高考数学大二轮复习第二编专题整合突破专题四数列第二讲数列求和及综合应用适考素能特训文
- 格式:doc
- 大小:122.00 KB
- 文档页数:7
第2讲 数列求和及综合应用高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透.真 题 感 悟1.(2017·全国Ⅲ卷)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和.解 (1)因为a 1+3a 2+…+(2n -1)a n =2n ,①故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1,又n =1时,a 1=2适合上式,从而{a n }的通项公式为a n =22n -1.(2)记⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n +1的前n 项和为S n ,由(1)知a n 2n +1=2(2n -1)(2n +1)=12n -1-12n +1,则S n =⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=1-12n +1=2n2n +1.2.(2017·山东卷)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解 (1)设{a n }的公比为q , 由题意知⎩⎨⎧a 1(1+q )=6,a 21q =a 1q 2,又a n >0,解得⎩⎨⎧a 1=2,q =2,所以a n =2n .(2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.令c n =b na n,则c n =2n +12n ,因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1,两式相减得12T n =32+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n +12n +1,所以T n =5-2n +52n .考 点 整 合1.(1)数列通项a n 与前n 项和S n 的关系,a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).(2)应用a n 与S n 的关系式f (a n ,S n )=0时,应特别注意n =1时的情况,防止产生错误. 2.数列求和(1)分组转化求和:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并. (2)错位相减法:主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.温馨提醒 裂项求和时,易把系数写成它的倒数或忘记系数导致错误. 3.数列与函数、不等式的交汇数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查最值问题、不等关系或恒成立问题.热点一 a n 与S n 的关系问题【例1】 设数列{a n }的前n 项和为S n ,对任意的正整数n ,都有a n =5S n +1成立,b n =-1-log 2|a n |,数列{b n }的前n 项和为T n ,c n =b n +1T n T n +1. (1)求数列{a n }的通项公式;(2)求数列{c n }的前n 项和A n ,并求出A n 的最值. 解 (1)因为a n =5S n +1,n ∈N *, 所以a n +1=5S n +1+1, 两式相减,得a n +1=-14a n ,又当n =1时,a 1=5a 1+1,知a 1=-14, 所以数列{a n }是公比、首项均为-14的等比数列. 所以数列{a n }的通项公式a n =⎝ ⎛⎭⎪⎫-14n.(2)b n =-1-log 2|a n |=2n -1, 数列{b n }的前n 项和T n =n 2, c n =b n +1T n T n +1=2n +1n 2(n +1)2=1n 2-1(n +1)2, 所以A n =1-1(n +1)2.因此{A n }是单调递增数列,∴当n =1时,A n 有最小值A 1=1-14=34;A n 没有最大值.探究提高 1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.【训练1】 (2018·安徽江南名校联考)已知数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足2(S n +1)=(n +3)a n . (1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =1a n a n +1,记数列{b n }的前n 项和为T n ,求证:T n <3.(1)解 2(S n +1)=(n +3)a n ,① 当n ≥2时,2(S n -1+1)=(n +2)a n -1,② ①-②得,(n +1)a n =(n +2)a n -1, 所以a n n +2=a n -1n +1(n ≥2),又∵a 11+2=13,故⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n +2是首项为13的常数列. 所以a n =13(n +2). (2)证明 由(1)知,b n =1a n a n +1=9(n +2)(n +3)=9⎝ ⎛⎭⎪⎫1n +2-1n +3.∴T n =b 1+b 2+b 3+…+b n=9⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+…+⎝ ⎛⎭⎪⎫1n +2-1n +3=9⎝ ⎛⎭⎪⎫13-1n +3=3-9n +3<3.热点二 数列的求和 考法1 分组转化求和【例2-1】 (2018·合肥质检)已知等差数列{a n }的前n 项和为S n ,且满足S 4=24,S 7=63.(1)求数列{a n }的通项公式;(2)若b n =2a n +(-1)n ·a n ,求数列{b n }的前n 项和T n .解 (1)∵{a n }为等差数列,∴⎩⎪⎨⎪⎧S 4=4a 1+4×32d =24,S 7=7a 1+7×62d =63,解得⎩⎨⎧a 1=3,d =2.因此{a n }的通项公式a n =2n +1.(2)∵b n =2a n +(-1)n ·a n =22n +1+(-1)n ·(2n +1) =2×4n +(-1)n ·(2n +1),∴T n =2×(41+42+…+4n )+[-3+5-7+9-…+(-1)n (2n +1)]=8(4n-1)3+G n .当n 为偶数时,G n =2×n2=n , ∴T n =8(4n -1)3+n ;当n 为奇数时,G n =2×n -12-(2n +1)=-n -2, ∴T n =8(4n -1)3-n -2,∴T n =⎩⎪⎨⎪⎧8(4n -1)3+n (n 为偶数),8(4n -1)3-n -2 (n 为奇数).探究提高 1.在处理一般数列求和时,一定要注意运用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和.在利用分组求和法求和时,常常根据需要对项数n 的奇偶进行讨论.最后再验证是否可以合并为一个表达式. 2.分组求和的策略:(1)根据等差、等比数列分组;(2)根据正号、负号分组. 考法2 裂项相消法求和【例2-2】 (2018·郑州调研)设S n 为数列{a n }的前n 项和,S n =2n 2+5n . (1)求证:数列{3a n }为等比数列; (2)设b n =2S n -3n ,求数列⎩⎨⎧⎭⎬⎫n a n b n 的前n 项和T n .(1)证明 ∵S n =2n 2+5n ,∴当n ≥2时,a n =S n -S n -1=4n +3. 又当n =1时,a 1=S 1=7也满足a n =4n +3.故a n =4n +3(n ∈N *).由a n +1-a n =4,得3a n +13a n =3a n +1-a n =34=81. ∴数列{3a n }是公比为81的等比数列. (2)解 ∵b n =4n 2+7n ,∴n a n b n =1(4n +3)(4n +7)=14⎝⎛⎭⎪⎫14n +3-14n +7, ∴T n =14⎝ ⎛⎭⎪⎫17-111+111-115+…+14n +3-14n +7 =14⎝ ⎛⎭⎪⎫17-14n +7=n7(4n +7). 探究提高 1.裂项相消法求和就是将数列中的每一项裂成两项或多项,使这些裂开的项出现有规律的相互抵消,要注意消去了哪些项,保留了哪些项.2.消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.【训练2】 (2018·成都二诊)设正项等比数列{a n },a 4=81,且a 2,a 3的等差中项为32(a 1+a 2).(1)求数列{a n }的通项公式;(2)若b n =log 3a 2n -1,数列{b n }的前n 项和为S n ,数列{c n }满足c n =14S n -1,T n 为数列{c n }的前n 项和,若T n <λn 恒成立,求λ的取值范围. 解 (1)设等比数列{a n }的公比为q (q >0),由题意,得⎩⎨⎧a 4=a 1q 3=81,a 1q +a 1q 2=3(a 1+a 1q ),解得⎩⎨⎧a 1=3,q =3.所以a n =a 1q n -1=3n .(2)由(1)得b n =log 332n -1=2n -1, S n =n (b 1+b n )2=n [1+(2n -1)]2=n 2∴c n =14n 2-1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=n 2n +1. 若T n =n 2n +1<λn 恒成立,则λ>12n +1(n ∈N *)恒成立,则λ>⎝ ⎛⎭⎪⎫12n +1max ,所以λ>13.考法3 错位相减求和【例2-3】 (2018·潍坊一模)公差不为0的等差数列{a n }的前n 项和为S n ,已知S 4=10,且a 1,a 3,a 9成等比数列. (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 3n 的前n 项和T n .解 (1)设{a n }的公差为d ,由题设得⎩⎨⎧4a 1+6d =10,a 23=a 1·a 9,∴⎩⎨⎧4a 1+6d =10,(a 1+2d )2=a 1(a 1+8d ). 解之得a 1=1,且d =1. 因此a n =n .(2)令c n =n3n ,则T n =c 1+c 2+…+c n =13+232+333+…+n -13n -1+n 3n ,①13T n =132+233+…+n -13n +n3n +1,② ①-②得:23T n =⎝ ⎛⎭⎪⎫13+132+…+13n -n 3n +1=13⎝ ⎛⎭⎪⎫1-13n 1-13-n 3n +1=12-12×3n -n 3n +1, ∴T n =34-2n +34×3n .探究提高 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.2.在写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确地写出“S n -qS n ”的表达式.【训练3】 已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n .解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式.所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎨⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎨⎧11=2b 1+d ,17=2b 1+3d , 可解得⎩⎨⎧b 1=4,d =3.所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1., 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2]. 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2] =3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2.所以T n =3n ·2n +2.热点三 与数列相关的综合问题【例3】 设f (x )=12x 2+2x ,f ′(x )是y =f (x )的导函数,若数列{a n }满足a n +1=f ′(a n ),且首项a 1=1.(1)求数列{a n }的通项公式;(2)数列{a n }的前n 项和为S n ,等比数列{b n }中,b 1=a 1,b 2=a 2,数列{b n }的前n项和为T n ,请写出适合条件T n ≤S n 的所有n 的值. 解 (1)由f (x )=12x 2+2x ,得f ′(x )=x +2. ∵a n +1=f ′(a n ),且a 1=1. ∴a n +1=a n +2则a n +1-a n =2,因此数列{a n }是公差为2,首项为1的等差数列. ∴a n =1+2(n -1)=2n -1.(2)数列{a n }的前n 项和S n =n (1+2n -1)2=n 2,等比数列{b n }中,b 1=a 1=1,b 2=a 2=3,∴q =3. ∴b n =3n -1.∴数列{b n }的前n 项和T n =1-3n 1-3=3n -13-1=3n -12.T n ≤S n 可化为3n -12≤n 2. 又n ∈N *,∴n =1,或n =2故适合条件T n ≤S n 的所有n 的值为1和2.探究提高 1.求解数列与函数交汇问题注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别重视;(2)解题时准确构造函数,利用函数性质时注意限制条件.2.数列为背景的不等式恒成立、不等式证明,多与数列的求和相联系,最后利用数列或数列对应函数的单调性处理.【训练4】 (2018·长沙雅礼中学质检)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列. (1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.解 (1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2). 从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1), 所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列, 故a n =2n .(2)由(1)可得1a n=12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n . 由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000,即2n >1 000,又∵n ∈N *,因为29=512<1 000<1 024=210,所以n ≥10, 于是,使|T n -1|<11 000成立的n 的最小值为10.1.错位相减法的关注点(1)适用题型:等差数列{a n }乘以等比数列{b n }对应项得到的数列{a n ·b n }求和. (2)步骤:①求和时先乘以数列{b n }的公比.②把两个和的形式错位相减.③整理结果形式.2.裂项求和的常见技巧 (1)1n (n +1)=1n -1n +1.(2)1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k .(3)1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1.(4)14n 2-1=12⎝ ⎛⎭⎪⎫12n -1-12n +1. 3.数列与不等式综合问题(1)如果是证明不等式,常转化为数列和的最值问题,同时要注意比较法、放缩法、基本不等式的应用;(2)如果是解不等式,注意因式分解的应用.一、选择题1.已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3=a 5.令b n =(-1)n -1a n ,则数列{b n }的前2n 项和T 2n 为( ) A.-n B.-2n C.nD.2n解析 设等差数列{a n }的公差为d ,由S 3=a 5得3a 2=a 5,∴3(1+d )=1+4d ,解得d =2,∴a n =2n -1,∴b n =(-1)n -1(2n -1),∴T 2n =1-3+5-7+…+(4n -3)-(4n -1)=-2n . 答案 B2.(2018·衡水中学月考)数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( ) A.-10 B.-9 C.10D.9解析 由于a n =1n (n +1)=1n -1n +1.∴S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1.因此1-1n +1=910,所以n =9.所以直线方程为10x +y +9=0.令x =0,得y =-9,所以在y 轴上的截距为-9. 答案 B 3.已知T n 为数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2n +12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( ) A.1 026 B.1 025 C.1 024D.1 023解析 因为2n +12n =1+12n ,所以T n =n +1-12n ,则T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013,所以整数m 的最小值为1 024. 答案 C4.已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A.9B.15C.18D.30解析 ∵a n +1-a n =2,a 1=-5,∴数列{a n }是公差为2,首项为-5的等差数列. ∴a n =-5+2(n -1)=2n -7.数列{a n }的前n 项和S n =n (-5+2n -7)2=n 2-6n .令a n =2n -7≥0,解得n ≥72.∴n ≤3时,|a n |=-a n ;n ≥4时,|a n |=a n . 则|a 1|+|a 2|+…+|a 6|=-a 1-a 2-a 3+a 4+a 5+a 6= S 6-2S 3=62-6×6-2(32-6×3)=18. 答案 C5.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项公式为a n +1-a n =2n ,则数列{a n }的前n 项和S n =( ) A.2B.2nC.2n +1-2D.2n -1-2解析 因为a n +1-a n =2n ,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2. 答案 C 二、填空题6.(2018·昆明诊断)数列{a n }满足a n =n (n +1)2,则1a 1+1a 2+…+1a 2 018等于________.解析 a n =n (n +1)2,则1a n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1∴1a 1+1a 2+…+1a 2 018=2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫12 018-12 019 =2⎝ ⎛⎭⎪⎫1-12 019=4 0362 019. 答案 4 0362 0197.记S n为正项数列{a n}的前n项和,且a n+1=2S n,则S2 018=________. 解析由题意得4S n=(a n+1)2,①当n=1时,4a1=(a1+1)2,a1=1,当n≥2时,4S n-1=(a n-1+1)2,②①-②得a2n-a2n-1-2(a n+a n-1)=0,所以(a n-a n-1-2)(a n+a n-1)=0,又a n>0,所以a n-a n-1=2,则{a n}是以1为首项,2为公差的等差数列.所以a n=2n-1,S2 018=2 018(1+2×2 018-1)2=2 0182.答案 2 01828.(2018·贵阳质检)已知[x]表示不超过x的最大整数,例如:[2.3]=2,[-1.5]=-2.在数列{a n}中,a n=[lg n],n∈N+,记S n为数列{a n}的前n项和,则S2 018=________.解析当1≤n≤9时,a n=[lg n]=0.当10≤n≤99时,a n=[lg n]=1.当100≤n≤999时,a n=[lg n]=2.当1 000≤n≤2 018时,a n=[lg n]=3.故S2 018=9×0+90×1+900×2+1 019×3=4 947.答案 4 947三、解答题9.(2018·济南模拟)记S n为数列{a n}的前n项和,已知S n=2n2+n,n∈N*. (1)求数列{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和T n.解(1)由S n=2n2+n,得当n=1时,a1=S1=3;当n≥2时,a n=S n-S n-1=2n2+n-[2(n-1)2+(n-1)]=4n-1. 又a1=3满足上式.所以a n=4n-1(n∈N*).(2)b n=1a n a n+1=1(4n-1)(4n+3)=14⎝⎛⎭⎪⎫14n-1-14n+3.所以T n =14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-17+⎝ ⎛⎭⎪⎫17-110+…+⎝ ⎛⎭⎪⎫14n -1-14n +3=14⎝ ⎛⎭⎪⎫13-14n +3=n 12n +9. 10.(2018·南昌调研)已知数列{a n -n }是等比数列,且a 1=9,a 2=36. (1)求数列{a n }的通项公式; (2)求数列{a n -n 2}的前n 项和S n . 解 (1)设等比数列{a n -n }的公比为q , 则q =a 2-2a 1-1=6-23-1=2. 从而a n -n =(3-1)×2n -1,故a n =(n +2n )2. (2)由(1)知a n -n 2=n ·2n +1+4n . 记T n =22+2·23+…+n ·2n +1,则2T n =23+2·24+…+(n -1)·2n +1+n ·2n +2, 两式作差,得-T n =22+23+…+2n +1-n ·2n +2 =2n +2-4-n ·2n +2=(1-n )·2n +2-4, ∴T n =(n -1)·2n +2+4,故S n =T n +4-4n +11-4=(n -1)·2n +2+4n +1+83.11.若数列{a n }是公差为2的等差数列,数列{b n }满足b 1=1,b 2=2,且a n b n +b n =nb n +1.(1)求数列{a n },{b n }的通项公式;(2)设数列{c n }满足c n =a n +1b n +1,数列{c n }的前n 项和为T n ,若不等式(-1)n λ<T n +n2n -1对一切n ∈N *恒成立,求实数λ的取值范围.解 (1)∵数列{b n }满足b 1=1,b 2=2,且a n b n +b n =nb n +1. ∴n =1时,a 1+1=2,解得a 1=1.又数列{a n }是公差为2的等差数列, ∴a n =1+2(n -1)=2n -1. ∴2nb n =nb n +1,化为2b n =b n +1,∴数列{b n }是首项为1,公比为2的等比数列. ∴b n =2n -1.(2)由数列{c n }满足c n =a n +1b n +1=2n 2n =n2n -1, 数列{c n }的前n 项和为 T n =1+22+322+…+n2n -1,∴12T n =12+222+…+n -12n -1+n 2n ,两式作差,得∴12T n =1+12+122+…+12n -1-n 2n =1-12n1-12-n 2n =2-n +22n ,∴T n =4-n +22n -1.不等式(-1)n λ<T n +n 2n -1,化为(-1)n λ<4-22n -1, n =2k (k ∈N *)时,λ<4-22n -1,取n =2,∴λ<3.n =2k -1(k ∈N *)时,-λ<4-22n -1,取n =1,∴λ>-2. 综上可得:实数λ的取值范围是(-2,3).。
2018届高考数学大二轮复习专题四数列第2讲数列求和及综合应用复习指导课后强化训练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018届高考数学大二轮复习专题四数列第2讲数列求和及综合应用复习指导课后强化训练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018届高考数学大二轮复习专题四数列第2讲数列求和及综合应用复习指导课后强化训练的全部内容。
专题四第二讲A组1.已知数列{an},{b n}满足a1=b1=1,a n+1-a n=错误!=2,n∈N+,则数列{ban}的前10项的和为\x(导学号52134510)( D )A.错误!(49-1) B.错误!(410-1)C.\f(1,3)(49-1) ﻩD.错误!(410-1)[解析] 由a1=1,an+1-an=2得,a n=2n-1,由bn+1b n=2,b1=1得bn=2n-1,∴ba n=2an-1=22(n-1)=4n-1,∴数列{ban}前10项和为\f(1×410-1,4-1)=错误!(410-1).2.若数列{an}为等比数列,且a1=1,q=2,则T n=\f(1,a1a2)+错误!+…+错误!等于导学号 52134511( B )A.1-错误! B.错误!(1-错误!)C.1-错误!ﻩD.错误!(1-错误!)[解析] 因为a n=1×2n-1=2n-1,所以a n·a n+1=2n-1·2n=2×4n-1,所以错误!=错误!×(错误!)n-1,所以{错误!}也是等比数列,所以T n=错误!+错误!+…+错误!=错误!×错误!=错误!(1-错误!),故选B.3.(文)给出数列错误!,错误!,错误!,错误!,错误!,错误!,…,错误!,错误!,…,错误!,…,在这个数列中,第50个值等于1的项的序号..是\x(导学号 52134512)( B)A.4900 ﻩB.4901C.5000 D.5001[解析]根据条件找规律,第1个1是分子、分母的和为2,第2个1是分子、分母的和为4,第3个1是分子、分母的和为6,…,第50个1是分子、分母的和为100,而分子、分母的和为2的有1项,分子、分母的和为3的有2项,分子、分母的和为4的有3项,…,分子、分母的和为99的有98项,分子、分母的和为100的项依次是:错误!,错误!,错误!,…,错误!,\f(51,49),…,错误!,第50个1是其中第50项,在数列中的序号为1+2+3+…+98+50=\f(981+98,2)+50=4901.(理)(2017·合肥市质检)以S n表示等差数列{an}的前n项和,若S5〉S6,则下列不等关系不一定成立的是\x(导学号52134513)( D )A.2a3>3a4ﻩ B.5a5>a1+6a6C.a5+a4-a3〈0 ﻩD.a3+a6+a12〈2a7[解析] 依题意得a6=S6-S5<0,2a3-3a4=2(a1+2d)-3(a1+3d)=-(a1+5d)=-a〉0,2a3>3a4;5a5-(a1+6a6)=5(a1+4d)-a1-6(a1+5d)=-2(a1+5d)=-26a>0,5a5>a1+6a6;a5+a4-a3=(a3+a6)-a3=a6〈0。
第二篇 专题二 第2讲一、选择题1.数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k =( C ) A .2 B .3 C .4D .5【解析】在等式a m +n =a m a n 中,令m =1, 可得a n +1=a n a 1=2a n ,∴a n +1a n=2,所以,数列{a n }是以2为首项,以2为公比的等比数列,则a n =2×2n -1=2n , ∴a k +1+a k +2+…+a k +10=a k +1·(1-210)1-2=2k +1·(1-210)1-2=2k +1(210-1)=25(210-1),∴2k +1=25,则k +1=5,解得k =4. 故选C.2.已知数列{a n }满足a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2 020等于( A )A .3B .2C .1D .0【解析】∵a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故S 2 020=336×0+a 2 017+a 2 018+a 2 019+a 2 020=a 1+a 2+a 3+a 4=3.故选A.3.已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =b n +1b n=3,n ∈N *,则数列{ba n }的前10项和为( D )A .12×(310-1)B .18×(910-1)C .126×(279-1)D .126×(2710-1)【解析】因为a n +1-a n =b n +1b n=3,所以{a n }为等差数列,公差为3,{b n }为等比数列,公比为3, 所以a n =1+3(n -1)=3n -2,b n =1×3n -1=3n -1, 所以ba n =33n -3=27n -1,所以{ba n }是以1为首项,27为公比的等比数列, 所以{ba n }的前10项和为1×(1-2710)1-27=126×(2710-1).4.已知数列{a n }和{b n }的首项均为1,且a n -1≥a n (n ≥2),a n +1≥a n ,数列{b n }的前n 项和为S n ,且满足2S n S n +1+a n b n +1=0,则S 2 021等于( D )A .2 021B .12 021C .4 041D .14 041【解析】由a n -1≥a n (n ≥2),a n +1≥a n 可得a n +1=a n , 即数列{a n }是常数列,又数列{a n }的首项为1,所以a n =1,所以当S n S n +1≠0时,2S n S n +1+a n b n +1=0可化为2S n S n +1+b n +1=0, 因为S n 为数列{b n }的前n 项和,所以2S n S n +1+b n +1=2S n S n +1+(S n +1-S n )=0, 所以1S n +1-1S n=2,又1S 1=1b 1=1,因此数列⎩⎨⎧⎭⎬⎫1S n 是以1为首项,2为公差的等差数列,所以1S n =1+2(n -1)=2n -1,故S n =12n -1,即S n S n +1≠0.所以S 2 021=14 041.5.定义在[0,+∞)上的函数f (x )满足:当0≤x <2时,f (x )=2x -x 2;当x ≥2时,f (x )=3f (x -2).记函数f (x )的极大值点从小到大依次为a 1,a 2,…,a n ,…,并记相应的极大值依次为b 1,b 2,…,b n ,…,则S 20=a 1b 1+a 2b 2+…+a 20b 20的值为( A )A .19×320+1B .19×319+1C .20×319+1D .20×320+1【解析】当0≤x <2时,f (x )=2x -x 2=1-(x -1)2, 可得a 1=1,b 1=1;当2≤x <4时,有0≤x -2<2,可得f (x )=3f (x -2)=3[1-(x -3)2], 可得a 2=3,b 2=3;当4≤x <6时,有0≤x -4<2,可得f (x )=9f (x -4)=9[1-(x -5)2], 可得a 3=5,b 3=9;…;a 20=39,b 20=319;…. 故S 20=a 1b 1+a 2b 2+…+a 20b 20 =1×1+3×3+5×9+…+39×319, 3S 20=1×3+3×9+5×27+…+39×320, 两式相减可得-2S 20=1+2(3+9+27+…+319)-39×320=1+2×3×(1-319)1-3-39×320,化简可得S 20=1+19×320.故选A.6.一个弹性小球从100 m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为S n ,则当n ≥2时,下面说法正确的是( C )A .S n ≥500B .S n ≤500C .S n 的最小值为7003D .S n 的最大值为400【解析】第一次着地时,共经过了100 m , 第二次着地时,共经过了⎝⎛⎭⎫100+100×23×2m , 第三次着地时,共经过了⎣⎡⎦⎤100+100×23×2+100×⎝⎛⎭⎫232×2m ,…, 以此类推,第n 次着地时,共经过了[ 100+100×⎦⎤23×2+100×⎝⎛⎭⎫232×2+…+100×⎝⎛⎭⎫23n -1×2m. 所以S n =100+4003⎣⎡⎦⎤1-⎝⎛⎭⎫23n -11-23=100+400⎣⎡⎦⎤1-⎝⎛⎭⎫23n -1. 则S n 是关于n 的增函数,所以当n ≥2时,S n 的最小值为S 2,且S 2=7003.又S n =100+400⎣⎡⎦⎤1-⎝⎛⎭⎫23n -1<100+400=500.故选C. 7.(2020·浙江改编)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,a 1d ≤1.记b 1=S 2,b n +1=S 2n +2-S 2n ,n ∈N *,下列等式一定不成立的是( D )A .2a 4=a 2+a 6B .2b 4=b 2+b 6C .a 24 =a 2a 8D .b 24 =b 2b 8【解析】由题意,知b 1=S 2=a 1+a 2, b n +1=S 2n +2-S 2n =a 2n +1+a 2n +2, 可得b n =a 2n -1+a 2n (n >1,n ∈N *).由{a n }为等差数列,可知{b n }为等差数列.选项A 中,由a 4为a 2,a 6的等差中项,得2a 4=a 2+a 6,成立. 选项B 中,由b 4为b 2,b 6的等差中项,得2b 4=b 2+b 6,成立. 选项C 中,a 2=a 1+d ,a 4=a 1+3d ,a 8=a 1+7d .由a 24 =a 2a 8,可得(a 1+3d )2=(a 1+d )(a 1+7d ),化简得a 1d =d 2,又由d ≠0,可得a 1=d ,符合a 1d≤1,成立.选项D 中,b 2=a 3+a 4=2a 1+5d ,b 4=a 7+a 8=2a 1+13d , b 8=a 15+a 16=2a 1+29d .由b 24 =b 2b 8,知(2a 1+13d )2=(2a 1+5d )(2a 1+29d ),化简得2a 1d =3d 2, 又由d ≠0,可得a 1d =32.这与已知条件a 1d≤1矛盾.8.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x 的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( D )A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1【解析】由题意可得S n +3=3×2n ,S n =3×2n -3,a n =S n -S n -1=3×2n -1(n ≥2), 当n =1时,a 1=S 1=3×21-3=3,满足上式, 所以数列{a n }的通项公式为a n =3×2n -1(n ∈N *). 设等比数列{b n }的公比为q ,则b 1q n -1+b 1q n =3×2n -1, 解得b 1=1,q =2,数列{b n }的通项公式为b n =2n -1(n ∈N *), 由等比数列的求和公式有T n =2n -1. 则有S n =3T n ,T n =2b n -1,T n <a n ,T n <b n +1. 二、填空题9.已知数列{a n }的前n 项和为S n ,过点P (n ,S n )和点Q (n +1,S n +1)(n ∈N *)的直线的斜率为3n -2,则a 2+a 4+a 5+a 9=__40__.【解析】因为过点P (n ,S n )和点Q (n +1,S n +1)(n ∈N *)的直线的斜率为3n -2, 所以S n +1-S nn +1-n =S n +1-S n =a n +1=3n -2(n ∈N *),所以a 2=1,a 4=7,a 5=10,a 9=22, 所以a 2+a 4+a 5+a 9=40.10.(2021·湖南长沙模拟)春夏季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{a n },已知a 1=1,a 2=2,且满足a n +2-a n =1+(-1)n (n ∈N *),则该医院近30天入院治疗流感的总人数为__255__.【解析】由于a n +2-a n =1+(-1)n (n ∈N *),所以当n 为奇数时,a n +2=a n ,当n 为偶数时,a n +2-a n =2, 所以a 1=a 3=…=a 29,a 2,a 4,…,a 30构成公差为2的等差数列. 因为a 1=1,a 2=2,所以a 1+a 2+a 3+…+a 29+a 30=15+15×2+15×142×2=255.11.设数列{a n }满足a 1=1,且a n +1a n =n +2n +1(n ∈N *),则数列{a n }的通项公式a n =__n +12__,数列⎩⎨⎧⎭⎬⎫1a n a n +1的前10项和为__53__.【解析】因为a n +1a n =n +2n +1,所以a 2a 1=32,a 3a 2=43,a 4a 3=54,…,a n a n -1=n +1n (n ≥2),把它们左右两边分别相乘,得a n =n +12(n ≥2),当n =1时,a 1=1也符合上式,所以a n =n +12(n ∈N *).所以1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所以数列⎩⎨⎧⎭⎬⎫1a n a n +1的前10项和为4×⎝⎛⎭⎫12-13+13-14+…+111-112=4×⎝⎛⎭⎫12-112=53. 12.在数列{a n }中,a 1+a 22+a 33+…+a nn =2n -1(n ∈N *),且a 1=1,若存在n ∈N *使得a n ≤n (n +1)λ成立,则实数λ的最小值为__12__.【解析】依题意得,数列⎩⎨⎧⎭⎬⎫a n n 的前n 项和为2n -1,当n ≥2时,a nn =(2n -1)-(2n -1-1)=2n -1,且a 11=21-1=21-1∴n =1时也满足a nn =2n -1, 因此a n n =2n -1(n ∈N *),a n n (n +1)=2n -1n +1,记b n =2n -1n +1,则b n >0,b n +1b n =2(n +1)n +2=(n +2)+n n +2>n +2n +2=1, b n +1>b n ,数列{b n }是递增数列,数列{b n }的最小项是b 1=12.依题意得,存在n ∈N *使得λ≥a nn (n +1)=b n 成立,即有λ≥b 1=12,λ的最小值是12.三、解答题13.已知数列{a n }的前n 项和为S n ,满足S n =2a n -1(n ∈N *),数列{b n }满足nb n +1-(n +1)b n =n (n +1)(n ∈N *),且b 1=1.(1)证明数列⎩⎨⎧⎭⎬⎫b n n 为等差数列,并求数列{a n }和{b n }的通项公式;(2)若c n =(-1)n -1·4(n +1)(3+2log 2 a n )(3+2log 2 a n +1),求数列{c n }的前2n 项和T 2n ;(3)若d n =a n ·b n ,数列{d n }的前n 项和为D n ,对任意的n ∈N *,都有D n ≤nS n -a ,求实数a 的取值范围.【解析】(1)由nb n +1-(n +1)b n =n (n +1), 两边同除以n (n +1),得b n +1n +1-b nn=1,从而数列⎩⎨⎧⎭⎬⎫b n n 为首项b 11=1,公差d =1的等差数列,所以b nn=n (n ∈N *),数列{b n }的通项公式为b n =n 2(n ∈N *). 当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1, 又a 1=1≠0,所以a na n -1=2,从而数列{a n }为首项a 1=1,公比q =2的等比数列, 从而数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)c n =(-1)n -1·⎣⎢⎡⎦⎥⎤4(n +1)(2n +1)(2n +3)=(-1)n -1⎝⎛⎭⎫12n +1+12n +3,T 2n =c 1+c 2+c 3+…+c 2n -1+c 2n =13+15-15-17+…-14n +1-14n +3 =13-14n +3(n ∈N *). (3)由(1)得d n =a n ·b n =n ·2n -1,D n =1×1+2×21+3×22+…+(n -1)·2n -2+n ·2n -1,① 2D n =1×21+2×22+3×23+…+(n -1)·2n -1+n ·2n .② ①-②得,-D n =1+2+22+…+2n -1-n ·2n =1-2n 1-2-n ·2n =2n -1-n ·2n , 所以D n =(n -1)·2n +1, 由(1)得S n =2a n -1=2n -1, 因为任意n ∈N *,都有D n ≤nS n -a , 即(n -1)·2n +1≤n (2n -1)-a 恒成立, 所以a ≤2n -n -1恒成立, 记e n =2n -n -1,所以a ≤(e n )min ,因为e n +1-e n =[2n +1-(n +1)-1]-(2n -n -1)=2n -1>0, 从而数列{e n }为递增数列,所以当n =1时,e n 取最小值e 1=0,于是a ≤0.所以a的取值范围为(-∞,0].。
数列求和及数列的综合应用【高考考情解读】 高考对本节知识主要以解答题的形式考查以下两个问题:1.以递推公式或图、表形式给出条件,求通项公式,考查学生用等差、等比数列知识分析问题和探究创新的能力,属中档题.2.通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.1. 数列求和的方法技巧(1)分组转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并. (2)错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列. (3)倒序相加法这是在推导等差数列前n 项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和. (4)裂项相消法利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1.常见的拆项公式: ①1n n +=1n -1n +1; ②1nn +k =1k (1n -1n +k); ③1n -n +=12(12n -1-12n +1); ④1n +n +k =1k(n +k -n ).2. 数列应用题的模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比.(3)混合模型:在一个问题中同时涉及等差数列和等比数列的模型.(4)生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型.如分期付款问题,树木的生长与砍伐问题等.(5)递推模型:如果容易找到该数列任意一项a n 与它的前一项a n -1(或前n 项)间的递推关系式,我们可以用递推数列的知识来解决问题.考点一 分组转化求和法例1 等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.(1)求数列{a n }(2)若数列{b n }满足:b n =a n +(-1)nln a n ,求数列{b n }的前n 项和S n . 解 (1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18.所以公比q =3. 故a n =2·3n -1(n ∈N *).(2)因为b n =a n +(-1)nln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n[ln 2+(n -1)ln 3]=2·3n -1+(-1)n(ln 2-ln 3)+(-1)nn ln 3,所以S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3.当n 为偶数时,S n =2×1-3n1-3+n2ln 3=3n+n2ln 3-1;当n 为奇数时,S n =2×1-3n1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上所述,S n=⎩⎪⎨⎪⎧3n+n2ln 3-1, n 为偶数,3n-n -12ln 3-ln 2-1, n 为奇数.在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n 进行讨论,最后再验证是否可以合并为一个公式.(2013·安徽)设数列{an }满足a 1=2,a 2+a 4=8,且对任意n ∈N *,函数f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足f ′⎝ ⎛⎭⎪⎫π2=0.(1)求数列{a n }的通项公式; (2)若b n =2⎝⎛⎭⎪⎫a n +12a n ,求数列{b n }的前n 项和S n . 解 (1)由题设可得f ′(x )=(a n -a n +1+a n +2)-a n +1sin x -a n +2cos x ,又f ′⎝ ⎛⎭⎪⎫π2=0,则a n +a n +2-2a n +1=0, 即2a n +1=a n +a n +2,因此数列{a n }为等差数列,设等差数列{a n }的公差为d ,由已知条件⎩⎪⎨⎪⎧a 1=22a 1+4d =8,解得⎩⎪⎨⎪⎧a 1=2,d =1,a n =a 1+(n -1)d =n +1.(2)b n =2⎝⎛⎭⎪⎫n +1+12n +1=2(n +1)+12,S n =b 1+b 2+…+b n =(n +3)n +1-12n=n 2+3n +1-12n .考点二 错位相减求和法例2 (2013·山东)设等差数列{a n }的前n 项和为S n ,且S 4=4S 2,a 2n =2a n +1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,求{b n }的前n 项和T n .解 (1)设等差数列{a n }的首项为a 1,公差为d ,由⎩⎪⎨⎪⎧S 4=4S 2,a 2n =2a n +1得a 1=1,d =2,所以a n =2n -1(n ∈N *).(2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,①当n ≥2时,b 1a 1+b 2a 2+…+b n -1a n -1=1-12n -1,② ①-②得:b n a n =12,又当n =1时,b 1a 1=12也符合上式,所以b n a n =12n (n ∈N *),所以b n =2n -12n (n ∈N *).所以T n =b 1+b 2+b 3+…+b n =12+322+523+…+2n -12n . 12T n =122+323+…+2n -32n +2n -12n +1. 两式相减得:12T n =12+⎝ ⎛⎭⎪⎫222+223+…+22n -2n -12n +1=32-12n -1-2n -12n +1. 所以T n =3-2n +32n .错位相减法求数列的前n 项和是一类重要方法.在应用这种方法时,一定要抓住数列的特征,即数列的项可以看作是由一个等差数列和一个等比数列对应项相乘所得数列的求和问题.设数列{an }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .解 (1)由已知,得当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,符合上式,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1.①从而22·S n =1·23+2·25+3·27+…+n ·22n +1.②①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1,即S n =19[(3n -1)22n +1+2].考点三 裂项相消求和法例3 (2013·广东)设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a 2n +1-4n -1,n ∈N *, 且a 2,a 5,a 14构成等比数列.(1)证明:a 2=4a 1+5; (2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有1a 1a 2+1a 2a 3+…+1a n a n +1<12. (1)证明 当n =1时,4a 1=a 22-5,a 22=4a 1+5, 又a n >0,∴a 2=4a 1+5.(2)解 当n ≥2时,4S n -1=a 2n -4(n -1)-1, ∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, 即a 2n +1=a 2n +4a n +4=(a n +2)2, 又a n >0,∴a n +1=a n +2,∴当n ≥2时,{a n }是公差为2的等差数列. 又a 2,a 5,a 14成等比数列.∴a 25=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得a 2=3. 由(1)知a 1=1. 又a 2-a 1=3-1=2,∴数列{a n }是首项a 1=1,公差d =2的等差数列. ∴a n =2n -1. (3)证明1a 1a 2+1a 2a 3+…+1a n a n +1=11×3+13×5+15×7+…+1n -n +=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1<12.数列求和的方法:(1)一般地,数列求和应从通项入手,若无通项,就先求通项,然后通过对通项变形,转化为与特殊数列有关或具备适用某种特殊方法的形式,从而选择合适的方法求和得解.(2)已知数列前n 项和S n 或者前n 项和S n 与通项公式a n的关系式,求通项通常利用a n =⎩⎪⎨⎪⎧S 1n =S n -S n -1n.已知数列递推式求通项,主要掌握“先猜后证法”“化归法”“累加(乘)法”等.(2013·西安模拟)已知x ,f x2,3(x ≥0)成等差数列.又数列{a n }(a n >0)中,a 1=3,此数列的前n 项和为S n ,对于所有大于1的正整数n 都有S n =f (S n-1).(1)求数列{a n }的第n +1项; (2)若b n 是1a n +1,1a n的等比中项,且T n 为{b n }的前n 项和,求T n .解 (1)因为x ,f x2,3(x ≥0)成等差数列,所以2×f x2=x +3,整理,得f (x )=(x +3)2.因为S n =f (S n -1)(n ≥2),所以S n =(S n -1+3)2, 所以S n =S n -1+3,即S n -S n -1=3, 所以{S n }是以3为公差的等差数列. 因为a 1=3,所以S 1=a 1=3,所以S n =S 1+(n -1)3=3+3n -3=3n . 所以S n =3n 2(n ∈N *).所以a n +1=S n +1-S n =3(n +1)2-3n 2=6n +3. (2)因为b n 是1a n +1与1a n的等比中项,所以(b n )2=1a n +1·1a n,所以b n =1a n +1·1a n=1n +n -=118×⎝ ⎛⎭⎪⎫12n -1-12n +1,T n =b 1+b 2+…+b n=118⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =118⎝ ⎛⎭⎪⎫1-12n +1=n 18n +9. 考点四 数列的实际应用例4 (2012·湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元. (1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).(1)由第n 年和第(n +1)年的资金变化情况得出an 与a n +1的递推关系;(2)由a n +1与a n 之间的关系,可求通项公式,问题便可求解. 解 (1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4 500-52d . a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d =32⎝ ⎛⎭⎪⎫32a n -2-d -d=⎝ ⎛⎭⎪⎫322a n -2-32d -d =…=⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32 n -2.整理得a n =⎝ ⎛⎭⎪⎫32n -1(3 000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1=⎝ ⎛⎭⎪⎫32n -1(3 000-3d )+2d . 由题意,知a m =4 000,即⎝ ⎛⎭⎪⎫32m -1(3 000-3d )+2d =4 000,解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1 000⎝ ⎛⎭⎪⎫32m -1=m -2m +13m -2m .故该企业每年上缴资金d 的值为m -2m +13m -2m 时,经过m (m ≥3)年企业的剩余资金为4 000万元.用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应的是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题的结果.某产品在不做广告宣传且每千克获利a 元的前提下,可卖出b 千克.若做广告宣传,广告费为n (n ∈N *)千元时比广告费为(n -1)千元时多卖出b2n 千克.(1)当广告费分别为1千元和2千元时,用b 表示销售量S ; (2)试写出销售量S 与n 的函数关系式;(3)当a =50,b =200时,要使厂家获利最大,销售量S 和广告费n 分别应为多少?解 (1)当广告费为1千元时,销售量S =b +b 2=3b2.当广告费为2千元时,销售量S =b +b 2+b 22=7b4.(2)设S n (n ∈N )表示广告费为n 千元时的销售量, 由题意得S 1-S 0=b2,S 2-S 1=b22,……S n -S n -1=b2n .以上n 个等式相加得,S n -S 0=b 2+b 22+b 23+…+b2n ,即S =S n =b +b 2+b 22+b 23+…+b2n =b [1-12n +1]1-12=b (2-12n ).(3)当a =50,b =200时,设获利为T n ,则有T n =Sa -1 000n =10 000×(2-12n )-1 000n=1 000×(20-102n -n ),设b n =20-102n -n ,则b n +1-b n =20-102n +1-n -1-20+102n +n =52n -1,当n ≤2时,b n +1-b n >0;当n ≥3时,b n +1-b n <0.所以当n =3时,b n 取得最大值,即T n 取得最大值,此时S =375, 即该厂家获利最大时,销售量和广告费分别为375千克和3千元.1. 数列综合问题一般先求数列的通项公式,这是做好该类题的关键.若是等差数列或等比数列,则直接运用公式求解,否则常用下列方法求解:(1)a n =⎩⎪⎨⎪⎧S 1n =S n -S n -1n.(2)递推关系形如a n +1-a n =f (n ),常用累加法求通项. (3)递推关系形如a n +1a n=f (n ),常用累乘法求通项. (4)递推关系形如“a n +1=pa n +q (p 、q 是常数,且p ≠1,q ≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p (a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列.(5)递推关系形如“a n +1=pa n +q n(q ,p 为常数,且p ≠1,q ≠0)”的数列求通项,此类型可以将关系式两边同除以q n转化为类型(4),或同除以p n +1转为用迭加法求解.2. 数列求和中应用转化与化归思想的常见类型:(1)错位相减法求和时将问题转化为等比数列的求和问题求解. (2)并项求和时,将问题转化为等差数列求和.(3)分组求和时,将问题转化为能用公式法或错位相减法或裂项相消法或并项法求和的几个数列的和求解.提醒:运用错位相减法求和时,相减后,要注意右边的n +1项中的前n 项,哪些项构成等比数列,以及两边需除以代数式时注意要讨论代数式是否为零.3. 数列应用题主要考查应用所学知识分析和解析问题的能力.其中,建立数列模型是解决这类问题的核心,在试题中主要有:一是,构造等差数列或等比数列模型,然后用相应的通项公式与求和公式求解;二是,通过归纳得到结论,再用数列知识求解.1. 在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么称这个数列为等积数列,称k 为这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________. 答案 28解析 依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4, 因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.2. 秋末冬初,流感盛行,特别是甲型H1N1流感.某医院近30天每天入院治疗甲流的人数依次构成数列{a n },已知a 1=1,a 2=2,且a n +2-a n =1+(-1)n(n ∈N *),则该医院30天入院治疗甲流的人数共有________. 答案 255解析 由于a n +2-a n =1+(-1)n, 所以a 1=a 3=…=a 29=1,a 2,a 4,…,a 30构成公差为2的等差数列,所以a 1+a 2+…+a 29+a 30 =15+15×2+15×142×2=255.3. 已知公差大于零的等差数列{a n }的前n 项和S n ,且满足:a 2·a 4=65,a 1+a 5=18.(1)若1<i <21,a 1,a i ,a 21是某等比数列的连续三项,求i 的值; (2)设b n =n n +S n,是否存在一个最小的常数m 使得b 1+b 2+…+b n <m 对于任意的正整数n 均成立,若存在,求出常数m ;若不存在,请说明理由. 解 (1){a n }为等差数列,∵a 1+a 5=a 2+a 4=18, 又a 2·a 4=65,∴a 2,a 4是方程x 2-18x +65=0的两个根, 又公差d >0,∴a 2<a 4,∴a 2=5,a 4=13.∴⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,∴a 1=1,d =4.∴a n =4n -3.由于1<i <21,a 1,a i ,a 21是某等比数列的连续三项, ∴a 1·a 21=a 2i ,即1·81=(4i -3)2,解得i =3. (2)由(1)知,S n =n ·1+n n -2·4=2n 2-n ,所以b n =1n -n+=12⎝ ⎛⎭⎪⎫12n -1-12n +1,b 1+b 2+…+b n=12⎝⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=n 2n +1, 因为n 2n +1=12-1n +<12, 所以存在m =12使b 1+b 2+…+b n <m 对于任意的正整数n 均成立.(推荐时间:60分钟)一、选择题1. 已知数列112,314,518,7116,…,则其前n 项和S n 为( )A .n 2+1-12nB .n 2+2-12nC .n 2+1-12n -1D .n 2+2-12n -1答案 A解析 因为a n =2n -1+12n ,则S n =1+2n -12n +⎝ ⎛⎭⎪⎫1-12·121-12=n 2+1-12n .2. 在等差数列{a n }中,a 1=-2 013,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 013的值等于( )A .-2 011B .-2 012C .-2 010D .-2 013答案 D解析 根据等差数列的性质,得数列{S n n}也是等差数列,根据已知可得这个数列的首项S 11=a 1=-2 013,公差d =1,故S 2 0132 013=-2 013+(2 013-1)×1=-1,所以S 2 013=-2 013.3. 对于数列{a n },a 1=4,a n +1=f (a n ),n =1,2,…,则a 2 013等于( )A.2 B .3 答案 C解析 由表格可得a 1=4,a 2=f (a 1)=f (4)=1,a 3=f (a 2)=f (1)=5,a 4=f (a 3)=2,a 5=f (2)=4,可知其周期为4,∴a 2 013=a 1=4.4. 在等差数列{a n }中,其前n 项和是S n ,若S 15>0,S 16<0,则在S 1a 1,S 2a 2,…,S 15a 15中最大的是( )A.S 1a 1B.S 8a 8C.S 9a 9D.S 15a 15答案 B解析 由于S 15=a 1+a 152=15a 8>0,S 16=16a 1+a 162=8(a 8+a 9)<0,可得a 8>0,a 9<0.这样S 1a 1>0,S 2a 2>0,…,S 8a 8>0,S 9a 9<0,S 10a 10<0,…,S 15a 15<0, 而S 1<S 2<…<S 8,a 1>a 2>…>a 8, 所以在S 1a 1,S 2a 2,…,S 15a 15中最大的是S 8a 8. 故选B.5. 数列{a n }满足a 1=1,且对任意的m ,n ∈N *都有a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2 012等于( )A.4 0242 013 B.4 0182 012 C.2 0102 011 D.2 0092 010答案 A解析 令m =1得a n +1=a n +n +1,即a n +1-a n =n +1,于是a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n , 上述n -1个式子相加得a n -a 1=2+3+…+n , 所以a n =1+2+3+…+n =n n +2,因此1a n =2nn +=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以1a 1+1a 2+1a 3+…+1a 2 012=2⎝ ⎛⎭⎪⎫1-12+12-13+…+12 012-12 013=2⎝⎛⎭⎪⎫1-12 013=4 0242 013. 6. 已知函数f (n )=⎩⎪⎨⎪⎧n 2n 为奇数,-n 2n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 2 012等于( )A .-2 012B .-2 011C .2 012D .2 011答案 C解析 当n 为奇数时,a n =f (n )+f (n +1)=n 2-(n +1)2=-(2n +1);当n 为偶数时,a n =f (n )+f (n +1)=-n 2+(n +1)2=2n +1.所以a 1+a 2+a 3+…+a 2 012=2(-1+2-3+4+…-2 011+2 012)=2 012. 二、填空题7. 数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n =________. 答案 12(9n-1)解析 ∵a 1+a 2+a 3+…+a n =3n -1, ∴a 1+a 2+a 3+…+a n -1=3n -1-1(n ≥2).则n ≥2时,两式相减得,a n =2·3n -1.当n =1时,a 1=3-1=2,适合上式, ∴a n =2·3n -1(n ∈N *).∴a 2n =4·9n -1,则数列{a 2n }是首项为4,公比为9的等比数列.∴a 21+a 22+a 23+…+a 2n =-9n1-9=12(9n-1). 8. 设数列{a n }的前n 项和为S n ,且a n 为复数isinn π2+cosn π2(n ∈N *)的虚部,则S 2 013=________. 答案 1解析 由已知得:a n =sinn π2(n ∈N *),∴a 1=1,a 2=0,a 3=-1,a 4=0, 故{a n }是以4为周期的周期数列, ∴S 2 013=S 503×4+1=S 1=a 1=1.9. 已知数列{a n }满足3a n +1+a n =4(n ≥1)且a 1=9,其前n 项之和为S n ,则满足不等式|S n-n -6|<1125的最小整数n 是________.答案 7解析 由递推式变形得3(a n +1-1)=-(a n -1), ∴{a n -1}是公比为-13的等比数列.则a n -1=8·(-13)n -1,即a n =8·(-13)n -1+1.于是S n =8[1--13n]1--13+n=6[1-(-13)n ]+n =6-6·(-13)n+n因此|S n -n -6|=|6×(-13)n|=6×(13)n <1125,3n -1>250,∴满足条件的最小n =7.10.气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910(n ∈N *)元,使用它直至报废最合算(所谓报废最合算是指使用这台仪器的平均耗资最少),一共使用了________天. 答案 800解析 由题意得,每天的维修保养费是以5为首项,110为公差的等差数列.设一共使用了n 天,则使用n 天的平均耗资为3.2×104++n +4910n2n=3.2×104n+n 20+9920≥2 3.2×104n×n20+9920, 当且仅当3.2×104n =n20时取得最小值,此时n =800.三、解答题11.已知等差数列{a n }满足:a 5=9,a 2+a 6=14.(1)求数列{a n }的通项公式;(2)若b n =a n +qa n (q >0),求数列{b n }的前n 项和S n . 解 (1)设数列{a n }的公差为d ,则由a 5=9,a 2+a 6=14,得⎩⎪⎨⎪⎧a 1+4d =92a 1+6d =14,解得⎩⎪⎨⎪⎧a 1=1d =2.所以数列{a n }的通项公式为a n =2n -1. (2)由a n =2n -1得b n =2n -1+q2n -1.当q >0且q ≠1时,S n =[1+3+5+…+(2n -1)]+(q 1+q 3+q 5+…+q 2n -1)=n 2+q-q2n1-q2;当q =1时,b n =2n ,则S n =n (n +1).所以数列{b n }的前n 项和S n =⎩⎪⎨⎪⎧n n +,q =1n 2+q -q2n1-q 2,q >0且q ≠1.12.将函数f (x )=sin 14x ·sin 14(x +2π)·sin 12(x +3π)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{a n }(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =2na n ,数列{b n }的前n 项和为T n ,求T n 的表达式.解 (1)化简f (x )=sin 14x ·sin 14(x +2π)·sin 12(x +3π)=-14sin x ,其极值点为x =k π+π2(k ∈Z ),它在(0,+∞)内的全部极值点构成以π2为首项,π为公差的等差数列,故a n =π2+(n-1)π=n π-π2.(2)b n =2n a n =π2(2n -1)·2n,∴T n =π2[1·2+3·22+…+(2n -3)·2n -1+(2n -1)·2n],则2T n =π2[1·22+3·23+…+(2n -3)·2n +(2n -1)·2n +1]两式相减,得∴-T n =π2[1·2+2·22+2·23+…+2·2n -(2n -1)·2n +1],∴T n =π[(2n -3)·2n+3].13.在等比数列{a n }中,a 2=14,a 3·a 6=1512.设b n =log2a 2n 2·log2a 2n +12,T n 为数列{b n }的前n 项和.(1)求a n 和T n ;(2)若对任意的n ∈N *,不等式λT n <n -2(-1)n恒成立,求实数λ的取值范围. 解 (1)设{a n }的公比为q ,由a 3a 6=a 22·q 5=116q 5=1512得q =12,∴a n =a 2·qn -2=(12)n.b n =log2a 2n 2·log2a 2n +12=log(12)2n -12·log(12)2n +12 =1n -n +=12(12n -1-12n +1), ∴T n =12(1-13+13-15+…+12n -1-12n +1)=12(1-12n +1)=n 2n +1. (2)①当n 为偶数时,由λT n <n -2恒成立得, λ<n -n +n =2n -2n-3恒成立,即λ<(2n -2n-3)min ,而2n -2n-3随n 的增大而增大,∴n =2时(2n -2n-3)min =0,∴λ<0.②当n 为奇数时,由λT n <n +2恒成立得, λ<n +n +n =2n +2n+5恒成立,即λ<(2n +2n+5)min 而2n +2n +5≥22n ·2n+5=9,当且仅当2n =2n,即n =1时等号成立,∴λ<9.综上,实数λ的取值范围为(-∞,0).7。
专题四 数列第2讲 数列的求和及其综合应用真题试做1.(2012·辽宁高考,理6)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ).A .58B .88C .143D .1762.(2012·大纲全国高考,理5)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( ). A.100101 B.99101 C.99100 D.1011003.(2012·课标全国高考,理16)数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为__________.4.(2012·安徽高考,理21)数列{x n }满足x 1=0,x n +1=-x 2n +x n +c (n N *). (1)证明:{x n }是递减数列的充分必要条件是c <0; (2)求c 的取值范围,使{x n }是递增数列.5.(2012·天津高考,理18)已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a n b 1+a n -1b 2+…+a 1b n ,n N *,证明T n +12=-2a n +10b n (n N *). 考向分析高考中对数列求和及其综合应用的考查题型,主、客观题均会出现,主观题较多.一般以等差、等比数列的定义以及通项公式、前n 项和公式的运用设计试题.考查的热点主要有四个方面:(1)考查数列的求和方法;(2)以等差、等比数列的知识为纽带,在数列与函数、方程、不等式的交会处命题,主要考查利用函数观点解决数列问题以及用不等式的方法研究数列的性质,多为中档题;(3)数列与解析几何交会的命题,往往会遇到递推数列,通常以解析几何作为试题的背景,从解析几何的内容入手,导出相关的数列关系,再进一步地解答相关的问题,试题难度大都在中等偏上,有时会以压轴题的形式出现;(4)数列应用题主要以等差、等比数列为工具,在数列与生产、生活实际问题的联系上设计问题,考查阅读理解能力、数学建模能力和数学应用的意识与能力,主要以解答题的形式出现,多为中高档题.热点例析热点一 数列的求和【例1】(2012·山东青岛一模,20)已知在等差数列{a n }(n N *)中,a n +1>a n ,a 2a 9=232,a 4+a 7=37.(1)求数列{a n }的通项公式;(2)若将数列{a n }的项重新组合,得到新数列{b n },具体方法如下:b 1=a 1,b 2=a 2+a 3,b 3=a 4+a 5+a 6+a 7,b 4=a 8+a 9+a 10+…+a 15,…,依此类推,第n 项b n 由相应的{a n }中2n -1项的和组成,求数列⎩⎨⎧⎭⎬⎫b n -14·2n 的前n 项和T n .规律方法数列求和的关键是分析其通项,数列求和主要有以下方法:(1)公式法:若数列是等差数列或等比数列,则可直接由等差数列或等比数列的求和公式求和;(2)分组求和法:一个数列的通项公式是由几个等差或等比或可求和的数列通项公式组成,求和时可以用分组求和法,即先分别求和,然后再合并;(3)若数列{a n }的通项能转化为f (n )-f (n -1)(n ≥2)的形式,常采用裂项相消法求和;(4)若数列{a n }是等差数列,{b n }是等比数列,则求数列{a n ·b n }的前n 项和时,可采用错位相减法;(5)倒序相加法:若一个数列{a n }满足与首末两项等“距离”的两项和相等或等于同一常数,那么求这个数列的前n 项和,可采用倒序相加法,如等差数列的通项公式就是用该法推导的.特别提醒:(1)利用裂项相消法求和时,应注意抵消后并不一定只剩第一项和最后一项,也可能前面剩两项,后面也剩两项.(2)利用错位相减法求和时,应注意:①在写出“S n ”与“qS n ”的表达式时应注意两式“错项对齐”;②当等比数列的公比为字母时,应对字母是否为1进行讨论.变式训练1(2012·安徽江南十校联考,理17)在等比数列{a n }中,a 1>0(n N *),且a 3-a 2=8.又a 1,a 5的等比中项为16.(1)求数列{a n }的通项公式;(2)设b n =log 4a n ,数列{b n }的前n 项和为S n ,是否存在正整数k ,使得1S 1+1S 2+1S 3+…+1S n<k 对任意n N *恒成立?若存在,求出正整数k 的最小值;若不存在,请说明理由.热点二 数列与函数、不等式交会【例2】(2012·安徽合肥第三次质检,理21)已知数列{a n }满足a n +1=(n +2)a 2n -na n +n +1a 2n +1(n N *),S n 是数列{a n }的前n 项和.(1)若a 1=1,求a 2,a 3,a 4并推证数列{a n }的通项公式;(2)若a 1⎣⎢⎡⎦⎥⎤12,32,求证:⎪⎪⎪⎪⎪⎪S n -n (n +1)2<1(n N *). 规律方法(1)由于数列的通项是一类特殊的函数,所以研究数列中的最大(小)项问题可转化为求相应函数的单调性进行求解,但同时注意数列中的自变量只能取正整数这一特点;(2)要充分利用数列自身的特点,例如在需要用到数列的单调性时,可以通过比较相邻两项的大小进行判断;(3)对于数列⎩⎨⎧⎭⎬⎫1n 2的前n 项和,没有直接可套用的公式,但如果涉及大小比较等一些不等关系,可考虑放缩法:1n 2<1n (n -1)或1n 2>1n (n +1),转化为数列⎩⎨⎧⎭⎬⎫1n (n -1)或⎩⎨⎧⎭⎬⎫1n (n +1),用裂项相消法求和后即可达到比较大小的目的.变式训练2(理科用)(2012·安徽合肥一模,21)已知数列{a n }中,a 1=1,na n +1=2(a 1+a 2+…+a n ).(1)求a 2,a 3,a 4;(2)求数列{a n }的通项a n ;(3)设数列{b n }满足b 1=12,b n +1=b 2na 2n +1+b n .试证明:①1b n +1-1b n >-1(n +1)2;②b n <1.热点三 数列与解析几何的交会【例3】(2011·陕西高考,理19)如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x于点Q 1(0,1),曲线在Q 1点处的切线与x 轴交于点P 2.再从P 2作x 轴的垂线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1;P 2,Q 2;…;P n ,Q n ,记P k 点的坐标为(x k,0)(k =1,2,…,n ).(1)试求x k 与x k -1的关系(2≤k ≤n );(2)求|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |.规律方法对于数列与几何图形相结合的问题,通常利用几何知识,并结合图形,先得出关于数列相邻项a n 与a n +1之间的关系,然后根据这个递推关系,结合所求内容变形,得出通项公式或其他所求结论.变式训练3设C 1,C 2,…,C n ,…是坐标平面上的一列圆,它们的圆心都在x 轴的正半轴上,且都与直线y =33x 相切,对每一个正整数n ,圆C n 都与圆C n +1相互外切,以r n 表示C n的半径,已知{r n }为递增数列.(1)证明:{r n }为等比数列;(2)设r 1=1,求数列⎩⎨⎧⎭⎬⎫n r n 的前n 项和.热点四 数列在实际问题中的应用【例4】(2011·湖南高考,文20)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a nn,若A n 大于80万元,则M 继续使用,否则须在第n 年初对M 更新.证明:须在第9年初对M 更新.规律方法能够把实际问题转化成数列问题,并且能够明确是等差数列还是等比数列,确定首项、公差(比)、项数各是什么,能分清是某一项还是某些项的性质是解决问题的关键.(1)在数列应用题中,当增加(或减少)的量是一个固定量时,该模型为等差模型,增加(或减少)的量就是公差,则可把应用题抽象为数列中的等差数列问题,然后用等差数列的知识对模型解析,最后再返回到实际中去;(2)若后一个量与前一个量的比是一个固定的数,该模型为等比模型,这个固定的数就是公比,则可把应用题抽象为数列中的等比数列问题,然后用等比数列的知识对模型解析,最后再返回到实际中去;(3)若题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑a n +1,a n 之间的递推关系,或考虑S n +1,S n 之间的递推关系.特别提醒:解决实际问题时要注意n 的取值范围.变式训练4某城市2012年末汽车拥有量为30万辆,预计此后每年将上一年拥有量的6%报废,并且每年新增汽车数量相同.为保护城市环境,要求该城市汽车拥有量不超过60万辆.从2012年末起,n 年后汽车拥有量为b n +1万辆,若每年末的拥有量不同.(1)求证:{b n +1-b n }为等比数列;(2)每年新增汽车数量不能超过多少万辆? 思想渗透1.函数思想——函数思想解决数列常见的问题: (1)数列的单调性; (2)数列中求最值问题; (3)数列中的恒成立问题. 2.求解时注意的问题及方法:(1)数列是定义在N *或其子集上的特殊函数,自然与函数思想密不可分,因此树立函数意识是解决数列问题的最基本要求;(2)解题时要注意把数列的递推公式、数列的通项公式以及前n 项和公式看作函数的解析式,从而合理地利用函数性质和导数解决问题;(3)解决有关数列的通项公式、单调性、最值、恒成立等问题时要注意项数n 的取值范围. (2012·湖南长沙模拟,22)已知数列{a n }是各项均不为0的等差数列,公差为d ,S n 为其前n 项和,且满足a 2n =S 2n -1,n N *.数列{b n }满足b n =1a n ·a n +1,T n 为数列{b n }的前n 项和.(1)求a 1,d 和T n ;(2)若对任意的n N *,不等式λT n <n +8·(-1)n恒成立,求实数λ的取值范围;(3)是否存在正整数m ,n (1<m <n ),使得T 1,T m ,T n 成等比数列?若存在,求出所有m ,n 的值;若不存在,请说明理由.解:(1)(方法一)在a 2n =S 2n -1中,分别令n =1,n =2,得⎩⎪⎨⎪⎧a 21=S 1,a 22=S 3,即⎩⎪⎨⎪⎧a 21=a 1,(a 1+d )2=3a 1+3d ,解得a 1=1,d =2,∴a n =2n -1.∵b n =1a n a n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =12⎝⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=n 2n +1. (方法二)∵{a n }是等差数列,∴a 1+a 2n -12=a n ,∴S 2n -1=a 1+a 2n -12(2n -1)=(2n -1)a n .由a 2n =S 2n -1,得a 2n =(2n -1)a n .又∵a n ≠0,∴a n =2n -1,则a 1=1,d =2. (T n 求法同方法一)(2)①当n 为偶数时,要使不等式λT n <n +8·(-1)n恒成立,即需不等式λ<(n +8)(2n +1)n =2n +8n+17恒成立,∵2n +8n≥8,等号在n =2时取得,∴此时λ需满足λ<25.②当n 为奇数时,要使不等式λT n <n +8·(-1)n恒成立,即需不等式λ<(n -8)(2n +1)n=2n -8n-15恒成立,∵2n -8n随n 的增大而增大,∴n =1时,2n -8n取得最小值-6.∴此时λ需满足λ<-21.综合①②可得λ的取值范围是λ<-21.(3)T 1=13,T m =m 2m +1,T n =n2n +1.若T 1,T m ,T n 成等比数列,则⎝ ⎛⎭⎪⎫m 2m +12=13⎝ ⎛⎭⎪⎫n 2n +1,即m 24m 2+4m +1=n 6n +3. (方法一)由m 24m 2+4m +1=n6n +3,可得3n =-2m 2+4m +1m2>0, 即-2m 2+4m +1>0,∴1-62<m <1+62.又m N ,且m >1, ∴m =2,此时n =12.因此,当且仅当m =2,n =12时,数列{T n }中的T 1,T m ,T n 成等比数列.(方法二)∵n 6n +3=16+3n<16,故m24m 2+4m +1<16,即2m 2-4m -1<0,解得1-62<m <1+62(以下同方法一).1.已知数列{a n }的前n 项和S n =n +1n +2,则a 3=( ). A.120 B.124 C.128 D.1322.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad =( ). A .3 B .2 C .1 D .-2 3.设等比数列{a n }的前n 项和为S n ,若S 8S 4=3,则S 12S 8=( ). A .2B.73C.83D .3 4.在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n =( ).A .2n +1-2 B .3nC .2nD .3n-15.(2012·河北模拟,14)已知数列{a n }满足a n =2n -1+2n -1(n N *),则数列{a n }的前n 项和S n =__________.6.设f (x )是定义在R 上恒不为零的函数,对任意实数x ,y R ,都有f (x )f (y )=f (x +y ).若a 1=12,a n =f (n )(n N *),则数列{a n }的前n 项和S n 的取值范围是________.7.(2012·江西联考,19)已知数列{a n }满足a 1=2,a 2=8,a n +2=4a n +1-4a n . (1)证明:{a n +1-2a n }是等比数列;(2)设b n =a n -1n (n +1)(n ≥2),求:b 2+b 3+…+b n (n ≥2且n N *).8.(2012·皖北协作区第一次联考,理20)已知数列{a n },{b n },a 1=2,a n +1-a n =6n +2.若⎝ ⎛⎭⎪⎫a n n,b n 在y =x 2+mx 的图象上,{b n }的最小值为b 2.(1)求{a n }的通项公式; (2)求m 的取值范围.参考答案命题调研·明晰考向 真题试做1.B 解析:因为数列{a n }为等差数列,所以S 11=11(a 1+a 11)2,根据等差数列的性质,若p +q =m +n ,则a p +a q =a m +a n 得,a 1+a 11=a 4+a 8=16,所以S 11=11×162=88,故选B.2.A 解析:S 5=5(a 1+a 5)2=5(a 1+5)2=15,∴a 1=1.∴d =a 5-a 15-1=5-15-1=1.∴a n =1+(n -1)×1=n .∴1a n a n +1=1n (n +1).设⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,则T 100=11×2+12×3+…+1100×101=1-12+12-13+…+1100-1101=1-1101=100101.3.1 830 解析:∵a n +1+(-1)na n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60) =10+26+42+…+234 =15×(10+234)2=1 830.4.(1)证明:先证充分性,若c <0,由于x n +1=-x 2n +x n +c ≤x n +c <x n ,故{x n }是递减数列; 再证必要性,若{x n }是递减数列,则由x 2<x 1可得c <0.(2)解:假设{x n }是递增数列.由x 1=0,得x 2=c ,x 3=-c 2+2c . 由x 1<x 2<x 3,得0<c <1.由x n <x n +1=-x 2n +x n +c 知,对任意n ≥1都有x n <c ,①注意到c -x n +1=x 2n -x n -c +c =(1-c -x n )(c -x n ).② 由①式和②式可得1-c -x n >0, 即x n <1-c .由②式和x n ≥0还可得,对任意n ≥1都有c -x n +1≤(1-c )(c -x n ).③反复运用③式,得c -x n ≤(1-c )n -1(c -x 1)<(1-c )n -1.x n <1-c 和c -x n <(1-c )n -1两式相加,知2c -1<(1-c )n -1对任意n ≥1成立.根据指数函数y =(1-c )x的性质,得2c -1≤0,c ≤14,故0<c ≤14.若0<c ≤14,要证数列{x n }为递增数列,即x n +1-x n =-x 2n +c >0.即证x 0<c 对任意n ≥1成立.下面用数学归纳法证明当0<c ≤14时,x n <c 对任意n ≥1成立.当n =1时,x 1=0<c ≤12,结论成立.假设当n =k (n ∈N *)时结论成立,即x k <c .因为函数f (x )=-x 2+x +c 在区间⎝ ⎛⎦⎥⎤-∞,12内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立. 故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.综上可知,使得数列{x n }单调递增的c 的取值范围是⎝ ⎛⎦⎥⎤0,14. 5.(1)解:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d .由条件,得方程组⎩⎪⎨⎪⎧2+3d +2q 3=27,8+6d -2q 3=10.解得⎩⎪⎨⎪⎧d =3,q =2.所以a n =3n -1,b n =2n,n ∈N *. (2)证明:(方法一) 由(1)得T n =2a n +22a n -1+23a n -2+…+2n a 1,①2T n =22a n +23a n -1+…+2n a 2+2n +1a 1.② 由②-①,得T n =-2(3n -1)+3×22+3×23+…+3×2n +2n +2=12(1-2n -1)1-2+2n +2-6n +2=10×2n -6n -10.而-2a n +10b n -12=-2(3n -1)+10×2n -12=10×2n-6n -10,故 T n +12=-2a n +10b n ,n ∈N *. (方法二:数学归纳法)①当n =1时,T 1+12=a 1b 1+12=16,-2a 1+10b 1=16,故等式成立; ②假设当n =k 时等式成立,即T k +12=-2a k +10b k ,则当n =k +1时有: T k +1=a k +1b 1+a k b 2+a k -1b 3+…+a 1b k +1 =a k +1b 1+q (a k b 1+a k -1b 2+…+a 1b k ) =a k +1b 1+qT k=a k +1b 1+q (-2a k +10b k -12) =2a k +1-4(a k +1-3)+10b k +1-24 =-2a k +1+10b k +1-12,即T k +1+12=-2a k +1+10b k +1, 因此n =k +1时等式也成立.由①和②,可知对任意n ∈N *,T n +12=-2a n +10b n 成立. 精要例析·聚焦热点 热点例析【例1】 解:(1)由题意知⎩⎪⎨⎪⎧a 2a 9=232,a 4+a 7=a 2+a 9=37,解得⎩⎪⎨⎪⎧a 2=8,a 9=29,或⎩⎪⎨⎪⎧a 2=29,a 9=8(由于a n +1>a n ,舍去).设公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =8,a 9=a 1+8d =29,解得⎩⎪⎨⎪⎧a 1=5,d =3.∴数列{a n }的通项公式为a n =3n +2(n ∈N *).(2)由题意得b n =a 2n -1+a 2n -1+1+a 2n -1+2+…+a 2n -1+2n -1-1=(3·2n -1+2)+(3·2n -1+5)+(3·2n -1+8)+…+[3·2n -1+(3·2n -1-1)]=2n -1×3·2n -1+[2+5+8+…+(3·2n -1-4)+(3·2n -1-1)].而2+5+8+…+(3·2n -1-4)+(3·2n -1-1)是首项为2,公差为3的等差数列的前2n -1项的和,∴2+5+8+…+(3·2n -1-4)+(3·2n -1-1)=2n -1×2+2n -1(2n -1-1)2×3=3·22n -3+14·2n,∴b n =3·22n -2+3·22n -3+14·2n =98·22n+14·2n . ∴b n -14·2n =98·22n.∴T n =98(4+16+64+ (22))=98×4(1-4n)1-4=32(4n -1).【变式训练1】 解:(1)由题a 3=16,又a 3-a 2=8,则a 2=8,∴q =2.∴a n =2n +1.(2)b n =log 42n +1=n +12,∴S n =b 1+b 2+…+b n =n (n +3)4.∴1S n =4n (n +3)=43⎝ ⎛⎭⎪⎫1n -1n +3, ∴1S 1+1S 2+1S 3+…+1S n =43⎝ ⎛⎭⎪⎫11-14+12-15+13-16+…+1n -1n +3=43⎝ ⎛⎭⎪⎫1+12+13-1n +1-1n +2-1n +3<229.∴正整数k 可取最小值3.【例2】 解:(1)易知a 2=2,a 3=3,a 4=4,猜想a n =n (n ∈N *). 下面用数学归纳法证明之: 当n =1时等式显然成立,假设n =k 时等式成立,即a k =k ,所以a k +1=(k +2)a k 2-ka k +k +1a k 2+1=(k +2)k 2-k 2+k +1k 2+1=k +1.即n =k +1时等式也成立,故a n =n (n ∈N *).(2)证明:因为a n +1-(n +1)=(n +2)a n 2-na n +n +1a n 2+1-(n +1)=a n 2-na n a n 2+1=a n a n 2+1(a n -n ), 所以|a n +1-(n +1)|=⎪⎪⎪⎪⎪⎪a n a n 2+1·|a n-n |(n ∈N *).①当a n ≠0时,⎪⎪⎪⎪⎪⎪a n a n 2+1=⎪⎪⎪⎪⎪⎪⎪⎪1a n +1a n =1|a n |+1|a n|≤12;②当a n =0时,⎪⎪⎪⎪⎪⎪a n a n 2+1=0≤12, 所以|a n +1-(n +1)|≤12|a n -n |(n ∈N *).而|a 1-1|≤12,所以|a n -n |≤12|a n -1-(n -1)|≤⎝ ⎛⎭⎪⎫122|a n -2-(n -2)|≤…≤⎝ ⎛⎭⎪⎫12n -1|a 1-1|≤⎝ ⎛⎭⎪⎫12n (n ∈N *),所以⎪⎪⎪⎪⎪⎪S n -n (n +1)2=|(a 1-1)+(a 2-2)+(a 3-3)+…+(a n -n )| ≤|a 1-1|+|a 2-2|+|a 3-3|+…+|a n -n |≤⎝ ⎛⎭⎪⎫121+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n =1-⎝ ⎛⎭⎪⎫12n<1.故⎪⎪⎪⎪⎪⎪S n -n (n +1)2<1(n ∈N *). 【变式训练2】 解:(1)a 2=2,a 3=3,a 4=4.(2)na n +1=2(a 1+a 2+…+a n ),则可得(n -1)a n =2(a 1+a 2+…+a n -1)(n ≥2), 两式相减,得na n +1-(n -1)a n =2a n ,即na n +1=(n +1)a n ,a n +1a n=n +1n(n ≥2),所以a n =a 1·a 2a 1·a 3a 2·…·a n a n -1=1·21·32·…·n n -1=n (n ≥3),易得a n =n (n ∈N *). (3)证明:①由(2)得b 1=12,b n +1=b 2n(n +1)2+b n >b n >b n -1>…>b 1>0,所以数列{b n }是正项单调递增数列,当n ≥1时,b n +1=b 2n(n +1)2+b n<1(n +1)2b n b n +1+b n , 所以1b n +1-1b n >-1(n +1)2.②当n =1时,b 1=12<1显然成立.当n ≥2时,1b n =⎝ ⎛⎭⎪⎫1b n -1b n -1+…+⎝ ⎛⎭⎪⎫1b 2-1b 1+1b 1>-⎣⎢⎡⎦⎥⎤1n 2+1(n -1)2+…+122+2>-⎣⎢⎡⎦⎥⎤1n (n -1)+1(n -1)(n -2)+…+12×1+2=-⎝ ⎛⎭⎪⎫1n -1-1n +1n -2-1n -1+…+11-12+2=-⎝ ⎛⎭⎪⎫1-1n +2=1+1n =n +1n . 所以b n <nn +1<1.综上可知,b n <1成立.【例3】 解:(1)设点P k -1的坐标是(x k -1,0),∵y =e x,∴y ′=e x.∴Q k -1(x k -1,1k x e -e x k -1),在点Q k -1(x k -1,1k x e -)处的切线方程是y -1k x e -=1k xe -(x -x k -1), 令y =0,则x k =x k -1-1(2≤k ≤n ). (2)∵x 1=0,x k -x k -1=-1, ∴x k =-(k -1).∴|P k Q k |=e x k =e -(k -1),于是有 |P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=1+e -1+e -2+…+e-(n -1)=1-e -n 1-e -1=e -e 1-ne -1, 即|P 1Q 1|+|P 2Q 2|+|P 3Q 3|+…+|P n Q n |=e -e 1-ne -1.【变式训练3】 (1)证明:将直线y =33x 的倾斜角记为θ, 则有tan θ=33,sin θ=12. 设C n 的圆心为(λn,0)(λn >0),则由题意得知r n λn =12,得λn =2r n ;同理λn +1=2r n +1,从而λn +1=λn +r n +r n +1=2r n +1,将λn =2r n 代入,解得r n +1=3r n , 故{r n }为公比q =3的等比数列. (2)解:由于r 1=1,q =3,故r n =3n -1,从而n r n=n ·31-n.记S n =1r 1+2r 2+…+n r n,则有S n =1+2·3-1+3·3-2+…+n ·31-n,①则S n3=1·3-1+2·3-2+…+(n -1)·31-n+n ·3-n,② 由①-②,得 2S n 3=1+3-1+3-2+…+31-n -n ·3-n=1-3-n23-n ·3-n =32-⎝⎛⎭⎪⎫n +32·3-n ,∴S n =94-12⎝ ⎛⎭⎪⎫n +32·31-n=9-(2n +3)·31-n4.【例4】 (1)解:当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列. a n =120-10(n -1)=130-10n ;当n ≥6时,数列{a n }是以a 6为首项,公比为34的等比数列,又a 6=70,所以a n =70×⎝ ⎛⎭⎪⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为 a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×⎝ ⎛⎭⎪⎫34n -6,n ≥7.(2)证明:设S n 表示数列{a n }的前n 项和,由等差及等比数列的求和公式得 当1≤n ≤6时,S n =120n -5n (n -1),A n =120-5(n -1)=125-5n ; 当n ≥7时,S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫34n -6 =780-210×⎝ ⎛⎭⎪⎫34n -6,A n =780-210×⎝ ⎛⎭⎪⎫34n -6n.因为{a n }是递减数列,所以{A n }是递减数列.又A 8=780-210×⎝ ⎛⎭⎪⎫348-68=824764>80, A 9=780-210×⎝ ⎛⎭⎪⎫349-69=767996<80, 所以须在第9年初对M 更新.【变式训练4】 (1)证明:设2012年末汽车拥有量为b 1万辆,每年新增汽车数量为x 万辆,则b 1=30,b 2=0.94b 1+x ,可得b n +1=0.94b n +x .又b n =0.94b n -1+x ,∴b n +1-b n =0.94·(b n -b n -1).∵每年末的拥有量不同,∴{b n +1-b n }是以b 2-b 1=x -1.8为首项,且公比q =0.94的等比数列.(2)解:由(1)得b n +1-b n =0.94n ·(x -1.8),于是b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=30+0.94·(x -1.8)+0.942·(x -1.8)+…+0.94n -1·(x -1.8)=30+1-0.94n -10.06·(x -1.8)·0.94, 当x -1.8≤0,即x ≤1.8时,{b n }为递减数列,故有b n +1≤b n ≤…≤b 1=30;当x -1.8>0,即x >1.8时,b n <30+(x -1.8)0.06×0.94≤60,解得x ≤3.7. ∴每年新增汽车数量不能超过3.7万辆.创新模拟·预测演练1.A 解析:a 3=S 3-S 2=3+13+2-2+12+2=120. 2.B 解析:∵a ,b ,c ,d 成等比数列,∴ad =bc .又∵y =x 2-2x +3的顶点是(b ,c ),∴b =--22=1,c =4×1×3-(-2)24=2. ∴ad =bc =1×2=2.3.B 解析:S 8S 4=S 4(1+q 4)S 4=3,解得q 4=2,故S 12S 8=S 4(1+q 4+q 8)S 4(1+q 4)=1+2+41+2=73. 4.C 解析:因为数列{a n }为等比数列,则a n =2q n -1(q ≠0). 因为数列{a n +1}也是等比数列, 所以(an +1+1)2=(a n +1)(a n +2+1) a 2n +1+2a n +1=a n a n +2+a n +a n +2a n +a n +2=2a n +1a n (1+q 2-2q )=0q =1,即a n =2,所以S n =2n ,故选择C.5.2n +n 2-1 解析:S n =(1+2+22+…+2n -1)+(1+2n -1)·n 2=1-2n 1-2+n 2=2n +n 2-1. 6.⎣⎢⎡⎭⎪⎫12,1 解析:∵f (x )是定义在R 上恒不为零的函数,对任意实数x ,y ∈R ,都有f (x )f (y )=f (x +y ),a 1=12,a n =f (n )(n ∈N *), ∴a n +1=f (n +1)=f (n )f (1)=12a n (n ∈N *).∴S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n . 则数列{a n }的前n 项和S n 的取值范围是⎣⎢⎡⎭⎪⎫12,1. 7.(1)证明:由a n +2=4a n +1-4a n ,得a n +2-2a n +1=2(a n +1-2a n ). 又a 2-2a 1=4,∴{a n +1-2a n }是以4为首项,2为公比的等比数列.(2)解:由(1)可得a n +1-2a n =2n +1,a n +12n +1-a n2n =1, ∴⎩⎨⎧⎭⎬⎫a n 2n 是以1为首项,1为公差的等差数列,a n =n ·2n (n ≥1,n ∈N *), ∴b n =a n -1n (n +1)=(n -1)2n -1n (n +1)=n ·2n -1-2n -1n (n +1)=2n ·2n -n ·2n -1-2n -1n (n +1)=2n n +1-2n -1n(n ≥2), ∴b 2+b 3+…+b n =⎝ ⎛⎭⎪⎫223-212+⎝ ⎛⎭⎪⎫234-223+…+⎝ ⎛⎭⎪⎫2n n +1-2n -1n =2n n +1-1(n ≥2且n ∈N *). 8.解:(1)∵a n +1-a n =6n +2,∴当n ≥2时,a n -a n -1=6n -4,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(6n -4)+(6n -10)+…+8+a 1=(n -1)[8+(6n -4)]2+a 1 =3n 2-3n +2n -2+2=3n 2-n .又a 1也满足a n =3n 2-n ,∴a n =3n 2-n . (2)∵点⎝ ⎛⎭⎪⎫a n n ,b n 在y =x 2+mx 的图象上,∴b n =(3n -1)2+m (3n -1).∴b 1=4+2m ,b 2=25+5m ,b 3=64+8m ,b 4=121+11m . 又{b n }的最小值为b 2, ∴4225564825512111255m m m m m m ≥⎧⎪≥⎨⎪≥⎩++,++,++,∴-13≤m ≤-7.∵b n +1-b n =(3n +2)2+m (3n +2)-(3n -1)2-m (3n -1)=3(6n +1+m ),当n ≥4时,6n +1≥25>13,∴当n ≥4,-13≤m ≤-7时,b n +1-b n >0,即{b n }是递增数列.∴m 的取值范围为[-13,-7].。
专题四 数列 第二讲 数列求和及综合应用适考素能特训 文一、选择题1.[2016·重庆测试]在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =( )A .n (3n -1) B.n n +32 C .n (n +1) D.n 3n +12答案 C解析 依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n 2+2n2=n (n +1),选C.2.[2016·郑州质检]正项等比数列{a n }中的a 1、a 4031是函数f (x )=13x 3-4x 2+6x -3的极值点,则log6a 2016=( )A .1B .2 C. 2 D .-1答案 A解析 因为f ′(x )=x 2-8x +6,且a 1、a 4031是方程x 2-8x +6=0的两根,所以a 1·a 4031=a 22016=6,即a 2016=6,所以log6a 2016=1,故选A.3.[2016·太原一模]已知数列{a n }的通项公式为a n =(-1)n(2n -1)·cos n π2+1(n ∈N *),其前n 项和为S n ,则S 60=( )A .-30B .-60C .90D .120答案 D解析 由题意可得,当n =4k -3(k ∈N *)时,a n =a 4k -3=1;当n =4k -2(k ∈N *)时,a n =a 4k -2=6-8k ;当n =4k -1(k ∈N *)时,a n =a 4k -1=1;当n =4k (k ∈N *)时,a n =a 4k =8k .∴a 4k -3+a 4k -2+a 4k -1+a 4k =8,∴S 60=8×15=120.故选D.4.某年“十一”期间,北京十家重点公园举行免费游园活动,北海公园免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来……按照这种规律进行下去,到上午11时30分公园内的人数是( )A .211-47 B .212-57 C .213-68 D .214-80 答案 B解析 由题意,可知从早晨6时30分开始,接下来的每个30分钟内进入的人数构成以4为首项,2为公比的等比数列,出来的人数构成以1为首项,1为公差的等差数列,记第n个30分钟内进入公园的人数为a n ,第n 个30分钟内出来的人数为b n 则a n =4×2n -1,b n =n ,则上午11时30分公园内的人数为S =2+41-2101-2-101+102=212-57. 5.已知曲线C :y =1x(x >0)及两点A 1(x 1,0)和A 2(x 2,0),其中x 2>x 1>0.过A 1,A 2分别作x轴的垂线,交曲线C 于B 1,B 2两点,直线B 1B 2与x 轴交于点A 3(x 3,0),那么( )A .x 1,x 32,x 2成等差数列B .x 1,x 32,x 2成等比数列C .x 1,x 3,x 2成等差数列D .x 1,x 3,x 2成等比数列答案 A解析 由题意,得B 1,B 2两点的坐标分别为⎝⎛⎭⎪⎫x 1,1x 1,⎝⎛⎭⎪⎫x 2,1x2. 所以直线B 1B 2的方程为y =-1x 1x 2(x -x 1)+1x 1,令y =0,得x =x 1+x 2, 所以x 3=x 1+x 2,因此,x 1,x 32,x 2成等差数列.6.[2016·江西南昌模拟]设无穷数列{a n },如果存在常数A ,对于任意给定的正数ε(无论多小),总存在正整数N ,使得n >N 时,恒有|a n -A |<ε成立,就称数列{a n }的极限为A .则四个无穷数列:①{(-1)n×2};②⎩⎨⎧⎭⎬⎫11×3+13×5+15×7+…+12n -12n +1; ③⎩⎨⎧⎭⎬⎫1+12+122+123+…+12n -1;④{1×2+2×22+3×23+…+n ×2n},其中极限为2的共有( ) A .4个 B .3个 C .2个 D .1个 答案 D解析 对于①,|a n -2|=|(-1)n×2-2|=2×|(-1)n-1|,当n 是偶数时,|a n -2|=0;当n 是奇数时,|a n -2|=4,所以数列{(-1)n×2}没有极限,所以2不是数列{(-1)n×2}的极限.对于②,|a n -2| =⎪⎪⎪⎪⎪⎪11×3+13×5+15×7+…+12n -12n +1-2=12⎪⎪⎪⎝⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎪⎪⎪⎝ ⎛⎭⎪⎫12n -1-12n +1-4=32+14n +2>1,所以对于正数ε0=1,不存在正整数N ,使得n >N 时,恒有|a n -2|<ε0成立,即2不是数列⎩⎨⎧⎭⎬⎫11×3+13×5+15×7+…+12n -12n +1的极限. 对于③,|a n -2|=⎪⎪⎪⎪⎪⎪1+12+122+123+…+12n -1-2=⎪⎪⎪⎪⎪⎪1×⎝ ⎛⎭⎪⎫1-12n1-12-2=22n,令22n<ε,得n >1-log 2ε,所以对于任意给定的正数ε(无论多小),总存在正整数N ,使得n >N 时,恒有|a n -2|<ε成立,所以2是数列⎩⎨⎧⎭⎬⎫1+12+122+123+…+12n -1 的极限.对于④,当n ≥2时,|a n -2|=|1×2+2×22+3×23+…+n ×2n -2|=2×22+3×23+…+n ×2n>1,所以对于正数ε0=1,不存在正整数N ,使得n >N 时,恒有|a n -2|<ε0成立,即2不是数列{1×2+2×22+3×23+…+n ×2n}的极限.综上所述,极限为2的数列共有1个. 二、填空题7.[2016·陕西质检二]已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n ,若a 1=2,则数列{a n }的前n 项和为________.答案 3n-1解析 ∵a 2n +1-6a 2n =a n +1a n ,∴(a n +1-3a n )(a n +1+2a n )=0,∵a n >0,∴a n +1=3a n ,∴{a n }为等比数列,且公比为3,∴S n =3n-1.8.[2016·唐山统考]S n 为等比数列{a n }的前n 项和,若2S 4=S 2+2,则S 6的最小值为________.答案3解析 由题意得2(a 1+a 1q +a 1q 2+a 1q 3)=a 1+a 1q +2,整理,得(a 1+a 1q )(1+2q 2)=2,即S 2·(1+2q 2)=2.因为1+2q 2>0,所以S 2>0.又由2S 4=S 2+2,得S 4=12S 2+1.由等比数列的性质,得S 2,S 4-S 2,S 6-S 4成等比数列,所以(S 4-S 2)2=S 2(S 6-S 4),所以S 6=S 4-S 22S 2+S 4=⎝ ⎛⎭⎪⎫1-12S 22S 2+12S 2+1=34S 2+1S 2≥234S 2·1S 2=3,当且仅当34S 2=1S 2,即S 2=233时等号成立,所以S 6的最小值为 3.9.[2016·武昌调研]设S n 为数列{a n }的前n 项和,S n +12n =(-1)n a n (n ∈N *),则数列{S n }的前9项和为________.答案 -3411024解析 因为S n +12n =(-1)n a n ,所以S n -1+12n -1=(-1)n -1a n -1(n ≥2),两式相减得S n -S n -1+12n -12n -1=(-1)n a n -(-1)n -1a n -1,即a n -12n =(-1)n a n +(-1)na n -1(n ≥2),当n 为偶数时,a n -12n =a n +a n -1,即a n -1=-12n ,此时n -1为奇数,所以若n 为奇数,则a n =-12n +1;当n 为奇数时,a n -12n =-a n -a n -1,即2a n -12n =-a n -1,所以a n -1=12n -1,此时n -1为偶数,所以若n 为偶数,则a n =12n .所以数列{a n}的通项公式为a n=⎩⎪⎨⎪⎧-12n +1,n 为奇数12n,n 为偶数所以数列{S n }的前9项和为S 1+S 2+S 3+…+S 9=9a 1+8a 2+7a 3+6a 4+…+3a 7+2a 8+a 9=(9a 1+8a 2)+(7a 3+6a 4)+…+(3a 7+2a 8)+a 9=-122-124-126-128-1210=-122×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1451-14=-3411024. 三、解答题10.[2016·合肥质检]在数列{a n }中,a 1=12,a n +1=n +12n ·a n ,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 为等比数列;(2)求数列{a n }的前n 项和S n . 解 (1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn, ∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫a n n 是首项为12,公比为12的等比数列,∴a n n =⎝ ⎛⎭⎪⎫12n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②得12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.11.[2015·安徽高考]设n ∈N *,x n 是曲线y =x 2n +2+1在点(1,2)处的切线与x 轴交点的横坐标.(1)求数列{x n }的通项公式; (2)记T n =x 21x 23…x 22n -1,证明:T n ≥14n .解 (1)y ′=(x 2n +2+1)′=(2n +2)x2n +1,曲线y =x2n +2+1在点(1,2)处的切线斜率为2n +2,从而切线方程为y -2=(2n +2)(x -1).令y =0,解得切线与x 轴交点的横坐标x n =1-1n +1=n n +1. (2)证明:由题设和(1)中的计算结果知T n =x 21x 23…x 22n -1=⎝ ⎛⎭⎪⎫122⎝ ⎛⎭⎪⎫342…⎝ ⎛⎭⎪⎫2n -12n 2. 当n =1时,T 1=14.当n ≥2时,因为x22n -1=⎝ ⎛⎭⎪⎫2n -12n 2=2n -122n 2>2n -12-12n 2=2n -22n =n -1n,所以T n >⎝ ⎛⎭⎪⎫122×12×23×…×n -1n =14n .综上可得对任意的n ∈N *,均有T n ≥14n.12.[2016·河南开封质检]已知数列{a n }满足a 1=1,a n +1=1-14a n ,其中n ∈N *.(1)设b n =22a n -1,求证:数列{b n }是等差数列,并求出{a n }的通项公式;(2)设c n =4a n n +1,数列{c n c n +2}的前n 项和为T n ,是否存在正整数m ,使得T n <1c m c m +1对于n ∈N *恒成立?若存在,求出m 的最小值;若不存在,请说明理由.解 (1)∵b n +1-b n =22a n +1-1-22a n -1=22⎝ ⎛⎭⎪⎫1-14a n -1-22a n -1 =4a n 2a n -1-22a n -1=2(常数), ∴数列{b n }是等差数列. ∵a 1=1,∴b 1=2,因此b n =2+(n -1)×2=2n , 由b n =22a n -1得a n =n +12n.(2)由c n =4a n n +1,a n =n +12n 得c n =2n, ∴c n c n +2=4n n +2=2⎝ ⎛⎭⎪⎫1n -1n +2,∴T n =2⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=2⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2<3, 依题意要使T n <1c m c m +1对于n ∈N *恒成立,只需1c m c m +1≥3,即m m +14≥3,解得m ≥3或m ≤-4,又m 为正整数,所以m 的最小值为3.典题例证[2016·山东高考]已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =a n +1n +1b n +2n.求数列{c n }的前n 项和T n .审题过程切入点 依据a n 与S n 的关系可求a n ,进而求出b n 的通项. 关注点 先化简数列c n ,然后依据其结构特征采取错位相减求和.a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11, 所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3. 所以b n =3n +1. (2)由(1)知c n =6n +6n +13n +3n=3(n +1)·2n +1.又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2],两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+41-2n1-2-n +1×2n +2=-3n ·2n +2,所以T n =3n ·2n +2. 模型归纳求数列的通项公式及前n 项和的模型示意图如下:。