酶工程复习
- 格式:ppt
- 大小:1.14 MB
- 文档页数:37
1。
酶生物合成的模式有哪些?哪一种模式较为适合生产的需要?对于其他的合成模式,应如何调节发酵的条件以使其更为趋近于最佳的模式?酶生物合成的模式·同步合成型·延续合成型·中期合成型·滞后合成型概念:酶的合成与细胞生长同步进行.当细胞进入对数生长期,酶大量产生,细胞生长进入稳定期后,酶的合成随之停止.特点:属于这种类型的酶,其生物合成可以诱导,但不受分解代谢物阻遏和产物阻遏作用。
概念:酶的合成伴随着细胞的生长而开始,但在细胞生长进入平衡之后,酶还可以延续合成较长的一段时间.特点:这种类型的酶可受诱导但不受分解代谢物阻遏和产物阻遏,其对应的mRNA是相当稳定的.概念:酶的合成在细胞生长一段时间以后开始,而在细胞进入平衡期后,酶的合成也随着停止。
特点:酶的合成受到反馈阻遏,而且其所对应的mRNA 是不稳定的.概念:只有当细胞生长进入平衡期后,酶才开始合成并大量积累。
特点:酶的合成受到分解代谢物阻遏作用。
在酶工程生产中为了提高酶的生产率,延长酶的发酵生产周期,酶最理想的生物合成模式应为部分生长偶联型(延续合成型),因为这类酶在发酵过程中没有明显的生长期和产酶区的区别,随细胞生长即有酶的产生,直到细胞生长进入平衡期之后酶还可以合成。
对于其他型的酶,要提高酶产率,可以再细胞选育上,工艺条件等方面加以条件控制。
对于同步合成型的酶,可以采用适当的生产工艺,如降低发酵温度以尽量提高其对应的mRNA的稳定性;对于滞后合成型的酶,在发酵过程中应设法尽量减少甚至借出分解代谢物阻遏,使酶的合成提早开始,控制葡萄糖等易利用碳源,添加一定量的cAMP;对于中期合成型的酶,则要在提高mRNA稳定性和解除阻遏两方面进行.控制末端产物浓度,添加末端产物类似物2。
试以基因调节控制理论说明酶生物合成的分解代谢物阻遏作用、诱导作用及反馈阻遏作用的原理。
-—-操纵子学说是指容易利用的碳源阻遏某些酶(主要是诱导酶)生物合成的现象是指加进某种物质,使酶的生物合成开始或加速进行的过程是指酶催化作用的产物或代谢途径的末端产物使该酶的合成受阻的过程是指在放射免疫测定的基础上发展起来的一种分析方法,它是将酶作为标记物质,使之和抗原(或抗体)结合形成酶与抗原(或抗体)复合物,然后再根据待测抗体(或抗原)与复合物专一且定量的结合关系,通过测定与待测抗体(或抗原)结合的酶的活力,从而计算出待测抗体(或抗原)的量。
酶工程复习资料名词解释1、酶反应器:用于酶进行催化反应的容器和附属设备2、pH记忆:3、产物阻遏作用:又称酶生物合成的反馈阻遏作用,是指酶催化反应的产物或代谢途径末端的产物使该酶的生物合成受到阻遏现象。
4.1酶的延续合成型:酶的生物合成在细胞的生长阶段开始,在细胞生长进入平衡期后,酶还可以延续合成一段时间的生物合成模式。
4.2同步合成型:是指酶的生物合成与细菌生长同步进行的一种酶生物合成模式。
4.3中期合成型:酶在细胞生长一段时间后才开始合成,细胞进入生长平衡期后,酶的生物合成也随之停止。
4.4滞后合成型:酶是在细胞进入生长平衡期后才开始生物合成并大量积累,5、固定化细胞——固定在载体上,并在一定空间范围内进行生命活动的细胞。
6、电场膜分离——是在半透膜的两侧分别装上正、负电极。
在电场作用下,小分子的带电物质或离子向着与其本身所带电荷相反的电极移动,透过半透膜,而达到分离的目的。
7、催化周期:酶进行一次催化所需的时间。
8、固定化酶:固定在载体上并在一定空间范围内进行催化反应的酶称为固定化酶。
9、抗体酶:抗体酶又称为催化性抗体,是一类具有催化功能的抗体10、立体异构专一性:当酶作用的底物含有不对称碳原子时,酶只能作用于异构体的一种,这种绝对专一性称为立体异构专一性。
11、微滤:又称为孔过滤,微滤介质截留的物质颗粒直径为0.2-2um,主要用于细菌、灰尘等光学显微镜可看到的颗粒物质的分离。
12、酶的比活力:是一个纯度指标,指特定条件下,单位质量的蛋白质或RNA所具有的酶活。
13、膜反应器:是将酶的催化反应和半透膜的分离作用组合在一起的反应器。
14、酶电极:是由固定化酶与各种电极密切结合的传感装置。
15、氨基酸置换修饰:将酶分子上的某一个氨基酸置换成另一个氨基酸的修饰方法。
16、盐析沉淀法:是利用不同蛋白质在不同盐溶度条件下溶解度不同的特性,通过在酶液中添加一定浓度的中性盐,使酶或杂质从溶液中析出沉淀,从而使酶与杂质分离的过程。
一、判断题(正确“√”,错误“×”)1、两大类酶的分类和命名总原则相同。
(√)2、所有植物细胞的生长和次生代谢产物的生产要求一定的光照。
(×)3、只要有诱导物存在,就能诱导酶的合成。
(×)4、分解代谢物阻遏作用是由葡萄糖等容易利用的碳源直接引起的。
(×)5、所有迅速代谢能源都能阻抑较慢代谢能源所需酶的合成。
(√)6、培养基只是用于细胞培养的各种营养物质的混合物。
(×)7、培养基中既为细胞提供营养,又为细胞提供营养能量的物质是碳源。
(√)8、酶的提取与分离纯化的依据是酶与杂质性质的不同进行的。
(√)9、在固定化细胞的培养系统中,细胞只包括固定在载体上的细胞。
(×)10、固定化原生质体与固定化细胞一样可以进行生长繁殖和新陈代谢。
(×)11、酶生物合成的模式有四种,每一种都是固定的不变的。
(×)12、凝胶层析中分配系数Ka不可能大于1。
(×)13、在任何情况下,净电荷为零的颗粒在电场都不移动。
(×)14、用热处理法进行酶的固定化时没有用到载体。
(×)15、每一种酶的固定化方法只能单独使用。
(×)16、酶的应用形式不同,其所使用的反应器也不同。
(√)17、采用共价结合法制备的固定化酶具有很好的稳定性。
(√)二、填空题表示固定化酶应用价值大小的指标是(相对酶活力)。
(结构)基因上的遗传信息可以转录成mRNA上的遗传密码。
分解代谢物阻碍作用的关键性控制因子是(cAMP)。
4、测酶活力时是测反应液中(底物或产物)的变化量。
5、酶的提取与分离纯化的内容有(细胞破碎、酶的提取、酶的分离纯化)。
6、1926年,萨姆纳首先制得(脲)酶结晶,并指出酶的本质是蛋白质。
根据所使用的细胞种类不同,生物合成法分为(微生物发酵产酶,动植物细胞产酶)。
影响适应型酶生物合最主要的因素是(酶对所对应的mRNA的稳定性以及培养基中的阻遏物的存在)。
1、酶的催化作用特点:具有专一性,催化效率高和反应条件温和等显著特点。
2、酶研究的两个方向:理论研究方向和应用研究方向。
理论研究方向:酶的理化性质、催化性质、催化机制等。
应用研究:促进了酶工程的形成。
3、酶工程的定义:利用酶或者微生物细胞,动植物细胞,细胞器,借助于酶的催化作用,通过工程学手段生产产品或提供社会服务的科学体系。
4、酶工程的应用范围:①对生物资源中天然酶的开发和生产②自然酶的分离纯化与鉴定技术③酶的固定化技术④酶反应器的研制与应用⑤与其它生物技术领域的交叉与渗透。
5、酶工程的组成:①酶的发酵生产②酶的分离纯化③酶分子修饰④酶和细胞固定化⑤酶反应器和酶的应用等方面。
6、酶工程的主要任务:通过预先设计,经过人工操作控制而获得大量所需的酶,并通过各种方法使酶发挥其最大的催化功能。
8、酶的分类:第1类,氧化还原酶;第2类,转移酶;第3类,水解酶;第4类,裂合酶;第5类,异构酶;第6类,合成酶;第7类,核酸类酶。
9、酶的作用机制:酶的催化机理可能与几种因素有关:酶与底物结合时,两者构象的改变使它们互相契合,底物分子适当地向酶分子活性中心靠近,并且趋向于酶的催化部位,使活性中心这一局部地区额底物浓度大大增高,并使底物分子发生扭曲,易于断裂。
在另一些情况中,可能还有一些其他的因素使酶反应速度稍有一些提高,如酶与底物形成有一定稳定度的过渡态中间物——共价的ES中间物,这种ES中间物又可迅速地分解成产物,又如酶活性中心的质子供体和质子受体对底物分子进行了广义的酸碱催化等。
10、酶的催化能力:酶仅能改变化学反应的速度,并不不能改变化学反应的平衡点。
酶本身在反应前后也不发生变化例如肽键遇水自发地进行水解的反应极为缓慢,当有蛋白酶存在时,这个反应则进行得十分迅速,可降低反应的活化能。
在一个化学反应体系中,反应开始时,反应物(S)分子的平均能量水平较低为“初态”,在反应的任何一瞬间反应物中都有一部分分子具有了比初态更高一些的能量,高出的这一部分能量称为活化能,使这些分子进入“过渡态”,这时就能形成或打破一些化学键,形成新的物质——产物(P)。
第一章绪论1.何谓酶工程,试述其主要内容和任务。
酶的生产、改性与应用的技术过程称为酶工程。
酶工程的主要内容包括:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等。
酶工程的主要任务是经过预先设计,通过人工操作获得人们所需的酶,并通过各种方法使酶的催化特性得以改进,充分发挥其催化功能。
2.酶有哪些显著的催化特性?酶是生物催化剂,与非酶催化剂相比,具有专一性强、催化效率高和作用条件温和等显著特点。
3.简述影响酶催化作用的主要因素。
酶的催化作用受到底物浓度、酶浓度、温度、pH、激活剂浓度、抑制剂浓度等诸多因素的影响。
5.简述酶活力单位的概念和酶活力的测定方法。
酶活力单位:在特定条件下(温度可采用25℃,pH等条件均采用最适条件),每1min催化1μmol的底物转化为产物的酶量定义为1个酶活力单位,这个单位称为国际单位(IU)。
在特定条件下,每秒催化1mol底物转化为产物的酶量定义为1卡特(kat)酶活力的测定方法:振荡测定法,酶柱测定法,连续测定法,固定化酶的比活力测定,酶结合效率与酶活力回收率的测定,相对酶活力的测定。
或者测定方法:化学测定法、光学测定法、气体测定法其它.酶的发展历史:4000多年前的夏禹时代——酿酒技术。
3000多年前的周朝——制造饴糖、食酱等食品。
1833年——佩恩和帕索兹从麦芽的水抽提物中得到淀粉酶。
19世纪中叶——巴斯德对酵母的乙醇发酵进行研究。
1913年——米彻利斯和曼吞根据中间产物学说,推导出米氏方程。
1926年——萨姆纳得到脲酶结晶,并证明它具有蛋白质的性质。
1960年——雅各和莫诺德提出操纵子学说。
1982年——切克发现核酸类酶。
1983年——阿尔特曼发现核糖核酸酶P的RNA 部分M1RNA具有核糖核酸酶P的催化活性。
酶的专一性分为绝对专一性和相对专一性。
相对专一性又可分为键专一性和基团专一性米氏方程:酶的可逆性抑制作用可以分为竞争性抑制、非竞争性抑制和反竞争性抑制。
酶工程复习一、名词解释1、诱导与阻遏:诱导是加进某种物质,使酶的生物合成开始或加速进行的过程。
阻遏是容易利用的碳源的分解代谢的产物阻遏某些酶(主要是诱导酶)生物合成的现象。
2、最适生长温度与最适生产温度:最适生长温度是在该温度下,微生物细胞的生长速率最大。
最适产酶温度低于最适生长温度,在较低温度下,提高酶的稳定性,延长细胞产酶时间。
3、生长因子:细胞生长繁殖不可缺少的微量有机化合物,如aa, 嘌呤,嘧啶,激素4、等电点沉淀利用两性电解质在等电点时溶解度最低,以及不同的两性电解质有不同的等电点这一特性,通过调节溶液的pH值,使酶或杂质沉淀析出,从而使酶与杂质分离的方法称为等电点沉淀。
5、盐析沉淀是利用不同蛋白质在不同的盐浓度条件下溶解度不同的特点,通过在酶液中添加一定浓度的中性盐,使酶或杂质从溶液中析出沉淀,从而使酶与杂质分离的过程。
6、酶分子修饰:通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰。
7、分子内交联修饰:含有双功能基团的化合物(双功能试剂)如戊二醛、己二胺、葡聚糖二乙醛等,可以在酶蛋白分子中相距较近的两个侧链基团之间形成共价交联,从而提高酶的稳定性的修饰方法称为分子内交联修饰。
8、酶的有限水解修饰:在肽链的限定位点进行水解,使酶的空间结构发生某些精细的改变,从而改变酶的特性和功能的方法,称为肽链有限水解修饰。
9、酶的定点突变技术:定点突变技术是指在DNA序列中的某一特定位点上进行碱基的改变从而获得突变基因的的操作技术。
10、侧链基团修饰:采用一定的方法(一般为化学法)使酶分子的侧链基团发生改变,从而改变酶分子的特性和功能的修饰方法称为侧链基团修饰。
11、抗体酶(Catalytic antibody) ,又称催化抗体,是指通过一系列化学与生物技术方法制备出的具有催化活性的抗体,它除了具有相应免疫学性质,还类似于酶,能催化某种活性反应,是一种新型人工酶制剂,是一种具有催化功能的抗体分子。
由活细胞产生的生物催化剂,具有特殊作用的蛋白质,能在生命体内(包括动物、植物和微生物)催化一切化学反应,维持生命特征。
是酶学基本原理与化学工程相结合而形成的一门新兴的技术科学, 以应用目的为出发点来研究酶, 利用酶的催化特性并通过工程化将相应原料转化为目的物质的技术。
水溶性酶经物理或者化学方法处理后成为不溶于水的但仍 具有酶活性的一种酶的衍生物,在催化反应中以固相状态作用于底物。
表示酶活力大小的尺度;一个国际单位(IU)是指在特定条件下(25℃),每分钟内转化 1mol 底物或者催化形成 1mol 产物所需的酶量。
一个 Kat(卡塔尔,酶活性国 际单位)是指每秒钟内转化 1mol 底物所需的酶量, 1 Kat = 6107 IU 。
(酶活力:指酶催化一定化学反应的能力;用在一定条件下, 所催化的反应初速度来表示; 是研究酶的特性,酶制剂生产应用以及分离纯化时的一项必不可少的指标。
) 是酶纯度的量度,是指单位分量酶蛋白所具有的酶活力,单位为 IU/mg 。
比活力越大,酶纯度越高。
比活力=活力单位数/每毫克酶蛋白。
可产生一种组成型调节蛋白(regulatory protein) (一种变构蛋白),通过与效应物(effector) (包括诱导物和辅阻遏物)的特异结合而发生变构作用,从而改变它与控制基因的结合力。
调节基因常位于调控区的上游。
位于启动基因和结构基因之间的一段碱基顺序,能特异性地与调节基因产生的变构蛋白结合,控制酶合成的时机与速度。
决定某一多肽的 DNA 模板,与酶有各自的对应关系,其中的遗传信息可转录为mRNA ,再翻译为蛋白质。
是指在一定的条件下,用适当的溶剂或者溶液处理含酶原料,使酶充分溶解到 溶剂或者溶液中的过程。
是指在份子水平上不同粒径份子的混合物在通过半透膜时,实现选择分离的技术,半透膜又称为分离膜,膜壁弥漫小孔,根据孔径大小可以分为:微滤膜( )、超滤膜(uF)、纳滤膜(NF)、反渗透膜(RO)等,分离都采用错流过滤方式。
酶工程考试复习题及答案一、选择题1. 酶工程是指对酶进行改造和利用的科学,其主要目的不包括以下哪一项?A. 提高酶的稳定性B. 增强酶的催化效率C. 改变酶的底物专一性D. 降低酶的生产成本答案:D2. 在酶工程中,下列哪一项技术不属于酶的改造方法?A. 基因工程B. 蛋白质工程C. 酶的固定化D. 酶的纯化答案:D3. 固定化酶技术的优点不包括以下哪一项?A. 可重复使用B. 提高酶的稳定性C. 便于酶的分离和纯化D. 增加酶的底物专一性答案:D二、填空题4. 酶工程中常用的酶固定化方法包括_______、_______和_______。
答案:吸附法、包埋法、共价结合法5. 酶的催化效率通常用_______来表示,它是酶催化反应速率与_______的比值。
答案:kcat、底物浓度三、简答题6. 简述酶工程在工业生产中的应用。
答案:酶工程在工业生产中的应用主要包括食品加工、制药、生物燃料生产、环境保护等领域。
通过酶的改造和固定化技术,可以提高生产效率,降低成本,实现绿色生产。
7. 描述酶的改造方法之一——蛋白质工程的基本过程。
答案:蛋白质工程的基本过程包括:(1) 确定目标酶的氨基酸序列;(2) 设计预期的氨基酸序列变化;(3) 通过基因突变或基因合成技术实现氨基酸序列的改变;(4) 表达改造后的酶蛋白;(5) 评估改造酶的性能,如稳定性、催化效率等。
四、论述题8. 论述固定化酶在生物反应器中的应用及其优势。
答案:固定化酶在生物反应器中的应用主要包括连续流反应器和批式反应器。
固定化酶的优势包括:(1) 酶的稳定性提高,延长使用寿命;(2) 易于从反应体系中分离,便于回收和再利用;(3) 可以提高底物转化率,减少副反应;(4) 有助于实现工业化大规模生产。
五、案例分析题9. 某制药公司希望通过酶工程提高一种药物前体的合成效率。
请分析可能采取的策略,并讨论这些策略的潜在优势和局限性。
答案:可能采取的策略包括:(1) 利用基因工程技术改造酶的基因,提高酶的催化效率;(2) 通过蛋白质工程技术改变酶的结构,提高其稳定性和底物专一性;(3) 采用固定化技术,使酶在反应过程中易于分离和重复使用。
1.酶生物合成法生产的主要工艺过程包括那几个步骤?(1)用作培养菌种及扩大生产的发酵罐的培养基的配制(2)培养基、发酵罐以及辅助设备的消毒灭菌(3)将已培养好的有活性的纯菌株以一定量转接到发酵罐中(4)接种到发酵罐中的菌株控制在最适条件下生长并形成代谢产物(5)将产物抽提并进行精制(6)回收或处理发酵过程中产生的废物和废水如何控制微生物发酵产酶的工艺条件?发酵过程中,为了能对生产过程进行必要的控制,需要对有关工艺参数进行定期取样测定或进行连续测量。
参数中,对发酵过程影响较大的有温度、PH、溶解氧浓度等。
(1)温度:温度对发酵的影响是多方面的,主要表现在对细胞生长、产物形成、发酵液的物理性质和生物合成方面。
例如:枯草杆菌的最适温度为34--37℃,黑曲霉的最适温度为28--32℃(2)pH:发酵过程中pH的变化取决于所用的菌种、培养基的成分和培养条件。
微生物生长和生物合成都有其最适和能够耐受的pH范围,大多数微生物生长的最适pH6.3-7.5,霉菌和酵母生长的最适pH4-6,放线菌生长的最适pH7-8。
(3)溶解氧浓度:对于好氧发酵,溶解氧浓度是最重要的参数之一。
好氧性微生物深层培养时,需要适量的溶解氧以维持其呼吸代谢和某些产物的合成,氧的不足会造成代谢异常,产量降低。
简述凝胶层析、亲和层析、离子交换层析的原理和操作要点?离子交换层析原理:根据待分离物质带电性质不同的分离纯化方法。
操作:a上样:上样体积不十分严格。
b洗脱:增加溶液的离子强度c梯度洗脱法:改变溶液的pHd再生:用0.5mol/LNaOH和0.5mol/L NaCl混合溶液或0.5mol/L HCl处理。
凝胶层析原理:利用某些凝胶对于不同分子大小的组分阻滞作用的不同。
大分子物质不能进入凝胶孔内,在凝胶颗粒之间的空隙向下移动,并最先被洗脱出来;小分子物质可自由出入凝胶孔,流程长而后流出层析柱。
操作:a凝胶的选择和处理,根据相对分子质量范围选择相应型号的凝胶介质。