模拟量与数字量的区别.pptx
- 格式:pptx
- 大小:20.46 KB
- 文档页数:2
开关量:开关量只有两种状态,0、1,包括开入量和开出量,反映的是状态。
数字量:数字量由多个开关量组成。
如三个开关量可以组成表示八个状态的数字量。
模拟量:模拟量是连续的量,数字量是不连续的。
反映的是电量测量数值(如电流、电压)。
1、开关量:为通断信号,无源信号,电阻测试法为电阻0或无穷大;也可以是有源信号,专业叫法是阶跃信号,就是0或1,可以理解成脉冲量版主说的好,多个开关量可以组成数字量2、数字量:有0和1组成的信号类型,通常是经过编码后的有规律的信号。
和模拟量的关系是量化后的模拟量。
3、模拟量:连续的电压,电流等信号量,模拟信号是幅度随时间连续变化的信号,其经过抽样和量化后就是数字量。
4、脉冲量:在瞬间电压或电流由某一值跃变到另一值的信号量。
在量化后,其连续规律的变化就是数字量,如果其由0变成某一固定值并保持不变,其就是开关量主要指开入量和开出量,是指一个装置所带的辅助点,譬如变压器的温控器所带的继电器的辅助点(变压器超温后变位)、阀门凸轮开关所带的辅助点(阀门开关后变位),接触器所带的辅助点(接触器动作后变位)、热继电器(热继电器动作后变位),这些点一般都传给PLC或综保装置,电源一般是由PLC或综保装置提供的,自己本身不带电源,所以叫无源接点,也叫PLC或综保装置的开入量。
数字量定义为:在时间和数值上都是断续变化的离散信号。
模拟量定义为:在时间和数值上都是连续变化的信号。
最基本的数字量就是0和1,最基本来说即指反映到开关上就是指一个开关的打开(0)或闭合(1)状态,开关量是无源的,即它需要装置输出电源对它进行检测(这也就是装置的开入量,如综保装置的非电量输入即是一个外部提供的开入量);也可以用0和1进行编码,编成各种通讯码。
模拟量即指经PT、CT等传送过来的电压、电流、频率等电量信号;压力传感器经压力变送器、液位传感器经液位变送器、流量传感器经流量变送器、热电偶或热电偶经温度变送器等传送过来的4-20mA(电Ⅲ型仪表)信号等就是模拟量。
数字量和模拟量的区别第一篇:数字量和模拟量的区别开关量开关量主要指开入量和开出量,是指一个装置所带的辅助点,譬如变压器的温控器所带的继电器的辅助点(变压器超温后变位)、阀门凸轮开关所带的辅助点(阀门开关后变位),接触器所带的辅助点(接触器动作后变位)、热继电器(热继电器动作后变位),这些点一般都传给PLC或综保装置,电源一般是由PLC或综保装置提供的,自己本身不带电源,所以叫无源接点,也叫PLC或综保装置的开入量。
1、数字量在时间上和数量上都是离散的物理量称为数字量。
把表示数字量的信号叫数字信号。
把工作在数字信号下的电子电路叫数字电路。
例如:用电子电路记录从自动生产线上输出的零件数目时,每送出一个零件便给电子电路一个信号,使之记1,而平时没有零件送出时加给电子电路的信号是0,所在为记数。
可见,零件数目这个信号无论在时间上还是在数量上都是不连续的,因此他是一个数字信号。
最小的数量单位就是1个。
2、模拟量在时间上或数值上都是连续的物理量称为模拟量。
把表示模拟量的信号叫模拟信号。
把工作在模拟信号下的电子电路叫模拟电路。
例如:热电偶在工作时输出的电压信号就属于模拟信号,因为在任何情况下被测温度都不可能发生突跳,所以测得的电压信号无论在时间上还是在数量上都是连续的。
而且,这个电压信号在连续变化过程中的任何一个取值都是具体的物理意义,即表示一个相应的温度。
转换原理1.数模转换器是将数字信号转换为模拟信号的系统,一般用低通滤波即可以实现。
数字信号先进行解码,即把数字码转换成与之对应的电平,形成阶梯状信号,然后进行低通滤波。
根据信号与系统的理论,数字阶梯状信号可以看作理想冲激采样信号和矩形脉冲信号的卷积,那么由卷积定理,数字信号的频谱就是冲激采样信号的频谱与矩形脉冲频谱(即Sa函数)的乘积。
这样,用Sa函数的倒数作为频谱特性补偿,由数字信号便可恢复为采样信号。
由采样定理,采样信号的频谱经理想低通滤波便得到原来模拟信号的频谱。
开关量:开关量只有两种状态,0、1,包括开入量和开出量,反映的是状态。
数字量:数字量由多个开关量组成。
如三个开关量可以组成表示八个状态的数字量。
模拟量:模拟量是连续的量,数字量是不连续的。
反映的是电量测量数值(如电流、电压)。
1、开关量:为通断信号,无源信号,电阻测试法为电阻0或无穷大;也可以是有源信号,专业叫法是阶跃信号,就是0或1,可以理解成脉冲量版主说的好,多个开关量可以组成数字量2、数字量:有0和1组成的信号类型,通常是经过编码后的有规律的信号。
和模拟量的关系是量化后的模拟量。
3、模拟量:连续的电压,电流等信号量,模拟信号是幅度随时间连续变化的信号,其经过抽样和量化后就是数字量。
4、脉冲量:在瞬间电压或电流由某一值跃变到另一值的信号量。
在量化后,其连续规律的变化就是数字量,如果其由0变成某一固定值并保持不变,其就是开关量开关量主要指开入量和开出量,是指一个装置所带的辅助点,譬如变压器的温控器所带的继电器的辅助点(变压器超温后变位)、阀门凸轮开关所带的辅助点(阀门开关后变位),接触器所带的辅助点(接触器动作后变位)、热继电器(热继电器动作后变位),这些点一般都传给PLC或综保装置,电源一般是由PLC或综保装置提供的,自己本身不带电源,所以叫无源接点,也叫PLC或综保装置的开入量。
数字量定义为:在时间和数值上都是断续变化的离散信号。
模拟量定义为:在时间和数值上都是连续变化的信号。
最基本的数字量就是0和1,最基本来说即指反映到开关上就是指一个开关的打开(0)或闭合(1)状态,开关量是无源的,即它需要装置输出电源对它进行检测(这也就是装置的开入量,如综保装置的非电量输入即是一个外部提供的开入量);也可以用0和1进行编码,编成各种通讯码。
模拟量即指经PT、CT等传送过来的电压、电流、频率等电量信号;压力传感器经压力变送器、液位传感器经液位变送器、流量传感器经流量变送器、热电偶或热电偶经温度变送器等传送过来的4-20mA(电Ⅲ型仪表)信号等就是模拟量。
1 开关量:为通断信号,无源信号,电阻测试法为电阻0或者无穷大;
也可以是有源信号,专业叫法是阶跃信号,就是0或者1,可以理解成
脉冲量。
2 数字量:由0和1组成的信号类型,通常是经过编码后的有规律的信
号。和模拟量的关系是量化后的模拟量。
3 模拟量:连续的电压电流等信号,模拟信号是幅度随时间连续变化的
信号,经过抽样和量化后就是数字量。
4 脉冲量:在瞬间电压或者电流由某一值跃变到另一值的信号量,在量
化后,其连续有规律的变化就是数字量,如果其由0变成某一个固定值
并且保持不变,其就是开关量。
NPN型和PNP型接近开关接线图
模拟量I/O与数字量I/O有什么区别?之马矢奏春创作在工业自动化控制中,经常会遇到开关量,数字量,模拟量,离散量,脉冲量等各种概念,而人们在实际应用中,对于这些概念又很容易混淆。
现将各种概念罗列如下:1.开关量:一般指的是触点的“开”与“关”的状态,一般在计算机设备中也会用“0”或“1”来暗示开关量的状态。
开关量分为有源开关量信号和无源开关量信号,有源开关量信号指的是“开”与“关”的状态是带电源的信号,专业叫法为跃阶信号,可以理解为脉冲量,一般的都有220VAC, 110VAC,24VDC,12VDC等信号,无源开关量信号指的是“开”和“关”的状态时不带电源的信号,一般又称之为干接点。
电阻测试法为电阻0或无穷大。
2.数字量:很多人会将数字量与开关量混淆,也将其与模拟量混淆。
数字量在时间和数量上都是离散的物理量,其暗示的信号则为数字信号。
数字量是由0和1组成的信号,经过编码形成有规律的信号,量化后的模拟量就是数字量。
3.模拟量:模拟量的概念与数字量相对应,但是经过量化之后又可以转化为数字量。
模拟量是在时间和数量上都是连续的物理量,其暗示的信号则为模拟信号。
模拟量在连续的变更过程中任何一个取值都是一个具体有意义的物理量,如温度,电压,电流等。
4.离散量:离散量是将模拟量离散化之后得到的物理量。
即任何仪器设备对于模拟量都不成能有个完全精确的暗示,因为他们都有一个采样周期,在该采样周期内,其物理量的数值都是不变的,而实际上的模拟量则是变更的。
这样就将模拟量离散化,成为了离散量。
5.脉冲量:脉冲量就是瞬间电压或电流由某一值跃变到另一值的信号量。
在量化后,其变更持续有规律就是数字量,如果其由0酿成某一固定值并坚持不变,其就是开关量。
综上所述,模拟量就是在某个过程中时间和数量连续变更的物理量,由于在实际的应用中,所有的仪器设备对于外界数据的收集都有一个采样周期,其收集的数据只有在下一个采样周期开始时才有变动,采样周期内其数值其实不随模拟量的变更而变动。
模拟量和数字量在传感器中的区别传感器是现代科技中一种重要的物理设备,它能够将非电信号转化为电信号,将被测信号转化为数字信号并输出。
其中,模拟量和数字量是传感器中两种常见的信号类型,本文将就它们的区别进行探讨。
一、模拟量和数字量的概念模拟量是指具有连续变化属性的物理量。
例如,光线的亮暗度、温度的升降、电压的变化都属于模拟量。
而数字量则是指由“0”和“1”两种离散状态组成的物理量。
例如,数字时钟上的时间显示、计算机二进制编码等都属于数字量。
二、模拟量和数字量在传感器中的应用在传感器的应用中,对于不同的信号类型,我们需要选择不同种类的传感器来进行转换。
传感器中常见的模拟量信号有电阻式、电容式、电感式、电压式等。
例如,电子温度计使用铂电阻作为敏感元件,其阻值随温度变化而变化,通过传感器的模拟转换,得到相应的电压变化信号。
而数字量转换则需要使用数字信号传感器。
数字传感器通过内部的 AD 转换器将模拟量转换为数字信号,用二进制位表示信号的大小。
例如,数码相机中的 CCD 感光传感器,通过将光信号转化为模拟信号,再通过 ADC 转化成数字信号,最终生成照片。
三、模拟量和数字量信号的优缺点相较于数字量,模拟量信号有以下优势:1. 具有连续性,在精度上较高;2. 自然界大部分物理量为模拟信号,易于获取。
但同时,它也存在以下缺点:1. 需要模拟转换电路及滤波电路,造成成本高,易受影响;2. 不方便传输和处理,易受干扰。
相对而言,数字信号则具有以下优势:1. 信号可靠、稳定,误差小;2. 传输损耗小,易于扩展和处理;3. 具有丰富的数字信号处理技术支持。
但也存在以下缺点:1. 精度受到采样频率和位数的限制;2. 受电噪声、信号串扰等干扰较大;3. 转换的电子元件成本较高。
四、总结模拟量和数字量转换是传感器的基本转换方式,两者适用的领域不尽相同。
在实际的应用中,我们需要从信号类型、成本、精度等多个方面进行考虑,综合考量优缺点,选择适宜的传感器,实现信号的精确转换。
数字量和模拟量的概念嘿,小伙伴们,今天咱们来聊聊两个听起来挺高大上,但其实跟咱们日常生活息息相关的概念——数字量和模拟量。
别紧张,咱们不用搞那些复杂的公式和代码,就像聊天一样,轻轻松松把它们弄明白。
想象一下,你手里拿着一杯刚泡好的茶,热气腾腾,香气四溢。
这时候,你想跟朋友说这茶的温度刚刚好,不冷不热,对吧?但你要怎么告诉他到底有多“刚刚好”呢?这就是模拟量的世界了。
模拟量就像是那杯茶的温度,它是连续变化的,没有一个固定的数字能完全准确地描述它。
它可以是暖洋洋的春天早晨,也可以是烈日炎炎的夏日午后,每一种感觉都是独一无二的,无法被精确地分割成一小块一小块。
再换个场景,你正在玩电子游戏,屏幕上的分数不断跳动,从100、200、300...一路飙升。
这些数字,就是数字量的代表。
它们不像模拟量那样模模糊糊,而是清清楚楚、明明白白地摆在那里。
你可以一目了然地看到自己得了多少分,离下一个关卡还有多远。
数字量就像是我们生活中的小目标,一个个具体而明确,引导着我们不断前进。
说起来,这数字量和模拟量啊,就像是咱们生活中的两个好朋友。
数字量就像是那个喜欢把一切都安排得井井有条的学霸,每一件事情都要用数字来量化,追求精确无误。
而模拟量呢,就像是那个随性自在的艺术家,喜欢用感觉去体验这个世界,每一刻都是那么独特而不可复制。
你可能会问,这两个家伙在生活中有什么用处呢?嘿,用处可大了!比如说,你家里的空调,它就是通过感知室内的温度(模拟量)来自动调节制冷的强度,让房间保持在一个舒适的温度范围内。
而那些智能家居设备,更是离不开数字量的支持,它们通过接收和处理各种数字信号,来实现对家居环境的智能控制。
所以你看,数字量和模拟量虽然性格迥异,但它们却携手合作,共同构建了我们这个多彩多姿的世界。
下次当你再遇到这两个概念时,不妨想想那杯温暖的茶和那个不断跳动的游戏分数,也许你就能更加亲切地感受到它们的魅力了。
模拟量模拟量是指变量在一定范围连续变化的量;也就是在一定范围(定义域)内可以取任意值(在值域内)。
数字量是分立量,而不是连续变化量,只能取几个分立值,如二进制数字变量只能取两个值。
数字量数字量是物理量的一种。
它们的变化在时间上是不连续的,总是发生在一系列离散的瞬间。
这一类物理量叫做数字量。
也就是离散量,指得是分散开来的、不存在中间值的量。
数字量和模拟量的区别1、数字量在时间上和数量上都是离散的物理量称为数字量.把表示数字量的信号叫数字信号.把工作在数字信号下的电子电路叫数字电路。
例如:用电子电路记录从自动生产线上输出的零件数目时,每送出一个零件便给电子电路一个信号,使之记1,而平时没有零件送出时加给电子电路的信号是0,所在为记数。
可见,零件数目这个信号无论在时间上还是在数量上都是不连续的,因此他是一个数字信号.最小的数量单位就是1个。
2、模拟量在时间上或数值上都是连续的物理量称为模拟量.把表示模拟量的信号叫模拟信号.把工作在模拟信号下的电子电路叫模拟电路。
例如:热电偶在工作时输出的电压信号就属于模拟信号,因为在任何情况下被测温度都不可能发生突跳,所以测得的电压信号无论在时间上还是在数量上都是连续的。
而且,这个电压信号在连续变化过程中的任何一个取值都是具体的物理意义,即表示一个相应的温度。
模拟量模拟量模拟量是相对于数字量而言的。
模拟量是对实际量的模拟,是连续变化的,比如用线圈的偏转来测电流或电压(指针式电流表、电压表),测到的就是模拟量,致真可以指在两个数字中间的任何地方。
而数字式万用表测到的就不是模拟量,它不能连续变化,只能一个字一个字的“跳”。
实际的物理量基本都是模拟量,但是我们在测量的时候,有时候把它们数字化了。
有一些人为产生的量,本身就是数字化的(比如网络信号)。
数字量在自然界中,有一类物理量的变化在时间上和数量上都是离散的。
也就是说,它们的变化在时间上是不连续的,总是发生在一系列离散的瞬间。