注意:对于混合问题,情况类似。叠加原理只对线性问题成立。
定理 2.1
定解问题(2.2)和(2.4)的解可表示为
注:利用变上限积分求导公式:
证明:
2.2 解的表达式(行波法)
求解定解问题(2.3):
利用特征线法求得:
利用定理2.1可得定解问题(2.1)的解为:
——一维非齐次波动方程初值问题解的Kirchhoff 公式
( )d
at x
1 2a
t
x a
0
xa(t )
f (s, )dsd
a(t ) x
t
t
x a
xa (t ) xa(t )
f
(s, )dsd
.
(2) 非齐次端点条件 考虑定解问题
例4. 求解初值问题
utt
a2uxx
1 2
(x t),
0 x ,t 0
u(x, 0) sin x,ut (x, 0) 1 cos x, 0 x ,
因此, 对于非齐次波动方程的初值问题
由定理2.1得 ——三维非齐次波动方程初值问题的Kirchhoff 公式
于是
例1. 求解初值问题
utt a2 (uxx uyy uzz ), (x, y, z) R3, t 0 u(x, y, z, 0) x y z,ut (x, y, z, 0) 0, (x, y, z) R3
u(0,t) 0,
t 0.
解.
把 (x) sin x, (x)
1 cos x,
f
( x, t )
1 2
(
x
t
)
关于 x 奇延拓到 (, 0),
(x) sin x,
(
x)