专题08数列及其应用(教学案)-2018年高考数学(文)考纲解读与热点难点突破
- 格式:doc
- 大小:384.00 KB
- 文档页数:12
第六章⎪⎪⎪ 数 列第一节数列的概念与简单表示突破点(一) 数列的通项公式1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项).2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立.[例1] 写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; 本节主要包括2个知识点: 1.数列的通项公式;2.数列的单调性.(3)-1,32,-13,34,-15,36,…;(4)3,33,333,3 333,….[解] (1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n-12n .(3)奇数项为负,偶数项为正,故通项公式中含因式(-1)n;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n·2+ -1nn.也可写为a n=⎩⎪⎨⎪⎧-1n,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…,所以a n =13(10n -1).[方法技巧]由数列的前几项求通项公式的思路方法给出数列的前几项求通项时,需要注意观察数列中各项与其序号之间的关系,在所给数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系,主要从以下几个方面来考虑:(1)分式形式的数列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系. (2)若第n 项和第n +1项正负交错,那么符号用(-1)n 或(-1)n +1或(-1)n -1来调控.(3)熟悉一些常见数列的通项公式.(4)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式加以变形,可使用添项、通分、分割等方法,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.利用a n 与S n 的关系求通项[例2] n n n (1)S n =2n 2-3n ; (2)S n =3n +b .[解] (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,所以{a n }的通项公式为a n =4n -5. (2)a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n+b )-(3n -1+b )=2×3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. 所以当b =-1时,a n =2×3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2×3n -1,n ≥2.[方法技巧]已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式.(3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.利用递推关系求通项[例3] (1)已知数列{a n }满足a 1=2,a n +1=a n +n 2+n ,则a n =________;(2)若数列{a n }满足a 1=23,a n +1=nn +1a n ,则通项a n =________;(3)若数列{a n }满足a 1=1,a n +1=2a n +3,则a n =________; (4)若数列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________. [解析] (1)由条件知a n +1-a n =1n 2+n =1n n +1 =1n -1n +1, 则(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1) =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+1n -1-1n , 即a n -a 1=1-1n ,又∵a 1=12,∴a n =1-1n +12=32-1n .(2)由a n +1=nn +1a n (a n ≠0),得a n +1a n =nn +1, 故a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1 =n -1n ·n -2n -1·…·12·23=23n. (3)设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ),即a n +1=2a n -t ,则t =-3.故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,b n ≠0,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,2为公比的等比数列. 所以b n =4×2n -1=2n +1,即a n =2n +1-3.(4)∵a n +1=2a na n +2,a 1=1, ∴a n ≠0, ∴1a n +1=1a n +12, 即1a n +1-1a n =12, 又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1. [答案] (1)32-1n (2)23n (3)2n +1-3 (4)2n +1[方法技巧]由递推关系式求通项公式的常用方法(1)已知a 1且a n -a n -1=f (n ),可用“累加法”求a n .(2)已知a 1且a na n -1=f (n ),可用“累乘法”求a n . (3)已知a 1且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可由待定系数法确定),可转化为等比数列{a n +k }.(4)形如a n +1=Aa nBa n +C(A ,B ,C 为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.(5)形如a n +1+a n =f (n )的数列,可将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后按奇偶分类讨论即可.能力练通抓应用体验的“得”与“失”1.[考点一]已知n ∈N *,给出4个表达式:①a n =⎩⎪⎨⎪⎧0,n 为奇数,1,n 为偶数,②a n =1+ -1 n2,③a n =1+cos n π2,④a n =⎪⎪⎪⎪⎪⎪sin n π2.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( )A .①②③B .①②④C .②③④D .①③④解析:选A 检验知①②③都是所给数列的通项公式.2.[考点一]数列1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n (n ∈N *) B .a n =(-1)n -12n +1n 3+3n (n ∈N *) C .a n =(-1)n +12n -1n 2+2n (n ∈N *) D .a n =(-1)n -12n +1n 2+2n(n ∈N *) 解析:选D 所给数列各项可写成:31×3,-52×4,73×5,-94×6,…,通过对比各选项,可知选D.3.[考点二]已知数列{a n }的前n 项和为S n =n 2-2n +2,则数列{a n }的通项公式为( ) A .a n =2n -3 B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2 D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2解析:选C 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,由于n =1时a 1的值不适合n ≥2的解析式,故{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.4.[考点三]设数列{a n }满足a 1=1,且a n +1-a n =n +1,求数列{a n }的通项公式. 解:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2).以上各式相加,得a n -a 1=2+3+…+n = n -1 2+n 2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足此式, ∴a n =n 2+n2(n ∈N *).5.[考点三]若数列{a n }满足:a 1=1,a n +1=a n +2n,求数列{a n }的通项公式. 解:由题意知a n +1-a n =2n,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=1-2n1-2=2n -1.又因为当n =1时满足此式,所以a n =2n-1.突破点(二) 数列的单调性数列的分类[例1] 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?[解] (1)取n =1,得λa 21=2S 1=2a 1, 即a 1(λa 1-2)=0.若a 1=0,则S n =0,当n ≥2时,a n =S n -S n -1=0-0=0, 所以a n =0.若a 1≠0,则a 1=2λ,当n ≥2时,2a n =2λ+S n,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=2nλ. 综上,当a 1=0时,a n =0; 当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n,由(1)知b n =lg 1002n =2-n lg 2.所以数列{b n }是单调递减的等差数列(公差为-lg 2). 则b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027=lg 100128<lg 1=0,故当n =6时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项的和最大.[方法技巧]1.判断数列单调性的两种方法 (1)作差比较法a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n=0⇔数列{a n }是常数列.(2)作商比较法 ①当a n >0时,a n +1a n >1⇔数列{a n }是单调递增数列;a n +1a n <1⇔数列{a n }是单调递减数列;a n +1a n=1⇔数列{a n }是常数列.②当a n <0时,a n +1a n >1⇔数列{a n }是单调递减数列;a n +1a n <1⇔数列{a n }是单调递增数列;a n +1a n=1⇔数列{a n }是常数列.2.求数列最大项或最小项的方法(1)可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.利用数列的单调性求参数的取值范围[例2] 已知函数f (x )=⎩⎪⎨⎪⎧ 3-a x +2,x ≤2,a 2x 2-9x +11,x >2(a >0,且a ≠1),若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1) B.⎣⎢⎡⎭⎪⎫83,3C .(2,3)D .(1,3)[解析] 因为{a n }是递增数列,所以⎩⎪⎨⎪⎧3-a >0,a >1,3-a ×2+2≤a ,解得83≤a <3,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫83,3. [答案] B [方法技巧]已知数列的单调性求参数取值范围的两种方法(1)利用数列的单调性构建不等式,然后将其转化为不等式的恒成立问题进行解决,也可通过分离参数将其转化为最值问题处理.(2)利用数列与函数之间的特殊关系,将数列的单调性转化为相应函数的单调性,利用函数的性质求解参数的取值范围,但要注意数列通项中n 的取值范围.能力练通抓应用体验的“得”与“失”1.[考点一]设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0解析:选D a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或n =3时,a n 取最大值,最大值为a 2=a 3=0.故选D.2.[考点一]若数列{a n }满足:a 1=19,a n +1=a n -3,则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列,∴a n =19+(n -1)×(-3)=22-3n ,则a n 是递减数列.设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0,即⎩⎪⎨⎪⎧22-3k ≥0,22-3 k +1 ≤0,∴193≤k ≤223,∵k ∈N *,∴k =7.∴满足条件的n 的值为7.3.[考点二]已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.解析:∵对于任意的n ∈N *,a n =n 2+λn 恒成立, ∴a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ. 又∵{a n }是递增数列,∴a n +1-a n >0,且当n =1时,a n +1-a n 最小, ∴a n +1-a n ≥a 2-a 1=3+λ>0,∴λ>-3. 答案:(-3,+∞)4.[考点一、二]已知数列{a n }中,a n =1+1a +2 n -1(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +2 n -1(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2 n -1 =1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性,知5<2-a 2<6,∴-10<a <-8.故a 的取值范围为(-10,-8).[全国卷5年真题集中演练——明规律]1.(2015·新课标全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴1S n =-1+(n -1)×(-1)=-n ,∴S n =-1n.答案:-1n2.(2014·新课标全国卷Ⅱ)数列 {a n }满足 a n +1=11-a n , a 8=2,则a 1 =________.解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n ,可求得a 5=2;由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案:123.(2013·新课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n=________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n -1=23a n -1+13,所以a n =S n -S n -1=⎝ ⎛⎭⎪⎫23a n +13-⎝ ⎛⎭⎪⎫23a n -1+13=23a n -23a n -1,所以a n =-2a n -1,所以数列{a n }为以1为首项,以-2为公比的等比数列,所以a n =(-2)n -1.答案:(-2)n -14.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1). 因此{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列,因此a n =12.[课时达标检测]重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.数列1,23,35,47,59,…的一个通项公式a n =( )A.n 2n +1B.n 2n -1C.n 2n -3D.n 2n +3解析:选B 由已知得,数列可写成11,23,35,…,故该数列的一个通项公式为n2n -1.2.设数列{a n }的前n 项和S n =n 2+n ,则a 4的值为( ) A .4 B .6 C .8 D .10解析:选C a 4=S 4-S 3=20-12=8.3.已知数列{a n }满足a 1=1,a n +1a n =2n(n ∈N *),则a 10=( ) A .64 B .32 C .16 D .8解析:选B ∵a n +1a n =2n,∴a n +2a n +1=2n +1,两式相除得a n +2a n=2.又a 1a 2=2,a 1=1,∴a 2=2.则a 10a 8·a 8a 6·a 6a 4·a 4a 2=24,即a 10=25=32.4.在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( ) A.1516 B.158 C.34 D.38解析:选C 由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.5.现定义a n =5n+⎝ ⎛⎭⎪⎫15n ,其中n ∈⎩⎨⎧⎭⎬⎫110,15,12,1,则a n 取最小值时,n 的值为________.解析:令5n=t >0,考虑函数y =t +1t,易知其在(0,1]上单调递减,在(1,+∞)上单调递增,且当t =1时,y 的值最小,再考虑函数t =5x,当0<x ≤1时,t ∈(1,5],则可知a n =5n+⎝ ⎛⎭⎪⎫15n 在(0,1]上单调递增,所以当n =110时,a n 取得最小值.答案:110[练常考题点——检验高考能力]一、选择题1.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 18=( ) A .36 B .35 C .34 D .33解析:选C 当n ≥2时,a n =S n -S n -1=2n -3;当n =1时,a 1=S 1=-1,所以a n =2n -3(n ∈N *),所以a 2+a 18=34.2.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=( )A.6116B.259C.2516D.3115解析:选A 令n =2,3,4,5,分别求出a 3=94,a 5=2516,∴a 3+a 5=6116.3.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .∴a 6=a 3·a 3=64,a 3=8.∴a 9=a 6·a 3=64×8=512.4.已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C 由3a n +1=3a n -2得a n +1=a n -23,则{a n }是等差数列,又a 1=15,∴a n =473-23n .∵a k ·a k +1<0,∴⎝ ⎛⎭⎪⎫473-23k ·⎝ ⎛⎭⎪⎫453-23k <0,∴452<k <472,∴k =23,故选C.5.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 015=( ) A .8 B .6 C .4D .2解析:选D 由题意得:a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8;所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.6.如果数列{a n }满足a 1=2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A.12B.12C.15D.110解析:选C ∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,即a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又∵d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15. 二、填空题7.已知数列{a n }中,a 1=1,若a n =2a n -1+1(n ≥2),则a 5的值是________. 解析:∵a n =2a n -1+1,∴a n +1=2(a n -1+1),∴a n +1a n -1+1=2,又a 1=1,∴{a n +1}是以2为首项,2为公比的等比数列,即a n +1=2×2n -1=2n,∴a 5+1=25,即a 5=31.答案:318.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.解析:令n -2n2=0.08,得2n 2-25n +50=0, 即(2n -5)(n -10)=0.解得n =10或n =52(舍去).即0.08是该数列的第10项.答案:109.已知数列{a n }满足:a 1=1,a n +1(a n +2)=a n (n ∈N *),若b n +1=(n -p )⎝ ⎛⎭⎪⎫1a n+1,b 1=-p ,且数列{b n }是单调递增数列,则实数p 的取值范围为________.解析:由题中条件,可得1a n +1=2a n+1,则1a n +1+1=21a n +1,易知1a 1+1=2≠0,则⎩⎨⎧⎭⎬⎫1a n+1是等比数列,所以1a n+1=2n ,可得b n +1=2n (n -p ),则b n =2n -1(n -1-p )(n ∈N *),由数列{b n }是单调递增数列,得2n (n -p )>2n -1(n -1-p ),则p <n +1恒成立,又n +1的最小值为2,则p 的取值范围是(-∞,2).答案:(-∞,2)10.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________.解析:∵(n +1)a 2n +1+a n +1·a n -na 2n =0, ∴(a n +1+a n )[(n +1)a n +1-na n ]=0, 又a n +1+a n >0,∴(n +1)a n +1-na n =0,即a n +1a n =n n +1, ∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n ,∵a 1=1,∴a n =1n. 答案:1n三、解答题11.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *),可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理,a 3=3,a 4=4. (2)S n =12a 2n +12a n ,①当n ≥2时,S n -1=12a 2n -1+12a n -1,②①-②,整理得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n . 12.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由对于n ∈N *,都有a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.所以实数k 的取值范围为(-3,+∞). 第二节等差数列及其前n 项和突破点(一) 等差数列的性质及基本量的计算1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -1 2d =n a 1+a n2.本节主要包括3个知识点:1.等差数列的性质及基本量的计算;2.等差数列前n 项和及性质的应用;3.等差数列的判定与证明.3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(5)若数列{a n },{b n }是公差分别为d 1,d 2的等差数列,则数列{pa n },{a n +p },{pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2.考点贯通抓高考命题的“形”与“神”等差数列的基本运算[例1] (1)(2016·东北师大附中摸底考试)在等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4(2)(2016·惠州调研)已知等差数列{a n }的前n 项和为S n ,若S 3=6,a 1=4,则公差d 等于( )A .1 B.53 C .-2D .3[解析] (1)∵a 1+a 5=2a 3=10, ∴a 3=5,则公差d =a 4-a 3=2,故选B. (2)由S 3=3 a 1+a 3 2=6,且a 1=4,得a 3=0, 则d =a 3-a 13-1=-2,故选C.[答案] (1)B (2)C [方法技巧]1.等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.2.等差数列设项技巧若奇数个数成等差数列且和为定值时,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列且和为定值时,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.等差数列的性质[例2] (1)n 396n n 的前n 项和,则S 11=( )A .18B .99C .198D .297(2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. [解析] (1)因为a 3+a 9=27-a 6,2a 6=a 3+a 9, 所以3a 6=27,所以a 6=9, 所以S 11=112(a 1+a 11)=11a 6=99.(2)因为{a n },{b n }都是等差数列, 所以2a 3=a 1+a 5,2b 8=b 10+b 6, 所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6), 即2×15=9+(a 5+b 6), 解得a 5+b 6=21. [答案] (1)B (2)21能力练通抓应用体验的“得”与“失”1.[考点一]《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱B.53钱C.32钱 D.43钱 解析:选D 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+d =3a 1+9d ,2a 1+d =52,解得⎩⎪⎨⎪⎧a 1=43,d =-16,即甲得43钱,故选D.2.[考点一]设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( )A .5B .6C .7D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8.3.[考点二]已知数列{a n }为等差数列,且a 1+a 7+a 13=π,则cos(a 2+a 12)的值为( ) A.32 B .-32 C.12 D .-12解析:选D 在等差数列{a n }中,因为a 1+a 7+a 13=π,所以a 7=π3,所以a 2+a 12=2π3,所以cos(a 2+a 12)=-12.故选D.4.[考点一]设S n 为等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1.所以S 16=16×3+16×152×(-1)=-72.答案:-725.[考点二]设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.解:由题意知a 1+a 2+…+a 6=36,①a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n a 1+a n2=324,∴18n =324,∴n =18. ∵a 1+a n =36,n =18, ∴a 1+a 18=36,从而a 9+a 10=a 1+a 18=36.突破点(二) 等差数列前n 项和及性质的应用等差数列前n 项和的性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d . (2)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1).(3)当项数为偶数2n 时,S 偶-S 奇=nd ;项数为奇数2n -1时,S 奇-S 偶=a 中,S 奇∶S 偶=n ∶(n -1).(4){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(5)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.[例1] 已知{a n }为等差数列,若a 1+a 2+a 3=5,a 7+a 8+a 9=10,则a 19+a 20+a 21=________.[解析] 法一:设数列{}a n 的公差为d ,则a 7+a 8+a 9=a 1+6d +a 2+6d +a 3+6d =5+18d =10,所以18d =5,故a 19+a 20+a 21=a 7+12d +a 8+12d +a 9+12d =10+36d =20.法二:由等差数列的性质,可知S 3,S 6-S 3,S 9-S 6,…,S 21-S 18成等差数列,设此数列公差为D .所以5+2D =10,所以D =52.所以a 19+a 20+a 21=S 21-S 18=5+6D =5+15=20. [答案] 20[例2] n 1n 512n 为何值时,S n 有最大值?[解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一:S n =na 1+n n -12d=na 1+n n -1 2·⎝ ⎛⎭⎪⎫-18a 1=-116a 1(n 2-17n )=-116a 1⎝ ⎛⎭⎪⎫n -1722+28964a 1,因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值.法二:设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a 1+ n -1 ·⎝ ⎛⎭⎪⎫-18a 1≥0,a 1+n ·⎝ ⎛⎭⎪⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值. 法三:由于S n =na 1+n n -1 2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,设f (x )=d2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线,由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示),由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[方法技巧]求等差数列前n 项和S n 最值的三种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方结合图象借助求二次函数最值的方法求解.(2)邻项变号法:①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .(3)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q2时,S n 最大; ②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.能力练通抓应用体验的“得”与“失”1.[考点二]在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2,∴S n =29n +n n -12×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.[考点二]设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7 解析:选 D 由(n +1)S n <nS n +1得(n +1)n a 1+a n2<nn +1 a 1+a n +12,整理得a n <a n +1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.3.[考点一]已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=20×2-10=30,∴S 30=60.答案:604.[考点一]已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是________.解析:由等差数列前n 项和的性质知,a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7+12n +1,故当n =1,2,3,5,11时,a nb n为整数, 故使得a n b n为整数的正整数n 的个数是5. 答案:55.[考点一]一个等差数列的前12项的和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5.答案:5突破点(三) 等差数列的判定与证明等差数列的判定与证明方法[典例] 已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N *),a 1=12,判断{a n }是否为等差数列,并说明你的理由.[解] 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12 n -1 =-12n n -1 ,所以a n +1=-12n n +1 ,而a n +1-a n =-12n n +1 --12n n -1 =-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n n -1 n +1.所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是等差数列.1.若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是( ) A .公差为3的等差数列 B .公差为4的等差数列 C .公差为6的等差数列 D .公差为9的等差数列解析:选C 令b n =a 2n -1+2a 2n ,则b n +1=a 2n +1+2a 2n +2,故b n +1-b n =a 2n +1+2a 2n +2-(a 2n -1+2a 2n )=(a 2n +1-a 2n -1)+2(a 2n +2-a 2n )=2d +4d =6d =6×1=6.即{a 2n -1+2a 2n }是公差为6的等差数列.2.已知数列{a n }中,a 1=2,a n =2-1a n -1(n ≥2,n ∈N *),设b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列.证明:∵a n =2-1a n -1,∴a n +1=2-1a n.∴b n +1-b n =1a n +1-1-1a n -1=12-1a n-1-1a n -1=a n -1a n -1=1, ∴{b n }是首项为b 1=12-1=1,公差为1的等差数列. 3.已知公差大于零的等差数列{}a n 的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式; (2)若数列{}b n 满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)∵数列{}a n 为等差数列,∴a 3+a 4=a 2+a 5=22. 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13,∴⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1,d =4.∴数列{a n }的通项公式为a n =4n -3. (2)由(1)知a 1=1,d =4, ∴S n =na 1+n n -12×d =2n 2-n ,∴b n =S nn +c =2n 2-nn +c ,∴b 1=11+c ,b 2=62+c ,b 3=153+c,其中c ≠0. ∵数列{}b n 是等差数列,∴2b 2=b 1+b 3, 即62+c ×2=11+c +153+c,∴2c 2+c =0, ∴c =-12或c =0(舍去),故c =-12.即存在一个非零实数c =-12,使数列{b n }为等差数列.[全国卷5年真题集中演练——明规律]1.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97解析:选C ∵{a n }是等差数列,设其公差为d ,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C.2.(2015·新课标全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解析:选B ∵数列{a n }的公差为1,∴S 8=8a 1+8× 8-12×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.3.(2013·新课标全国卷Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:选C 由S m -1=-2,S m =0,S m +1=3,得a m =S m -S m -1=2,a m +1=S m +1-S m =3,所以等差数列的公差为d =a m +1-a m =3-2=1,由⎩⎪⎨⎪⎧a m =a 1+ m -1 d =2,S m =a 1m +12m m -1 d =0,得⎩⎪⎨⎪⎧a 1+m -1=2,a 1m +12m m -1 =0,解得⎩⎪⎨⎪⎧a 1=-2,m =5,选C.4.(2013·新课标全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎪⎨⎪⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,则nS n =n 2a 1+n 2 n -1 2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49<6S 6,所以当n =7时,nS n 取最小值,最小值为-49.答案:-495.(2016·全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设数列{a n }的公差为d ,由已知得7+21d =28,解得d =1.所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.6.(2014·新课标全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n-1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,则a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测]重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( ) A .12 B .13 C .14D .15解析:选B 由S 5= a 2+a 4 ·52,得25= 3+a 4 ·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,即m =37.3.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D.12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0.4.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .9B .8C .7D .6解析:选D 设等差数列{a n }的公差为d .因为a 3+a 7=-6,所以a 5=-3,d =2,则S n=n 2-12n ,故当n 等于6时S n 取得最小值.5.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________. 解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38,解得n =10.答案:10[练常考题点——检验高考能力]一、选择题1.(2017·黄冈质检)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( )A .95B .100C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2017·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7 b 1+b 7 2=72[(b 2-d )+(b 2+5d )]=-112,又a 1=3,则a 8=-109.3.在等差数列{a n }中,a 3+a 5+a 11+a 17=4,且其前n 项和为S n ,则S 17为( ) A .20 B .17 C .42D .84解析:选B 由a 3+a 5+a 11+a 17=4,得2(a 4+a 14)=4,即a 4+a 14=2,则a 1+a 17=2,故S 17=17 a 1+a 172=17.4.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选 C ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零.又∵a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.5.设数列{a n }的前n 项和为S n ,若S nS 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1D .b n =2n +1解析:选B 设等差数列{b n }的公差为d (d ≠0),S n S 2n =k ,因为b 1=1,则n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n 2n -1 d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,解得d =2,k =14.所以数列{b n }的通项公式为b n =2n -1.6.设等差数列{a n }满足a 1=1,a n >0(n ∈N *),其前n 项和为S n ,若数列{S n }也为等差数列,则S n +10a 2n的最大值是( ) A .310 B .212 C .180D .121解析:选D 设数列{a n }的公差为d ,依题意得2S 2=S 1+S 3,因为a 1=1,所以22a 1+d =a 1+3a 1+3d ,化简可得d =2a 1=2,所以a n =1+(n -1)×2=2n -1,S n =n +n n -12。
数列的综合应用教学设计数列的综合应用一、教学内容分析本节内容安排在《普通高中课程标准实验教科书数学必修5》(人教A版),第二章内容结束之后的综合练习。
在课本中没有专设章节。
内容从教材习题2.5中A组的第4题中体现。
本章五节内容分别讲授了等差数列、等比数列以及这两种数列的性质、通项公式、前N项和等基础内容。
让学生在此基础之上,了解高考中出现频率较多的一些特殊数列。
在实际教学中,本节内容应该分为五个阶段:第一阶段学生要充分掌握基本数列的知识点,可用提问的方式进行复习回顾。
第二阶段,对于特殊数列有关例题首先要引导学生观察,找到与基本数列的相似处,从而决定构造为基本数列中的等差数列或等比数列,大胆提出猜想。
第三阶段从猜想入手,开始构造。
运用基本数列的形式和性质得到新的数列。
构造出的新数列必须满足基本数列成立的条件。
验证猜想的正确性。
第四阶段根据题目要求从构造出的新数列找出所求项。
第五阶段,老师和学生一起归纳题型。
学生在老师的引导下结题,提高主动性,学习的灵活性。
从而提高对本节知识的兴趣。
二、学情分析对于高一年级的学生来说。
之前的学习中已经接触到了函数内容。
以及在本节内容的学习之前,已经有了数列的基础。
学生已经具备了一定的分析能力,函数构造基础等。
对于本节授课内容来说,学生在一般很难自己分析出来,有一定的难度。
所以需要老师的正确引导,但是在复习的基础上不宜直接灌输解题方法。
应该带领学生一起观察、分析、猜想、证明。
从而加深学生对本节内容的理解,也可让学生自己尝试找到新的解法,建立自己的思维模式。
三、设计思想在授课中,必须要求学生掌握基本数列(等差数列和等比数列)的内容。
以此引导学生,分析特殊数列。
并且根据之前学习三角函数时用到的“构造”理念。
将特殊数列构造为基本数列,再运用基本数列的知识点来解题。
课堂中,以例题分析为主,让学生学会观察特殊数列的结构,分析如何构造出适合的基本数列的形式。
讲课过程中,以启发性为主,让学生主动分析。
《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。
3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。
二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。
2. 等比数列的应用举例:例如计算复利、人口增长等问题。
3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。
4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。
5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。
三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。
2. 教学难点:数列的通项公式的理解和应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。
2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。
3. 组织小组讨论,培养学生的合作能力和思维能力。
五、教学安排:1. 第一课时:等差数列的应用举例。
2. 第二课时:等比数列的应用举例。
3. 第三课时:数列的求和公式及应用。
4. 第四课时:数列的通项公式的应用。
5. 第五课时:数列在函数中的应用。
6. 剩余课时:进行课堂练习和课后作业的辅导。
六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。
2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。
3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。
七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。
2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。
3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。
八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。
【2018年高考考纲解读】 高考对本内容的考查主要有:(1)数列的概念是A 级要求,了解数列、数列的项、通项公式、前n 项和等概念,一般不会单独考查; (2)等差数列、等比数列是两种重要且特殊的数列,要求都是C 级,熟练掌握等差数列、等比数列的概念、通项公式、前n 项求和公式、性质等知识,理解其推导过程,并且能够灵活应用. (4)通过适当的代数变形后,转化为等差数列或等比数列的问题. (5)求数列的通项公式及其前n 项和的基本的几种方法. (6)数列与函数、不等式的综合问题.试题类型可能是填空题,以考查单一性知识为主,同时在解答题中经常与不等式综合考查,构成压轴题. 【重点、难点剖析】1.等差、等比数列的通项公式等差数列{a n }的通项公式为a n =a 1+(n -1)d =a m +(n -m )d ;等比数列{a n }的通项公式为a n =a 1q n -1=a m qn -m.2.等差、等比数列的前n 项和 (1)等差数列的前n 项和为S n =n a 1+a n 2=na 1+n n -12d .特别地,当d ≠0时,S n 是关于n 的二次函数,且常数项为0,即可设S n =an 2+bn (a ,b 为常数). (2)等比数列的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1,特别地,若q ≠1,设a =a 11-q ,则S n =a -aq n.3.等差数列、等比数列常用性质(1)若序号m +n =p +q ,在等差数列中,则有a m +a n =a p +a q ;特别的,若序号m +n =2p ,则a m +a n =2a p ;在等比数列中,则有a m ·a n =a p ·a q ;特别的,若序号m +n =2p ,则a m ·a n =a 2p ;(2)在等差数列{a n }中,S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,其公差为kd ;其中S n 为前n 项的和,且S n ≠0(n ∈N *);在等比数列{a n }中,当q ≠-1或k 不为偶数时S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其中S n 为前n 项的和(n∈N*).4.数列求和的方法归纳(1)转化法:将数列的项进行分组重组,使之转化为n个等差数列或等比数列,然后应用公式求和;(2)错位相减法:适用于{a n·b n}的前n项和,其中{a n}是等差数列,{b n}是等比数列;(3)裂项法:求{a n}的前n项和时,若能将a n拆分为a n=b n-b n+1,则a1+a2+…+a n=b1-b n+1;(4)倒序相加法:一个数列倒过来与原数列相加时,若有公因式可提,并且剩余的项的和容易求出,那么这样的数列求和可采用此法.其主要用于求组合数列的和.这里易忽视因式为零的情况;(5)试值猜想法:通过对S1,S2,S3,…的计算进行归纳分析,寻求规律,猜想出S n,然后用数学归纳法给出证明.易错点:对于S n不加证明;(6)并项求和法:先将某些项放在一起先求和,然后再求S n.例如对于数列{a n}:a1=1,a2=3,a3=2,a n+2=a n+1-a n,可证其满足a n+6=a n,在求和时,依次6项求和,再求S n.5.数列的应用题(1)应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.(2)数列应用题一般是等比、等差数列问题,其中,等比数列涉及的范围比较广,如经济上涉及利润、成本、效益的增减,解决该类题的关键是建立一个数列模型{a n},利用该数列的通项公式、递推公式或前n项和公式.【题型示例】题型1、等差、等比数列中基本量的计算【例1】(2017·高考全国卷Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( ) A.1 B.2C.4 D.8(a 4+a 5)-(a 4+a 3)=8, ∴d =4,故选C.【2017江苏,9】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = ▲ .【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【变式探究】【2016年高考北京文数】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______.. 【答案】6【解析】∵{}n a 是等差数列,∴35420a a a +==,40a =,4136a a d -==-,2d =-,∴616156615(2)6S a d =+=⨯+⨯-=,故填:6.【举一反三】 (2015·江苏,11)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.【变式探究】(1)(2014·全国大纲卷)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3(2)(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 【命题意图】(1)本题主要考查等比数列的性质、对数的运算.(2)本题主要考查等差数列的性质,意在考查考生灵活应用等差数列的性质解决问题的能力. 【答案】(1)C (2)8【解析】(1)lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 4·a 5)4=lg(2×5)4=4,故选C. (2)∵数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,∴a 8>0.又a 7+a 10=a 8+a 9<0,∴a 9<0,∴当n =8时,其前n项和最大.【变式探究】设数列{a n}是公差不为0的等差数列,S n为其前n项的和,满足:a22+a23=a24+a25,S7=7.(1)求数列{a n}的通项公式及前n项的和S n;(2)设数列{b n}满足b n=2a n,其前n项的和为T n,当n为何值时,有T n>512.【规律方法】求等差、等比数列通项与前n项和,除直接代入公式外,就是用基本量法,要注意对通项公式与前n项和公式的选择.【变式探究】已知数列{a n}的前n项和为S n,a1=3,{}1+S n是公比为2的等比数列.(1)证明:{a n}是等比数列,并求其通项;(2)设数列{b n}满足b n=log3a n,其前n项和为T n,当n为何值时,有T n≤2 012?【解析】(1)证明 由题意,得1+S n 1+S n -1=2(n ≥2),即1+S n =4(1+S n -1),同理,得1+S n +1=4(1+S n ). 两式相减,得S n +1-S n =4(S n -S n -1), 即a n +1=4a n ,a n +1a n=4(n ≥2). 又a 1=3,所以{a n }是首项为3,公比为4的等比数列,所以a n =3·4n -1=3·22n -2.(2)解 由(1)得a n =3·22n -2,所以b n =log 2(3·22n -2)=log 23+2(n -1),所以{b n }是首项为log 23,公差为2的等差数列,前n 项和为T n =n log 23+n (n -1),于是由n 2<n log 23+n (n -1)≤2 012,得n < 2 012,又n ∈N *,所以1≤n ≤44,即n =1,2,3,…,44时,T n ≤2 012.题型2、与等差、等比数列有关的最值问题【例2】【2016高考新课标1卷】设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 . 【答案】64【解析】设等比数列{}n a 的公比为(0)q q ≠,由1324105a a a a +=⎧⎨+=⎩得2121(1)10(1)5a q a q q ⎧+=⎪⎨+=⎪⎩,解得1812a q =⎧⎪⎨=⎪⎩.所以2(1)1712(1)22212118()22n n n n n n nn a a a a q --++++-==⨯=L L ,于是当3n =或4n =时,12n a a a L 取得最大值6264=.【举一反三】 (2015·四川,16)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.(2)由(1)得1a n =12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000,即2n>1 000,因为29=512<1 000<1 024=210, 所以n ≥10,于是,使|T n -1|<11 000成立的n 的最小值为10.【规律方法】上述两种求A n 最值的方法都是运用函数思想.法一是直接研究子数列{a 2n }.法二是研究A n =19(19n +2-2n +1)的单调性求其最值.【变式探究】已知等差数列{a n }的首项a 1≠0,公差d ≠0,由{a n }的部分项组成的数列ab 1,ab 2,…,ab n ,…为等比数列,其中b 1=1,b 2=2,b 3=6. (1)求数列{b n }的通项公式b n ;(2)若数列{b n }的前n 项和为S n ,求S n 的值; (3)求A n =S n -2 012n9的最小值.=13⎝ ⎛⎭⎪⎫4n-13+2n .(3)由S n =13⎝ ⎛⎭⎪⎫4n-13+2n ,得A n =S n -2 012n 9=19(4n -2 006n -1),若存在n ∈N *,使得A n ≤A n +1,且A n ≤A n -1,则A n 的值最小. 于是由⎩⎪⎨⎪⎧194n-2 006n -1≤19[4n +1-2 006n +1-1],194n -2 006n -1≤19[4n -1-2 006n -1-1],解得2 0063≤4n ≤4×2 0063(n ∈N *),取n =5,(A n )min =2 9839.题型三、数列求和问题【例3】【2017山东,文19】(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==. (I)求数列{a n }通项公式;(II){ b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列nn b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(Ⅰ)2nn a =.(Ⅱ)2552n nn T +=-.令nn nb c a =, 则212n nn c +=, 因此12231357212122222n n n n n n T c c c --+=+++=+++++L L , 又234113572121222222n nn n n T +-+=+++++L , 两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭L 所以2552n nn T +=-. 【举一反三】【2017山东,文19】(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){ b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n nb a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(Ⅰ)2nn a =.(Ⅱ)2552n nn T +=-.令nn nb c a =, 则212n nn c +=, 因此12231357212122222n n n n n n T c c c --+=+++=+++++L L , 又234113572121222222n nn n n T +-+=+++++L , 两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭L 所以2552n nn T +=-. 【变式探究】【2017北京,文15】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1, a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{}n a 的通项公式;(Ⅱ)求和:13521n b b b b -++++K .【答案】(Ⅰ)21n a n =- ;(Ⅱ)312n -.【变式探究】【2016高考江苏卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0TS=;若{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S . (1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C C D D S S S +≥I . 【答案】(1)13n n a -=(2)详见解析(3)详见解析(3)下面分三种情况证明.①若D 是C 的子集,则2C C D C D D D D S S S S S S S +=+≥+=I .②若C 是D 的子集,则22C C D C C C D S S S S S S +=+=≥I .③若D 不是C 的子集,且C 不是D 的子集.令U E C D =I ð,U F D C =I ð则E ≠∅,F ≠∅,E F =∅I .于是C E C D S S S =+I ,D F C D S S S =+I ,进而由C D S S ≥,得E F S S ≥.设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠.由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤.又k l ≠,故1l k ≤-, 从而1121131133222l l k E F l a S S a a a ----≤+++=+++=≤≤L L , 故21E F S S ≥+,所以2()1C C D D C D S S S S -≥-+I I ,即21C C D D S S S +≥+I .综合①②③得,2C C D D S S S +≥I .【举一反三】 已知数列{a n }满足a 1=1,a 2=-1,当n ≥3,n ∈N *时,a n n -1-a n -1n -2=3n -1n -2.(1)求数列{a n }的通项公式;(2)是否存在k ∈N *,使得n ≥k 时,不等式S n +(2λ-1)a n +8λ≥4对任意实数λ∈[0,1]恒成立?若存在,求出k 的最小值;若不存在,请说明理由.解得,n ≤1或n ≥5.∴满足条件的k 存在,k 的最小值为5.【规律方法】数列通项公式的还原方法比较多样,可以构造特殊数列,也可以立足于运算、归纳,最后补充证明.【变式探究】设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *. (1)求a 2的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1+1a 2+…+1a n <74.。
第二章数列与不等式专题08 数列中的最值问题【压轴综述】纵观近几年的高考命题,考查常以数列的相关项以及关系式,或数列的前n项和与第n项的关系入手,结合数列的递推关系式与等差数列或等比数列的定义展开,求解数列的通项、前n项和,有时与参数的求解、数列不等式的证明等加以综合.探求数列中的最值问题,是数列不等式的综合应用问题的命题形式之一.本专题通过例题说明此类问题解答规律与方法.1.常见思路一:构建函数模型,利用函数的图象和性质解决最值问题;2.常见思路二:构建函数模型,应用导数研究函数的最值;3.常见思路三:构建不等式求解,确定范围,实现求最值;4.常见思路四:应用基本不等式,确定最值.【压轴典例】例1.(河南省开封市2019届高三第三次模拟(理))已知等比数列满足:,,则取最小值时,数列的通项公式为()A.B.C.D.【答案】A【解析】设等比数列的公比为当时,,则当时,,两式相减得:即解得又当且仅当时,等号成立.取最小值1时,故选A.例2.(安徽省黄山市2019届高三第二次检测)已知数列和的前项和分别为和,且,,,若对任意的 ,恒成立,则的最小值为( ) A . B .C .D .【答案】B 【解析】 因为,所以,相减得,因为,所以,又,所以, 因为,所以,因此,,从而,即的最小值为,选B.例3.(2016高考上海文)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________.【答案】max 4k =【解析】当1n =时,12a =或13a =;当2n …时,若2n S =,则12n S -=,于是0n a =,若3n S =,则13n S -=,于是0n a =.从而存在N k *∈,当n k …时,0k a =.其中数列{}n a :2,1,1,0,0,0,-⋅⋅⋅满足条件,所以max 4k =. 例4.(广西柳州市2019届高三1月模拟)已知点在函数的图象上().数列的前项和为,设,数列的前项和为.则的最小值为____【答案】【解析】点在函数图象上,,是首项为,公比的等比数列,,则,是首项为,公差为2的等差数列,当,即时,最小,即最小值为.例5.(广东省华南师范大学附属中学、广东实验中学、广雅中学、深圳中学2019届高三上期末)等差数列的前n 项和为,,,对一切恒成立,则的取值范围为__ __.【答案】【解析】,,所以,,,,由得,由函数的单调性及知,当或时,最小值为30,故.例6.(2018·江苏高考真题)已知集合*{|21,}A x x n n N ==-∈,*{|2,}nB x x n N ==∈.将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________. 【答案】27【解析】设=2kn a ,则12[(211)+(221)+(221)][222]k k n S -=⨯-⨯-+⋅-++++()11221212212(12)222212k k kk k ---++⨯--=+=+--由112n n S a +>得2211211522212(21),(2)20(2)140,22,6k k k k k k k -+---+->+-->≥≥所以只需研究5622n a <<是否有满足条件的解,此时25[(211)+(221)+(21)][222]n S m =⨯-⨯-+-++++25122m +=+-,+121n a m =+,m 为等差数列项数,且16m >. 由25122212(21),2450022,527m m m m m n m ++->+-+>∴≥=+≥,得满足条件的n 最小值为27.例7.(2019·天津高考模拟(文))已知数列{}n a 是正项等比数列,1342310,2a a a a a +=-=,数列{}n b 满足条件123(2)n b n a a a a =.(Ⅰ) 求数列{}n a 、{}n b 的通项公式; (Ⅱ) 设11n n nc a b =-,记数列{}n c 的前n 项和n S . ①求n S ;②求正整数k ,使得对任意n *∈N ,均有k n S S ≥.【答案】(1)2nn a =,()1;n b n n =+(2)①11;12nn S n ⎛⎫=- ⎪+⎝⎭②4k =.【解析】(1)设数列{}n a 是正项等比数列的公比为0q >,因为1310a a +=,4232a a a -=所以有1113211110222a a q a a q a q a qq +==⎧⎧⇒⎨⎨-==⎩⎩,所以2;nn a = (1232nb n a a aa =2312322222n n b b n n +++⋅⋅⋅+⇒⨯⨯⨯⋅⋅⋅⨯=⇒=(1)2222(1);n b n n n b n n +⇒=⇒=+(2)①因为 11n n nc a b =-, 所以,123n n S c c c c =+++⋅⋅⋅+,123123()()n n n S a a a a b b b b ⇒=+++⋅⋅⋅+-+++⋅⋅⋅+,11[1()]111122[],1122334(1)12n n S n n -⇒=-+++⋅⋅⋅+⨯⨯⨯⨯+-111111111()(1),2223341n n S n n ⇒=---+-+-+⋅⋅⋅+-+11111()1().2112n n n S n n ⇒=--+=-++②令11111111(1)(2)2()()22122(1)(2)n n n n n n n n S S n n n n ++++++--=--+=++⋅++, 由于12n +比(1)(2)n n ++变化的快,所以10n n S S +->,得4n <, 即1234,,,S S S S ,递增而456,,,,n S S S S ⋅⋅⋅递减,4S ∴是最大, 即当4k =时,对任意*n N ∈,均有k n S S ≥.例8.(2019·江苏高考真题)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M-数列”{c n }θ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e .列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【压轴训练】1.(2019·安徽高考模拟(文))已知等差数列{}n a 的前n 项和为n S ,且8109S S S <<,则满足0n S >的正整数n 的最大值为( ) A .16 B .17C .18D .19【答案】C 【解析】由8109S S S <<得,90a >,100a <,9100a a +>,所以公差大于零.又()117179171702a a S a +==>,()1191910191902a a S a +==<,()()1181891018902a a S a a +==+>,故选C.2.(2019·北京师大附中高考模拟(文))已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12,则1m +9n的最小值为( ) A .32B .83C .114D .不存在【答案】C 【解析】设正项等比数列{a n }的公比为q ,且q >0,由a 7=a 6+2a 5得:a 6q=a 6+62a q, 化简得,q 2-q-2=0,解得q=2或q=-1(舍去),因为a m a n =16a 12,所以()()1111m n a qa q --=16a 12,则qm+n-2=16,解得m+n=6,所以191191918(m n)10106663n m m n m n m n ⎛⎛⎫⎛⎫+=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝… . 当且仅当9n m m n =时取等号,此时96n m m n m n ⎧=⎪⎨⎪+=⎩,解得3292m n ⎧=⎪⎪⎨⎪=⎪⎩, 因为mn 取整数,所以均值不等式等号条件取不到,则1983m n +>, 验证可得,当m=2、n=4时,19m n+取最小值为114,故选:C .3.(2019·北京高三期末(理))已知为等差数列,为其前项和.若,,则公差___;的最大值等于___. 【答案】 12【解析】由a 2=4,a 3+a 5=0得得,则S n =6n(﹣2)=﹣n 2+7n =﹣(n )2,则当n =3或4时,S n 取得最大值,最大值为S 3=﹣9+21=12, 故答案为:﹣2,124.(2019·山东枣庄八中高三月考(理))已知数列{}n a 的前n 项和为n S ,且12n n S a +=,则使不等式2221286n a a a +++<成立的n 的最大值为( )A .3B .4C .5D .6【答案】B 【解析】根据题意,数列{}n a 满足12n n S a +=, 当1n =时,1121a a =+,得11a =,当2n ≥时,()112n n n n n a a S S a ---=-=,即12n n a a -=,所以12nn a a -= 又∵11a =满足上式,即{}n a 是以2为公比,1为首项的等比数列则12n n a -=, 则214n n a -=,则数列{}2na 是以1为首项,4为公比的等比数列,则()()22212114141143n nn S a a a -=+++==--,若2221286n a a a +++<,则有()141863n-<, 变形可得:4259n <,又由*n N ∈,则4n ≤,即n 的最大值为4; 故选:B .5.(2019·江苏高考模拟)已知正项等比数列{}n a 的前n 项和为n S .若9362S S S =+,则631S S +取得最小值时,9S 的值为_______.【解析】由9362S S S =+,得:q≠1,所以936111(1)(1)(1)2111a q a q a q q q q---=+---,化简得:936112(1)q q q -=-+-,即963220q q q --+=,即63(1)(2)0q q --=,得32q =,化简得631S S +=6131(1)11(1)a q qq a q --+--=11311a q q a -+≥-, 当11311a q q a -=-,即1a =时,631S S +取得最小值,所以919(1)1a q S q -==-9(1)1q q --=3故答案为:6.(2019·广东高考模拟)已知等差数列{a n }的前n 项和为S n ,若S 4=10,S 8=36,当n∈N *时,nn 3a S +的最大值为______. 【答案】71 【解析】由题意,等差数列{}n a 的前n 项和为n S ,若4810,36S S ==,设首项为1a ,公差为d ,则11434102878362a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩,解得11a d ==,所以,所以(1)2n n n S +=, 则2322(3)(4)1271272nn a n n n n S n n n n+===++++++,当12n n +取最小值时,3n n a S +取最大值,结合函数()12(0)f x x x x =+>的单调性,可得当3n =或4n =时,317n n max a S +⎛⎫= ⎪⎝⎭. 故答案为:71. 7.(2019·天津高考模拟(文))已知首项与公比相等的等比数列{}n a 中,若m ,n *∈N ,满足224m n a a a =,则21m n+的最小值为__________. 【答案】1 【解析】设等比数列{}n a 公比为q ,则首项1a q =由224m n a a a =得:()()22113111m n a q a q a q --⋅=则:28m nqq += 28m n ∴+=()2112114142224888n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⋅++=⋅+++=⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴*,m n N ∈ 40,0n mm n∴>>则44n m m n +≥=(当且仅当4n m m n =,即2n m =时取等号) ()min 2114418m n ⎛⎫∴+=⨯+= ⎪⎝⎭ 本题正确结果:18.(2019·江苏金陵中学高考模拟)设数列{}n a 为等差数列,其前n 项和为n S ,已知14760a a a ++=,25851a a a ++=,若对任意n N *∈,都有n S ≤k S 成立,则正整数k 的值为_______.【答案】10 【解析】因为数列{}n a 为等差数列,设公差为d ,14760a a a ++=,25851a a a ++=,两式相减, 得:3d =-9,所以,d =-3, 由等差中项得14743=60a a a a ++=,即14=320a a d +=,解得:1a =29,所以,(1)29(3)2n n n S n -=+⨯-=236122n n -+ ,当n =616时,n S 取得最大值,但n 是正整数,所以,当n =10时,n S 取得最大值, 对任意n N *∈,都有n S ≤k S 成立,显然k =10. 故答案为:109.(2019·江苏扬州中学高考模拟)数列{}n a 是等差数列,11a =,公差[]1,2d ∈,且4101615a a a λ++=,则实数λ的最大值为______. 【答案】12- 【解析】41016111153(9)1515a a a a d a d a d λλ++=∴+++++=,15()219f d dλ==-+,因为[]1,2d ∈,所以令19,[10,19]t d t =+∈,因此15()2f t t λ==-,当[10,19]t ∈,函数()f t λ=是减函数,故当10t =时,实数λ有最大值,最大值为1(10)2f =-.10.(2019·福建高考模拟(理))在数列{}n a 中,1253a a +=,()()11280n n n a na n N *+--+=∈,若()12n n n n b a a a n N *++=⋅⋅∈,则{}n b 的前n 项和取得最大值时n 的值为__________.【答案】10 【解析】解法一:因为()11280n n n a na +--+=① 所以()211280n n na n a ++-++=②,①-②,得122n n n na na na ++=+即122n n n a a a ++=+,所以数列{}n a 为等差数列. 在①中,取1n =,得1280a -+=即128a =,又1253a a +=,则225a =, 所以313n a n =-.因此12100a a a >>>>,1112130a a a >>>>所以1280b b b >>>>,99101180b a a a =⋅⋅=-<,10101112100b a a a =⋅⋅=>,1112130b b b >>>>所以12389T T T T T <<, 9101112T T T T >>又1089108T T b b T =++>,所以10n =时,n T 取得最大值. 解法二:由()11280n n n a na +--+=,得()12811n n a a n n n n +-=---, 令1n n a c n +=,则11111282811n n c c n n n n -⎛⎫⎛⎫-=--=- ⎪ ⎪--⎝⎭⎝⎭,则11281n c c n ⎛⎫-=- ⎪⎝⎭, 即1211281281n c c a n n ⎛⎫⎛⎫=+-=+-⎪ ⎪⎝⎭⎝⎭, 代入得()()1222812828n n a nc na n n a +==+-=+-,取1n =,得1280a -+=,解得128a =,又1253a a +=,则225a =,故1283n a n +=-所以313n a n =-,于是()()()12313283253n n n n b a a a n n n ++=⋅⋅=---. 由0n b ≥,得()()()3132832530n n n ---≥,解得8n ≤或10n =, 又因为98b =-,1010b =, 所以10n =时,n T 取得最大值.11.(2019·全国高考真题(文))记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 【答案】(1)210n a n =-+; (2)110()n n N *≤≤∈. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩, 解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤, 解得110n ≤≤,所以n 的取值范围是:110()n n N *≤≤∈12.(2017·上海高考真题)根据预测,某地第个月共享单车的投放量和损失量分别为和(单位:辆),其中,,第个月底的共享单车的保有量是前个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量; (2)已知该地共享单车停放点第个月底的单车容纳量(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】试题分析:(1)计算和的前项和的差即可得出答案; (2)令得出,再计算第个月底的保有量和容纳量即可得出结论.试题分析: (1)(2),即第42个月底,保有量达到最大,∴此时保有量超过了容纳量.13.(2018·河南高三期中(文))已知非零数列{}n a 满足*13()n n a a n +=∈N ,且1a ,2a 的等差中项为6.(1)求数列{}n a 的通项公式;(2)若32log n n b a =,求12233411111n n b b b b b b b b +++++…取值范围. 【答案】(1) 3nn a = (2) 11,84⎡⎫⎪⎢⎣⎭【解析】(1)由()*13n n a a n N +=∈,得{}na 为等比数列且公比3q =.设首项为1a ,12,a a 的等差中项为6,即1212a a q +=,解得13a =,故3nn a =.(2)由32log 2na nb n ==得到:()11111122141n n b b n n n n +⎛⎫==- ⎪⋅++⎝⎭, ∴1223341111111111111114223141n n b b b b b b b b n n n +⎡⎤⎛⎫⎛⎫++++=-+-++-=- ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦, 因为11141n ⎛⎫- ⎪+⎝⎭可以看成关于n 的单调递增函数,所以n=1时,最小为18,且1111414n ⎛⎫-< ⎪+⎝⎭, ∴1223341111111,84n n b b b b b b b b +⎡⎫++++∈⎪⎢⎣⎭. 14.(2019·湖南高考模拟(文))已知数列{}n a 的首项13a =,37a =,且对任意的n *∈N ,都有1220n n n a a a ++-+=,数列{}n b 满足12n nb a -=,n *∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)求使122018n b b b +++>成立的最小正整数n 的值.【答案】(Ⅰ)21n a n =+,21nn b =+;(Ⅱ)10【解析】(Ⅰ)令1n =得,12320a a a -+=,解得25a =. 又由1220n n n a a a ++-+=知211n n n n a a a a +++-=- 212a a ==-=,故数列{}n a 是首项13a =,公差2d =的等差数列,于是21n a n =+,1221n nn b a -==+. (Ⅱ)由(Ⅰ)知,21nn b =+.于是11n n T b b b =+++ ()122222n =++++ ()12122212n n n n +-=+=+--.令()122n f n n +=+-,易知()f n 是关于n 的单调递增函数,又()1092921031f =+-=,()111021022056f =+-=,故使112018n b b b +++>成立的最小正整数n 的值是10.15.(2019·山东日照一中高三期中(理))已知数列{a n }中,1123123n a a a a na =+++⋯+=,(n∈N *)(Ⅰ)证明当n≥2时,数列{na n }是等比数列,并求数列{a n }的通项a n ; (Ⅱ)求数列{n 2a n }的前n 项和T n ; (Ⅲ)对任意n∈N *,使得恒成立,求实数λ的最小值.【答案】(Ⅰ)(Ⅱ) (Ⅲ)【解析】(Ⅰ)[证明]:由a 1+2a 2+3a 3+…+na n =,得a 1+2a 2+3a 3+…+(n ﹣1)a n ﹣1=(n≥2),①﹣②:,即(n≥2),∴当n≥2时,数列{na n }是等比数列,又a 1=1,a 1+2a 2+3a 3+…+na n =,得a 2=1,则2a 2=2,∴,∴(n≥2),∴;(Ⅱ)解:由(Ⅰ)可知,∴T n =1+2×2×30+2×3×31+2×4×32+…+2n×3n ﹣2,则,两式作差得:,得:;(Ⅲ)解:由≤(n+6)λ,得≤(n+6)λ,即对任意n∈N *恒成立.当n=2或n=3时n+有最小值为5,有最大值为,故有λ≥,∴实数λ的最小值为.16.(2019·山东高考模拟(文))已知数列的各项均为正数,,且对任意,为和1的等比中项,数列满足.(1)求证:数列为等比数列,并求通项公式;(2)若,的前项和为,求使不小于360的的最小值. 【答案】(1)证明见解析,;(2)18.【解析】(1)由题意得:,即数列成等比数列,首项为,公比为,又为正项数列(2)由(1)得:,即或(舍去)所以不小于的的最小值为。
数列求和-倒序相加、绝对值、奇偶性求和◆倒序相加法求和等差数列的求和公式()12n n n a a S +=,其过程正是利用倒序相加的原理.这类题之所以能够利用倒序相加来求和,是因为其自身具备明显的特征,那就是首项与末项相加为定值.一般题中出现12x x k +=(k 为常数),()()12f x f x m +=(m 为常数)时,可以采用倒序相加的方法进行求和.【经典例题1】已知函数()f x 对任意的x ∈R ,都有()()11f x f x +-=,数列{}n a 满足()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()11n f f n -⎛⎫+ ⎪⎝⎭.求数列{}n a 的通项公式. 【答案】12n n a += 【解析】因为()()11f x f x +-=,∴111n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭. 故()120n a f f f n n ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()11n f f n -⎛⎫++ ⎪⎝⎭.① ∴()121n n n a f f f n n --⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭…()01f n f ⎛⎫++ ⎪⎝⎭.② ∴①+②,得21n a n =+,∴12n n a +=. 所以数列{}n a 的通项公式为12n n a +=.【练习1】已知正数数列{}n a 是公比不等于1的等比数列,且120191a a =,试用推导等差数列前n 项和的方法探求:若24()1f x x=+,则()()()122019f a f a f a +++=( )A .2018B .4036C .2019D .4038【答案】D 【解析】120191a a ⋅=,∵函数24()1f x x =+ ∵222214444()41111+⎛⎫+=+== ⎪++⎝⎭+x f x f x x x x, 令122019()()()T f a f a f a =++⋅⋅⋅+,则201920181()()()T f a f a f a =++⋅⋅⋅+, ∵()()()()()()120192201820191242019T f a f a f a f a f a f a =++++⋅⋅⋅++=⨯, ∵4038T =. 故选:D.【练习2】已知函数1()1f x x =+,数列{}n a 是正项等比数列,且101a =,则()()()()()1231819f a f a f a f a f a +++⋅⋅⋅++=__________.【答案】192【解析】函数1()1f x x =+,当0x >时,1111()()111111xf x f x x x xx+=+=+=++++, 因数列{}n a 是正项等比数列,且101a =,则2119218317101a a a a a a a =====,119111()()()()1f a f a f a f a +=+=,同理2183171010()()()()()()1f a f a f a f a f a f a +=+==+=,令()()()()()1231819S f a f a f a f a f a =+++++, 又()()()()()19181721S f a f a f a f a f a =+++++,则有219S =,192S =, 所以()()()()()1231819192f a f a f a f a f a +++⋅⋅⋅++=. 故答案为:192【练习3】已知()442xx f x =+,求122010201120112011f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【答案】1005. 【解析】因为()442x x f x =+,所以()1144214242442x x x x f x ---===++⨯+,所以()()11f x f x +-=.令12200920102011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,倒写得20102009212011201120112011S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.两式相加得22010S =,故1005S =.【练习4】函数()f x 对任意x ∈R ,都有1()(1)2f x f x +-=. (I)求12f ⎛⎫ ⎪⎝⎭的值;(II)若数列{}n a 满足11(0)(1)n n a f f f f n n -⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭,数列{}n a 是等差数列吗?【解析】(I)令 12x =,得1124f ⎛⎫= ⎪⎝⎭. (II)已知函数()f x 对任意x ∈R ,都有1()(1)2f x f x +-=,可得 11(0)(1)11(1)(0)n n n a f f f f n n n a f f f f n n ⎧-⎛⎫⎛⎫=++++ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨-⎛⎫⎛⎫⎪=++++ ⎪ ⎪⎪⎝⎭⎝⎭⎩由两式相加可得11(1)112(2)244n n n n n a a a n -++==⇒-=故数列{}n a 是等差数列.◆数列绝对值求和(1)对于首项小于0而公差大于0的等差数列{}n a 加绝对值后得到的数列{}n a 求和,设{}n a 的前n 项和为 {},n n S a 的前n 项和为n T ,数列{}n a 的第k 项小于0而从第1k +项开始大于或等于0,于是有 ,;2,n n nk S n k T S S n k -⎧=⎨->⎩(2)对于首项大于0而公差小于0的等差数列{}n a 加绝对值后得到的数列{}n a 求和,设{}n a 的前n 项和为 {},n n S a 的前n 项和为n T ,数列{}n a 的第k 项大于0而从第1k +项开始小于或等于0,于是有 ,2,n n kn S n k T S S n k ⎧=⎨->⎩ 。
高三数学总复习《数列》综合题应用教案设计一、设计思想1、设计理念利用信息技术手段优化教学过程,改善教学效果。
2、设计背景在数学的教学过程中,利用传统的媒体(如黑板、粉笔等)教学已经不能适应新课改的要求,需要新的技术手段来促进教学。
3、教材的地位与作用本节教材在学生学习过数列的相关概念与公式的基础上,学习利用数列的公式解答高考题中有关数列的题。
本设计是高一下册最后一章的教学内容。
二、学习目标⑴知识与技能掌握等差数列和等比数列的通项公式和前n项和公式,能用等差数列和等比数列的通项公式和前n项和公式解答高考题中有关数列的题。
⑵过程与方法通过教师总结的一般解题方法——“六步法”,体会一般的解题过程,正确解题。
⑶情感、态度与价值观通过对数列的学习,发展数学思维。
教学重点掌握4个有关数列的公式教学难点掌握一般解题方法,正确解题。
三、教学设想:本节课采用以教为主的课堂教学模式,利用PPT讲解。
四、教学过程(一)直接导入通过说明数列在高考题中所占分值17分左右,来说明其重要性。
直接导入教学(二)复习重点四个公式(三)提出一般解题方法——六步法1.审题(注意点要标注)2.分析求什么?3.分析已知条件4.把所有已知条件化成a1、d或a1、q的形式5.解方程组,得a1、d和a1、q6.作答(四)重难点突破——09年高考试题文科数学(全国一)例题:(17)(本小题满分10分)设等差数列{an }的前项和为Sn,公比是正数的等比数列{bn}的前项和为Tn,已知a1=1,b1=3,a3+b3=17,T3-S3=12,求{an},{bn}的通项公式。
解:设{an}的公差为d,数列{bn}的公比为q>0,由题得:1+2d+q2=17 (1) q2+q+1-(3+3d)=12 (2) q>0 (3)解(1) (2) (3)得:q=2,d=2.所以,an =2n-1,bn=2n-1(五) 课堂小结利用正确的解题步骤解题。
高三数学复习教案:高考数学数列复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:高三数学复习教案:高考数学数列复习教案希望能为您的提供到帮助。
本文题目:高三数学复习教案:高考数学数列复习教案【知识图解】【方法点拨】1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证.2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等.5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.第1课数列的概念【考点导读】1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;2. 理解数列的通项公式的意义和一些基本量之间的关系;3. 能通过一些基本的转化解决数列的通项公式和前项和的问题。
【基础练习】1.已知数列满足,则 = 。
分析:由a1=0, 得由此可知: 数列是周期变化的,且三个一循环,所以可得:2.在数列中,若,,则该数列的通项 2n-1 。
3.设数列的前n项和为,,且,则 ____2__.4.已知数列的前项和,则其通项 .【范例导析】例1.设数列的通项公式是,则(1)70是这个数列中的项吗?如果是,是第几项?(2)写出这个数列的前5项,并作出前5项的图象;(3)这个数列所有项中有没有最小的项?如果有,是第几项? 分析:70是否是数列的项,只要通过解方程就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。
解:(1)由得:或所以70是这个数列中的项,是第13项。
专题08 自然环境的整体性和差异性1.下列山地中,垂直方向自然带类型最多的是( )A.秦岭B.喜马拉雅山C.阿尔卑斯山D.阿巴拉契亚山答案 B焉耆马是我国古代西域名马,体型较小,善奔跑,耐力好,这些特征与其所处环境密切相关。
焉耆马集中产自天山海拔2800米处高山盆地,此盆地由三个“U”形谷组成。
下图为“我国天山自然带分布图”。
据此完成2~3题。
2.下列有关天山自然地理环境的叙述,正确的是( )A.A为北坡,B为背风坡B.A坡植被比B坡的更为茂盛C.L自然带为落叶阔叶林带D.可找到冰川运动痕迹3.焉耆马的特征形成原因与下列哪个因素关系最小( )A.冰雪融水提供优质水源B.平坦地形提供奔跑场所C.多样植被营养丰富D.高寒缺氧提高耐力答案 2.D 3.A解析第2题,由图可知A坡雪线高于B坡,雪线以下同一自然带A坡高于B坡,则可推知A坡既是阳坡又是背风坡,B坡既是阴坡又是迎风坡,故A坡为南坡,B坡为北坡。
B坡的自然带数量多于A坡,故B坡植被更为茂盛。
L自然带介于山地草甸带和山地草原带之间,且海拔较高,又是阴坡,光照不足,气温低,植被以针叶林为主。
该山顶部有高山冰雪带,海拔2800米处有“U”形谷分布,故可以找到冰川运动痕迹。
第3题,焉耆马集中产自天山海拔2800米处高山盆地,海拔高,高寒缺氧的环境提高了焉耆马的耐力;盆地地形,盆地内部平坦开阔,有利于形成其善奔跑的特点;多样植被为其生长提供了丰富的营养,气候干旱降水少,形成了其较小的体型特征。
浙江境内多丘陵山地,位于浙西北的西天目山生物多样性丰富。
读“西天目山垂直自然带谱示意图”,完成4~5题。
4.西天目山从山麓到山顶的土壤分布特征体现了自然地理环境的( )A.垂直分异规律B.地方性分异规律C.纬度地带分异规律D.干湿度地带分异规律5.M自然带是( )A.针叶林带B.落叶阔叶林带C.常绿硬叶林带D.常绿阔叶林带答案 4.A 5.D下图为“哈萨克族牧民转场放牧示意图”。
数列教学设计精选5篇数列教案篇一关键词高中数学;案例式教学问题教学是数学学科知识内涵和要点的有效载体,是教学目标理念展现的重要途径,是能力素养培养的重要平台。
长期以来,问题教学活动方略的实施,一直以来成为广大高中数学教师进行探究和实践的重要课题。
但在传统问题教学活动中,部分教师片面的将问题教学看作是知识内容、解题方法传授的“工具”,在问题内容的设置和问题解答的传授中,不能精心准备,有的放矢,导致问题教学的效能达不到预期目标。
新实施的高中数学课程标准则指出:“要注重发挥数学问题承载知识内涵的重要载体以及学生能力培养的功能特性”,“设置‘少而精’的数学问题,实现学生知识内涵有效掌握和能力品质的有效提升。
”可见,传统“胡子眉毛一把抓”的“题海式”问题教学模式,已经不能适应新课改的要求。
“少而精”的“典型性”的案例式教学模式,以其在反映教学内涵要义上的精准性,培养学生学习能力上的功能性等特征,成为有效教学的重要组成部分。
近几年来,本人就如何做好案例式教学活动进行了尝试,现就如何选取典型案例,培养学生学习能力方面进行简要阐述。
一、问题案例应凸显“精”字,体现精辟性,使学生在感知问题内涵中领会设计意图案例1 已知A(-2,-3),B(4,1),延长AB至点P,使AP的绝对值等于PB绝对值的三倍,求点P的坐标。
上述问题是教师在教学“平面向量的坐标运算”知识内容,在讲解“向量定比分点的几何运用”考察点时所设置的一道问题案例。
教师在引导学生进行问题分析过程中,使学生了解到该问题是考查学生向量的定比分点坐标公式的应用。
然后,教师再次引导学生进行问题解答方法的探索,通过对问题条件关系的分析,发现该问题可以采用两种不同的解答方法,一种是利用向量定比分点坐标公式求,考虑P为分点,应用定比分点坐标公式求点P的坐标。
第二种是把向量的定比分点坐标公式看做是一个等量关系,通过解方程的思想处理问题。
学生在上述问题解答过程中,对向量定比分点坐标公式的运用有较为准确和深刻的掌握,并对如何运用该知识点内容做到“胸中有数”。
【2018年高考考纲解读】 高考对本内容的考查主要有:(1)数列的概念是A 级要求,了解数列、数列的项、通项公式、前n 项和等概念,一般不会单独考查; (2)等差数列、等比数列是两种重要且特殊的数列,要求都是C 级,熟练掌握等差数列、等比数列的概念、通项公式、前n 项求和公式、性质等知识,理解其推导过程,并且能够灵活应用. (4)通过适当的代数变形后,转化为等差数列或等比数列的问题. (5)求数列的通项公式及其前n 项和的基本的几种方法. (6)数列与函数、不等式的综合问题.试题类型可能是填空题,以考查单一性知识为主,同时在解答题中经常与不等式综合考查,构成压轴题. 【重点、难点剖析】1.等差、等比数列的通项公式等差数列{a n }的通项公式为a n =a 1+(n -1)d =a m +(n -m )d ;等比数列{a n }的通项公式为a n =a 1qn -1=a m qn -m.2.等差、等比数列的前n 项和 (1)等差数列的前n 项和为S n =n a 1+a n 2=na 1+n n -2d .特别地,当d ≠0时,S n 是关于n 的二次函数,且常数项为0,即可设S n =an 2+bn (a ,b 为常数). (2)等比数列的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-q n 1-q=a 1-a n q1-q ,q ≠1,特别地,若q ≠1,设a =a 11-q ,则S n =a -aq n.3.等差数列、等比数列常用性质(1)若序号m +n =p +q ,在等差数列中,则有a m +a n =a p +a q ;特别的,若序号m +n =2p ,则a m +a n =2a p ;在等比数列中,则有a m ·a n =a p ·a q ;特别的,若序号m +n =2p ,则a m ·a n =a 2p ;(2)在等差数列{a n }中,S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,其公差为kd ;其中S n 为前n 项的和,且S n ≠0(n ∈N *);在等比数列{a n }中,当q ≠-1或k 不为偶数时S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其中S n 为前n 项的和(n ∈N *).4.数列求和的方法归纳(1)转化法:将数列的项进行分组重组,使之转化为n 个等差数列或等比数列,然后应用公式求和;(2)错位相减法:适用于{a n ·b n }的前n 项和,其中{a n }是等差数列,{b n }是等比数列;(3)裂项法:求{a n }的前n 项和时,若能将a n 拆分为a n =b n -b n +1,则a 1+a 2+…+a n =b 1-b n +1; (4)倒序相加法:一个数列倒过来与原数列相加时,若有公因式可提,并且剩余的项的和容易求出,那么这样的数列求和可采用此法.其主要用于求组合数列的和.这里易忽视因式为零的情况;(5)试值猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.易错点:对于S n 不加证明;(6)并项求和法:先将某些项放在一起先求和,然后再求S n .例如对于数列{a n }:a 1=1,a 2=3,a 3=2,a n+2=a n +1-a n ,可证其满足a n +6=a n ,在求和时,依次6项求和,再求S n .5.数列的应用题(1)应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.(2)数列应用题一般是等比、等差数列问题,其中,等比数列涉及的范围比较广,如经济上涉及利润、成本、效益的增减,解决该类题的关键是建立一个数列模型{a n },利用该数列的通项公式、递推公式或前n 项和公式. 【题型示例】题型1、等差、等比数列中基本量的计算【例1】(2017·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8(a 4+a 5)-(a 4+a 3)=8, ∴d =4,故选C.【2017江苏,9】等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知3676344S S ==,,则8a = ▲ .【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【变式探究】【2016年高考北京文数】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______.. 【答案】6【解析】∵{}n a 是等差数列,∴35420a a a +==,40a =,4136a a d -==-,2d =-,∴616156615(2)6S a d =+=⨯+⨯-=,故填:6.【举一反三】 (2015·江苏,11)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.【变式探究】(1)(2014·全国大纲卷)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3(2)(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.【命题意图】(1)本题主要考查等比数列的性质、对数的运算.(2)本题主要考查等差数列的性质,意在考查考生灵活应用等差数列的性质解决问题的能力. 【答案】(1)C (2)8【解析】(1)lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 4·a 5)4=lg(2×5)4=4,故选C. (2)∵数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,∴a 8>0.又a 7+a 10=a 8+a 9<0,∴a 9<0,∴当n =8时,其前n 项和最大.【变式探究】设数列{a n }是公差不为0的等差数列,S n 为其前n 项的和,满足:a 22+a 23=a 24+a 25,S 7=7. (1)求数列{a n }的通项公式及前n 项的和S n ;(2)设数列{b n }满足b n =2a n ,其前n 项的和为T n ,当n 为何值时,有T n >512.【规律方法】求等差、等比数列通项与前n 项和,除直接代入公式外,就是用基本量法,要注意对通项公式与前n 项和公式的选择.【变式探究】 已知数列{a n }的前n 项和为S n ,a 1=3,{}1+S n 是公比为2的等比数列. (1)证明:{a n }是等比数列,并求其通项;(2)设数列{b n }满足b n =log 3a n ,其前n 项和为T n ,当n 为何值时,有T n ≤2 012? 【解析】(1)证明 由题意,得1+S n 1+S n -1=2(n ≥2),即1+S n =4(1+S n -1),同理,得1+S n +1=4(1+S n ). 两式相减,得S n +1-S n =4(S n -S n -1), 即a n +1=4a n ,a n +1a n=4(n ≥2). 又a 1=3,所以{a n }是首项为3,公比为4的等比数列,所以a n =3·4n -1=3·22n -2.(2)解 由(1)得a n =3·22n -2,所以b n =log 2(3·22n -2)=log 23+2(n -1),所以{b n }是首项为log 23,公差为2的等差数列,前n 项和为T n =n log 23+n (n -1),于是由n 2<n log 23+n (n -1)≤2 012,得n < 2 012,又n ∈N *,所以1≤n ≤44,即n =1,2,3,…,44时,T n ≤2 012.题型2、与等差、等比数列有关的最值问题【例2】【2016高考新课标1卷】设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2 …a n 的最大值为 . 【答案】64【解析】设等比数列{}n a 的公比为(0)q q ≠,由1324105a a a a +=⎧⎨+=⎩得2121(1)10(1)5a q a q q ⎧+=⎪⎨+=⎪⎩,解得1812a q =⎧⎪⎨=⎪⎩.所以2(1)1712(1)22212118()22n n n n n n nn a a a a q--++++-==⨯=,于是当3n =或4n =时,12n a a a 取得最大值6264=.【举一反三】 (2015·四川,16)设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列. (1)求数列{a n }的通项公式;(2)记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求使得|T n -1|<11 000成立的n 的最小值.(2)由(1)得1a n =12n ,所以T n =12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-12n .由|T n -1|<11 000,得⎪⎪⎪⎪⎪⎪1-12n -1<11 000,即2n>1 000,因为29=512<1 000<1 024=210, 所以n ≥10, 于是,使|T n -1|<11 000成立的n 的最小值为10. 【规律方法】上述两种求A n 最值的方法都是运用函数思想.法一是直接研究子数列{a 2n }.法二是研究A n =19(19n +2-2n +1)的单调性求其最值. 【变式探究】已知等差数列{a n }的首项a 1≠0,公差d ≠0,由{a n }的部分项组成的数列ab 1,ab 2,…,ab n ,…为等比数列,其中b 1=1,b 2=2,b 3=6. (1)求数列{b n }的通项公式b n ;(2)若数列{b n }的前n 项和为S n ,求S n 的值; (3)求A n =S n -2 012n 9的最小值.=13⎝ ⎛⎭⎪⎫4n-13+2n .(3)由S n =13⎝ ⎛⎭⎪⎫4n-13+2n ,得A n =S n -2 012n 9=19(4n -2 006n -1),若存在n ∈N *,使得A n ≤A n +1,且A n ≤A n -1,则A n 的值最小.于是由⎩⎪⎨⎪⎧194n-2 006n -1≤19[4n +1- 2 006n +1-1],194n-2 006n -1≤19[4n -1- 2 006n -1-1],解得2 0063≤4n ≤4×2 0063(n ∈N *),取n =5,(A n )min =2 9839.题型三、数列求和问题【例3】【2017山东,文19】(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){ b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.令nn nb c a =, 则212n nn c +=,12231357212122222n n n n n n T c c c --+=+++=+++++, 又234113572121222222n n n n n T +-+=+++++, 两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-. 【举一反三】【2017山东,文19】(本小题满分12分)已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){ b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.令nn nb c a =, 则212n nn c +=,12231357212122222n n n n n n T c c c --+=+++=+++++, 又234113572121222222n n n n n T +-+=+++++, 两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-. 【变式探究】【2017北京,文15】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1, a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求和:13521n b b b b -++++.【答案】(Ⅰ)21n a n =- ;(Ⅱ)312n -.【变式探究】【2016高考江苏卷】(本小题满分16分)记{}1,2,100U =…,.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S . (1)求数列{}n a 的通项公式;(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C CDD S S S +≥.【答案】(1)13n n a -=(2)详见解析(3)详见解析(3)下面分三种情况证明. ①若D 是C 的子集,则2C C D C D D D D S S S S S S S +=+≥+=. ②若C 是D 的子集,则22C CDC C CD S S S S S S +=+=≥.③若D 不是C 的子集,且C 不是D 的子集. 令U E CD =ð,U F D C =ð则E ≠∅,F ≠∅,EF =∅.于是C E C D S S S =+,D F CD S S S =+,进而由C D S S ≥,得E F S S ≥.设k 是E 中的最大数,l 为F 中的最大数,则1,1,k l k l ≥≥≠.由(2)知,1E k S a +<,于是1133l k l F E k a S S a -+=≤≤<=,所以1l k -<,即l k ≤. 又k l ≠,故1l k ≤-, 从而1121131133222l l k E F l a S S a a a ----≤+++=+++=≤≤,故21E F S S ≥+,所以2()1C C DD CDS S S S -≥-+,即21C C D D S S S +≥+.综合①②③得,2C C D D S S S +≥.【举一反三】 已知数列{a n }满足a 1=1,a 2=-1,当n ≥3,n ∈N *时,a n n -1-a n -1n -2=3n -n -.(1)求数列{a n }的通项公式; (2)是否存在k ∈N *,使得n ≥k 时,不等式S n +(2λ-1)a n +8λ≥4对任意实数λ∈[0,1]恒成立?若存在,求出k 的最小值;若不存在,请说明理由.解得,n ≤1或n ≥5.∴满足条件的k 存在,k 的最小值为5.【规律方法】数列通项公式的还原方法比较多样,可以构造特殊数列,也可以立足于运算、归纳,最后补充证明.【变式探究】设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *. (1)求a 2的值;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有1a1+1a2+…+1a n<74.。