,c 4=547,试求数列{c n }通项公式与前n 项和公式. 5.某工厂四年来的产量,第一年到第三年每年增长的数量相同,这三年总产量为1 500吨,第二年到第四年每年增长的百分数相同,这三年总产量为1 820吨,求这四年每年的产量各是多少吨?参考答案:1.C2.C3.由⎩⎨⎧=++=+,114273),24()3(1121d a d a d a解得a 1=38,d =0,或a 1=2,d =4,所以三个数为38,38,38,或2,14,98.4.设等差数列{a n }的公差为d ,等比数列{b n }的公比为q.则⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=-+=-+.54731,9221,61132q d q d q d 解得⎪⎪⎩⎪⎪⎨⎧==.21,34d q , 5.设前三年产量依次为a -d ,a ,a +d ,则a -d +a +a +d =1 500,解得a =500.后三年产量依次为a ,a +d ,a d a 2)(+,由已知a +a +d +ad a 2)(+ =1 820.解得d =100.所以,四年产量依次为400,500,600,720吨.。
数列本章回顾识结构点回放想方法一、取倒数法和取对数法求通项例1 已知数列{a n }满足a n +1=2n +1·a na n +2n +1,a 1=2.求a n .解 对a n +1=2n +1a na n +2n +1两边取倒数得:1a n +1=a n +2n +12n +1a n, ∴1a n +1=1a n +⎝ ⎛⎭⎪⎫12n +1. 令b n =1a n ,则b n +1=b n +⎝ ⎛⎭⎪⎫12n +1.∴b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =⎝ ⎛⎭⎪⎫121+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n =1-⎝ ⎛⎭⎪⎫12n.∴a n =1b n =11-⎝ ⎛⎭⎪⎫12n =2n2n -1.例2 在数列{a n }中,a n +1=3a 2n ,a 1=3.求a n .解 由已知,a n >0,对a n +1=3a 2n 两边取常用对数得:lg a n +1=2lg a n +lg 3. 令b n =lg a n .则b n +1=2b n +lg 3. ∴b n +1+lg 3=2(b n +lg 3). ∴{b n +lg 3}是等比数列,首项是b 1+lg 3=lg 3+lg 3=2lg 3.∴b n +lg 3=2n -1·(b 1+lg 3)=2nlg 3.∴b n =(2n-1)lg 3=lg 123n-=lg a n .∴a n =123n-二、运用恒等变形求数列前n 项和例3 (2009·山东日照一模)已知数列{a n }的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *满足2S n =3a n -3.(1)求数列{a n }的通项公式;(2)设数列{b n }的通项公式是b n =1log 3a n ·log 3a n +1,前n 项和为T n ,求证:对于任意的正数n ,总有T n <1.(1)解 由已知得⎩⎪⎨⎪⎧2S n =3a n -3,2S n -1=3a n -1-3 (n ≥2).故2(S n -S n -1)=2a n =3a n -3a n -1, 即a n =3a n -1 (n ≥2).故数列{a n }为等比数列,且q =3. 又当n =1时,2a 1=3a 1-3,∴a 1=3.∴a n =3n.(2)证明 b n =1n n +1 =1n -1n +1.∴T n =b 1+b 2+…+b n=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =1-1n +1<1.例4 已知数列{a n }的前n 项和S n ,对一切正整数n ,点(n ,S n )都在函数f (x )=2x +2-4的图象上.(1)求数列{a n }的通项公式;(2)设b n =a n ·log 2a n ,求数列{b n }的前n 项和T n .解 (1)由题意,S n =2n +2-4,n ≥2时,a n =S n -S n -1=2n +2-2n +1=2n +1,当n =1时,a 1=S 1=23-4=4,也适合上式,∴数列{a n }的通项公式为a n =2n +1,n ∈N *.(2)∵b n =a n log 2a n =(n +1)·2n +1,∴T n =2·22+3·23+4·24+…+n ·2n +(n +1)·2n +1,①2T n =2·23+3·24+4·25+…+n ·2n +1+(n +1)·2n +2.② ②-①得,T n =-23-23-24-25-…-2n +1+(n +1)·2n +2=-23-23 1-2n -1 1-2+(n +1)·2n +2=-23-23(2n -1-1)+(n +1)·2n +2=(n +1)·2n +2-23·2n -1=(n +1)·2n +2-2n +2=n ·2n +2.三、运用方程(组)的思想解数列问题例5 等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,求数列{a n }前20项的和S 20. 解 设数列{a n }的公差为d ,则a 3=a 4-d =10-d ,a 6=a 4+2d =10+2d , a 10=a 4+6d =10+6d .由a 3,a 6,a 10成等比数列得a 3a 10=a 26,即(10-d )(10+6d )=(10+2d )2,整理得10d 2-10d =0,解得d =0或d =1. 当d =0时,S 20=20a 4=200.当d =1时,a 1=a 4-3d =10-3×1=7.∴S 20=20a 1+20×192d =20×7+190=330.例6 (2009·江苏通州模拟)已知数列{a n }和{b n }满足a 1=m ,a n +1=λa n +n ,b n =a n -2n3+49. (1)当m =1时,求证:对于任意的实数λ,数列{a n }一定不是等差数列;(2)当λ=-12时,试判断数列{b n }是否为等比数列.(1)证明 当m =1时,a 1=1,a 2=λ+1,a 3=λ(λ+1)+2=λ2+λ+2. 假设数列{a n }是等差数列,由a 1+a 3=2a 2,得λ2+λ+3=2(λ+1),即λ2-λ+1=0,Δ=-3<0,∴方程无实根.故对于任意的实数λ,数列{a n }一定不是等差数列.(2)解 当λ=-12时,a n +1=-12a n +n ,b n =a n -2n 3+49.b n +1=a n +1-2 n +1 3+49=⎝ ⎛⎭⎪⎫-12a n +n -2 n +1 3+49 =-12a n +n 3-29=-12⎝ ⎛⎭⎪⎫a n -2n 3+49=-12b n .又b 1=m -23+49=m -29,∴当m ≠29时,数列{b n }是以m -29为首项,-12为公比的等比数列;当m =29时,数列{b n }不是等比数列.四、运用函数的思想解数列问题例7 设b n =(1+r )q n -1,r =219.2-1,q =12,求数列⎩⎨⎧⎭⎬⎫log 2 b n +1log 2 b n 的最大项和最小项的值.解 log 2 b n +1log 2 b n =log 2[ 1+r q n]log 2[ 1+r q n -1]=log 2 1+r +n log 2 q log 2 1+r + n -1 log 2 q =1+1n -20.2.记c n =log 2 b n +1log 2 b n ,则c n =1+1n -20.2.作出函数y =1x -20.2+1的图象.易知:c 20<c 19<...<c 1<1,c 21>c 22> (1)∴最高点为(21,c 21),最低点(20,c 20).∴最大项为c 21,c 21=2.25,最小项为c 20,c 20=-4. 五、构建数列模型解实际应用题例8 甲、乙两大超市同时开业,第一年的全年销售额为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a 2(n 2-n +2)万元,乙超市第n 年的销售额比前一年销售额多a ⎝ ⎛⎭⎪⎫23n -1万元(1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?解 (1)设甲、乙两超市第n 年的销售额分别为a n ,b n . 则有:a 1=a ,n ≥2时: a n =a 2(n 2-n +2)-a2[(n -1)2-(n -1)+2]=(n -1)a .∴a n =⎩⎪⎨⎪⎧a , n =1, n -1 a , n ≥2.b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=a +a ⎝ ⎛⎭⎪⎫23+a ⎝ ⎛⎭⎪⎫232+…+a ⎝ ⎛⎭⎪⎫23n -1=⎣⎢⎡⎦⎥⎤3-2⎝ ⎛⎭⎪⎫23n -1a ,(n ∈N *). (2)易知b n <3a ,所以乙将被甲超市收购,由b n <12a n 得:⎣⎢⎡⎦⎥⎤3-2⎝ ⎛⎭⎪⎫23n -1a <12(n -1)a .∴n +4⎝ ⎛⎭⎪⎫23n -1>7,∴n ≥7.即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.例9 某油料库已储油料a t ,计划正式运营后的第一年进油量为已储油量的25%,以后每年的进油量为上一年底储油量的25%,且每年运出b t ,设a n 为正式运营第n 年底的储油量.(1)求a n 的表达式并加以证明;(2)为应对突发事件,该油库年底储油量不得少于23a t ,如果b =724a t ,该油库能否长期按计划运营?如果可以请加以证明,如果不行请说明理由.(取lg 2=0.30,lg 3=0.48).解 (1)依题意油库原有储油量为a t ,则a 1=(1+25%)a -b =54a -b ,a n =(1+25%)a n -1-b =54a n -1-b (n ≥2,n ∈N *),令a n -x =54(a n -1-x ),则a n =54a n -1-x4,于是b =x 4,即x =4b ,∴a n -4b =54(a n -1-4b ),∴数列{a n -4b }是公比为54,首项为54a -5b 的等比数列.a n -4b =(a 1-4b )⎝ ⎛⎭⎪⎫54n -1=⎝ ⎛⎭⎪⎫54a -b -4b ⎝ ⎛⎭⎪⎫54n -1 =⎝ ⎛⎭⎪⎫54n a -5b ·⎝ ⎛⎭⎪⎫54n -1, ∴a n =⎝ ⎛⎭⎪⎫54n a +4b -5b ⎝ ⎛⎭⎪⎫54n -1=⎝ ⎛⎭⎪⎫54n a -4b ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1. (2)若b =724a t 时,该油库第n 年年底储油量不少于23a t ,即⎝ ⎛⎭⎪⎫54n a -⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1×4×724a ≥23a ,即⎝ ⎛⎭⎪⎫54n≤3, ∴n ≤log 54 3=lg 31-3lg 2=0.481-3×0.3=4.8,可见该油库只能在5年内运营,因此不能长期运营.思妙解1.等差数列性质多,三点共线可求和例1 在等差数列{a n }中,S 10=20,S 50=200,求S 2 010的值.解 由S n =An 2+Bn ,知S nn=An +B ,所以点⎝⎛⎭⎪⎫n ,S n n 在直线y =Ax +B 上,于是点⎝⎛⎭⎪⎫10,S 1010,⎝ ⎛⎭⎪⎫50,S 5050,⎝ ⎛⎭⎪⎫2 010,S 2 0102 010三点共线, ∴S 5050-S 101050-10=S 2 0102 010-S 50502 010-50成立. 把S 10=20,S 50=200代入上式, 解得:S 2 010=205 020.2.数列图象莫轻视,大题小作显神奇例2 设等差数列{a n }的前n 项和为S n ,已知a 1>0,S 12>0,S 13<0,指出S 1,S 2,…,S 12中哪一个值最大,并说明理由?解 ∵{a n }是等差数列,∴S n =d2n 2+⎝⎛⎭⎪⎫a 1-d 2n ,∵S 12>0,S 13<0.∴a 13=S 13-S 12<0, ∵a 1>0,a 13<0,∴d<0.∴点(n ,S n )分布在开口方向向下的抛物线y =d2x 2+⎝⎛⎭⎪⎫a 1-d 2x 的图象上.设二次函数y =d2x 2+⎝⎛⎭⎪⎫a 1-d 2x 的对称轴为n 0,则2n 0是二次函数的一个零点.∵S 12>0,S 13<0,∴12<2n 0<13, ∴6<n 0<6.5.易知n =6对应的A 点(6,S 6)与对称轴的距离比n =7对应的B 点(7,S 7)与对称轴的距离更小.∴A 点为最高点,S 6最大.。