蛋白质组学数据剖析报告共75页文档
- 格式:ppt
- 大小:10.08 MB
- 文档页数:75
蛋白质组分析蛋白质组(proteome)源于蛋白质(protein)与基因组(genome)两个词的杂合,其定义为proteins expressed by a genome,即一个基因组表达的全部蛋白质。
目前认为蛋白质组的内涵是一个细胞、一类组织或一种生物的基因组所表达的全部蛋白质。
蛋白质组学(proteomics)是研究蛋白质组的一门新兴学科,旨在阐明生物体全部蛋白质的表达模式及功能模式。
蛋白质化学着重于单一蛋白质结构、功能的研究,例如某一种蛋白质或蛋白质亚基的全序列分析,三维立体结构的确定,这样的结构如何执行功能、在生理上所扮演的角色,以及代谢的生化机制等。
蛋白质组学则是研究多种蛋白质组成的复杂系統。
Proteomics的字尾“-omics”的意思是“组学”,代表对生物、生命体系研究工作方式的重新定义,也就是说,蛋白质组学是对基因组所表达的整套蛋白质的分析,其研究对象是多蛋白质混合物的“系统”行为,而不是“单一组成”的行为。
它通过对一个大系统中包含的所有蛋白质进行分离、鉴定、表征和定量,提供关于该系统准确和全面的数据和信息。
蛋白质组与基因组通常,一个细胞中表达两类基因:①必须功能蛋白质的基因;②行使细胞专一性功能蛋白质的基因。
因此,一种生物有一个基因组,但有许多蛋白质组。
因此,蛋白质组与基因组在内涵上有很大的不同,主要表现在以下四个方面:(1)蛋白质组具有多样性图11.1 基因以多种mRNA形式剪接的示意图EXON:外显子,真核细胞基因DNA中的编码序列。
这样的序列可转录为RNA并进而翻译为蛋白质。
P代表磷酸化,sugar代表糖基化,lipid代表脂肪酰化,Ub代表泛素化[3]。
(2)在蛋白质组的研究中,时间和空间的影响都不可忽视(3)蛋白质间主要以相互作用的形式参与生命活动(4)蛋白质组研究对技术的依赖性和要求远远超过基因组学蛋白质组学研究对生物分析化学提出的挑战表11.1 目前蛋白质组学分析中使用的分离与鉴定技术[6-12]技术是否需要标记是否可用于可测定的蛋白质分子量范围动态范围可分离的蛋白点数方法的适用范围检测传统的双向电泳方法(2-DE ) 否 是10 kD ~200 kD1, 0003, 000定量困难,方法的重复性差 荧光双向差示凝胶电泳(DIGE ) Cy-2,3 or 5 fluorophores 标记伯氨基是 10 kD ~200 kD 10, 000[6]3, 000[7]适用于检测高表达水平、长半衰期的蛋白质 基于反相色谱的二维色谱系统[8]否是 >5 kD 的肽或蛋白质100 2, 500限于UV 检测,未与MS 联用 LC-MS/MS 多维色谱系统(MudPit)可以用N 14/N 15标记氨基酸是 蛋白质经酶解后的多肽混合物 10, 000[9]872[10]适用于较复杂的蛋白质混合物,进行MS 分析前需进行分级分离 MALDI-TOF-MS 否 是 >10 kD ,实际测定蛋白质经酶解后的多肽混合物25 不适用 通过肽质量指纹图鉴定已分离的蛋白质 SELDI-TOF-MS [11]否 是 <40 kD 25 不适用利用蛋白质芯片对生物样品中蛋白质的质量进行分析I CAT分析技术 以ICAT 试剂标记巯基 是蛋白质经酶解后的多肽混合物 无数据 496[12]适用于含巯基蛋白质的相对定量分析cICAT 分析技术以可裂解的C 12/C 13ICAT 试剂标记巯基否 蛋白质经酶解后的多肽混合物10, 000 496 适用于含巯基蛋白质的相对定量分析differential gel electrophoresis );MudPit ,用于蛋白质分离的多维色谱(multi-dimensional for protein identification );SELDI-MS ,表面增强激光解吸离子化—质谱(surface enhanced laser desorption ionization-MS );基质辅助激光解吸离子化—质谱(MALDI-MS ,matrix-assisted laser desorption ionization-MS);ICAT ,同位素标记的亲和标签(isotope-coded affinity tag)技术;cICAT ,可裂解的ICAT (cleavable ICAT )技术;PTM ,蛋白质翻译后的修饰(posttranslational modification )。
百泰派克生物科技
互作蛋白组质谱结果分析
蛋白质-蛋白质相互作用(PPI)几乎参与所有的的生物学过程,研究PPI是解析相互作用蛋白的作用机制及其生理功能的基础,互作蛋白组也是目前蛋白质组学研究的重要内容。
目前为止,基于质谱(MS)技术的互作蛋白组分析已经成为鉴定PPI 的重要技术,其中以亲和纯化结合质谱分析(AP-MS)是目前应用最广泛的互作蛋白组研究方法。
互作蛋白组经过质谱检测和分析后,基于质谱检测分析得到的蛋白定量矩阵,通过实验组和对照组的蛋白定量差异,过滤背景蛋白和非特异性。
在目前的AP-MS质谱结果分析中,主要以蛋白的非标记定量信号强度(LFQ intensity)为指标,比较实验组和对照组蛋白定量差异,以较对照组中筛选出LFQ intensity显著较高的蛋白作为高置信度靶标蛋白的互作蛋白。
目前AP-MS质谱结果分析中显著差异蛋白的筛选标准较常规蛋白质组学通常较高,以差异倍数>10,P value<0.01作为相互作用蛋白的筛选标准。
百泰派克生物科技采用Thermo Fisher的Orbitrap Fusion质谱平台,Orbitrap Fusion Lumos质谱平台结合Nano-LC,提供蛋白质互作分析服务,及后续基于液质联用技术(LC-MS/MS)对IP、Co-IP样品及GST融合蛋白Pull-down等纯化样本中的蛋白/蛋白混合物的质谱鉴定分析服务。
您只需告知我们您的实验目的并寄出样品,我们将负责项目后续所有事宜,包括细胞培养、细胞标记、蛋白提取、抗体IP、效率检测、蛋白酶切、肽段分离、质谱分析、质谱原始数据分析、生物信息学分析。
蛋白组学差异分析报告一、研究背景介绍蛋白组学是研究生物体内所有蛋白质的组合及其功能的科学技术,在生物医药领域具有重要的应用价值。
蛋白组学差异分析是指通过比较不同样本中的蛋白质组成和表达水平的差异,来探究相关疾病的发生机制、寻找生物标志物等。
二、实验设计蛋白组学差异分析需要经过一系列的实验步骤来完成。
以下是一种常见的实验设计流程:1.样本收集:收集不同组别的样本,如对照组和实验组的生物组织或细胞。
2.蛋白质提取:采用合适的方法将蛋白质从样本中提取出来,通常需要破碎细胞膜和细胞核,以获得整个蛋白质组。
3.蛋白质消化:使用蛋白酶对提取出的蛋白质进行消化,将其分解为小肽段。
4.肽段分离:使用高效液相色谱(HPLC)或其他分离技术,将肽段进行分离。
5.质谱分析:使用质谱仪对分离得到的肽段进行质谱分析,通常是质谱-质谱(MS/MS)分析。
6.数据处理:将质谱数据进行处理和分析,得到蛋白质组学差异分析的结果。
三、数据分析蛋白组学差异分析的数据分析是整个研究的核心。
以下是一些常见的数据分析方法:1.数据预处理:包括峰提取、质谱峰校正、去噪等预处理步骤,以提高数据质量。
2.差异分析:通过对比两组样本的质谱数据,寻找差异表达的蛋白质。
3.功能富集分析:对差异表达的蛋白质进行功能注释和富集分析,揭示其潜在的生物学功能和通路。
4.蛋白质互作网络分析:构建差异表达蛋白质的互作网络,分析蛋白质之间的相互作用关系。
5.生物标志物筛选:根据差异表达蛋白质的特征,在多个样本中寻找潜在的生物标志物。
四、结果解读与讨论根据蛋白组学差异分析的结果,我们可以得到一些有价值的信息和见解。
以下是一些结果的解读与讨论的方向:1.差异表达蛋白质的生物学意义:分析差异表达蛋白质的功能注释和富集分析结果,探讨其在相关疾病中的生物学意义。
2.相关通路的发现:通过差异表达蛋白质的功能富集分析结果,发现可能与疾病进展相关的通路,进一步探讨其在疾病发生机制中的作用。
蛋白质组学数据分析——(1)原理转自博客园当前,关于高通量蛋白质组学的研究远不如NGS这般火热,网上关于这方面的知识也寥寥无几,从事这一行也有一段时间了,但还没好好总结过。
加之过段时间可能要去做培训,所以是时候把知识点总结一下,权当复习。
当然整个蛋白质组学研究也算纷繁复杂,不可能面面俱到,而且很多东西我也在学习当中,肯定会出现不少纰漏。
毕竟这份笔记主要还是用于自我查漏补缺,要是在此之外还能帮到需要的朋友,也算善莫大焉了。
这一篇从原理开始讲起,后续会依次总结蛋白质组学鉴定、定量、注释、翻译后修饰、靶向等基础内容,当然最后也会讲到下游数据分析处理。
一、蛋白质组学概述蛋白质组学是特定系统内蛋白质集合及其相互作用的研究。
蛋白质组研究本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识,这个概念是在1994年Marc Wilkins首次提出的。
为什么要研究蛋白质组学?我想一句话就够了:蛋白质是生命活动的物质基础,是生命的执行者。
用业内通俗的话说解释各个组学的作用就是:基因组解释能发生什么?转录组解释将发生什么?蛋白组解释在发生什么?代谢组解释已发生什么?蛋白质组学是后基因组时代的产物,作为中心法则的下游,其复杂程度远远超过基因组学。
基因组的存在是相对稳定的,而细胞和细胞之间的蛋白质组则是随蛋白质和基因以及环境的生物化学反应而变化的。
同一生物在生物体不同部位、生命的不同时期以及不同的环境中,具有不同的蛋白质表达。
人类基因组测序计划的完成并没有给人提供解开生命的密钥,科学家把兴趣转到蛋白质,希望通过蛋白质组的研究来进一步解开生命的本质。
二、质谱仪结构及原理先看下面这张图,大致说明了蛋白质组学分析鉴定的流程。
简单来说就是样本制备后分离进入质谱仪中,产出具有质荷比信息的实际谱图,再和数据库产生的理论谱图进行匹配打分,从而推断出蛋白信息。
olink蛋白质组学报告模板1.摘要:本报告介绍了使用olink蛋白质组学技术对人类样本进行分析的方法和结果。
我们使用olinkHumanCVDIII和InflammationIPanel,分别分析了心血管疾病和炎症相关的蛋白质。
结果显示,我们能够检测到数百个蛋白质,其中许多与心血管疾病和炎症相关。
这些结果将有助于深入了解这些疾病的发病机制,并为临床诊断和治疗提供有用的信息。
2. 背景:olink蛋白质组学技术是一种高通量的蛋白质分析方法,能够同时检测数百个蛋白质的表达水平。
该技术具有高灵敏度、高精度和高通量的特点,适用于对人类样本进行蛋白质组学分析,从而深入了解各种疾病的发病机制。
3. 实验设计:我们使用olink Human CVD III和InflammationI Panel对人类样本进行蛋白质组学分析。
样本来自健康人群和心血管疾病、炎症等患者,包括血清、血浆等样本类型。
我们使用标准化的实验流程进行分析,包括样本处理、酶联免疫吸附实验、读板和数据分析等步骤。
4. 结果:我们能够检测到数百个蛋白质,其中许多与心血管疾病和炎症相关。
例如,我们检测到了与心血管疾病相关的蛋白质如NT-proBNP、Troponin I、FABP4等,以及与炎症相关的蛋白质如IL-6、TNFα、CRP等。
这些结果将有助于深入了解这些疾病的发病机制,并为临床诊断和治疗提供有用的信息。
5. 结论:olink蛋白质组学技术是一种高通量、高精度的蛋白质分析方法,适用于对人类样本进行蛋白质组学分析。
我们使用该技术对人类样本进行了心血管疾病和炎症相关蛋白质的分析,结果显示我们能够检测到数百个蛋白质,其中许多与心血管疾病和炎症相关。
这些结果将有助于深入了解这些疾病的发病机制,并为临床诊断和治疗提供有用的信息。