自动控制系统的直流调速系统
- 格式:ppt
- 大小:3.93 MB
- 文档页数:66
一、判断题1、自动控制的直流调速系统,往往以调节电枢供电电压为主。
(√)2、在V-M系统中,设置平波电抗器可以抑制电流脉动。
(√)3、在电流断续时,V-M系统机械特性很软,理想空载转速翘得很高。
(√)4、与晶闸管-电动机调速系统相比,直流脉宽调速系统开关频率高,电流容易连续,谐波少,电机损耗及发热都小。
(√)5、转速、电流双闭环直流调速系统中,当电动机过载甚至堵转时,转速调节器可以限制电枢电流最大值,起快速自动保护作用。
(X)6、按照典型II型系统设计转速调节器时,中频宽h可以任意选择。
(X)7、按照典型II型系统设计转速调节器时,由典型II型系统的开环传递函数可知,K、T、τ都就是待定符号。
(X)8、转速、电流双闭环直流调速系统中,对负载变化起抗扰作用的就是转速调节器。
(√)9、积分控制可以使直流调速系统在无静差的情况下保持恒速运行,实现无静差调速。
(√)10、闭环调速系统的静特性表示闭环系统电动机转速与负载电流或转矩间的稳定关系。
(√) 1、弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖动恒转矩负载。
(Ⅹ)2、采用光电式旋转编码器的数字测速方法中,M法适用于测高速,T法适用于测低速。
(√)3、只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实现制动。
(√)4、直流电动机变压调速与降磁调速都可做到无级调速。
(√)5、静差率与机械特性硬度就是一回事。
( Ⅹ )6、带电流截止负反馈的转速闭环系统不就是单闭环系统。
( Ⅹ )7、电流—转速双闭环无静差可逆调速系统稳态时控制电压U k的大小并非仅取决于速度定 U g*的大小。
(√)8、双闭环调速系统在起动过程中,速度调节器总就是处于饱与状态。
( Ⅹ )9、逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。
(Ⅹ)10、可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。
(√)11、双闭环可逆系统中,电流调节器的作用之一就是对负载扰动起抗扰作用。
电力拖动自动控制系统电力拖动自动控制系统简介电力拖动自动控制系统包括:直流调速系统和交流调速系统。
直流调速系统包括:直流调速方法、直流调速电源和直流调速控制。
交流调速系统包括:交流调速系统的主要类型、交流变压调速系统、交流变频调速系统、绕线转子异步电机双馈调速系统——转差功率馈送型调速系统和同步电动机变压变频调速系统。
电力拖动自动控制系统课程内容介绍第一篇直流调速系统闭环反馈直流调速系统1.1 直流调速系统用的可控直流电源根据前面分析,调压调速是直流调速系统的主要方法,而调节电枢电压需要有专门向电动机供电的可控直流电源。
常用的可控直流电源有以下三种:旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。
静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。
直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压。
1.2 晶闸管-电动机系统(V-M系统)的主要问题本节讨论V-M系统的几个主要问题:(1)触发脉冲相位控制;(2)电流脉动及其波形的连续与断续;(3)抑制电流脉动的措施;(4)晶闸管-电动机系统的机械特性;(5)晶闸管触发和整流装置的放大系数和传递函数。
1.3 直流脉宽调速系统的主要问题自从全控型电力电子器件问世以后,就出现了采用脉冲宽度调制(PWM)的高频开关控制方式形成的脉宽调制变换器-直流电动机调速系统,简称直流脉宽调速系统,即直流PWM 调速系统。
(1)PWM变换器的工作状态和波形;(2)直流PWM调速系统的机械特性;(3)PWM 控制与变换器的数学模型;(4)电能回馈与泵升电压的限制。
1.4反馈控制闭环直流调速系统的稳态分析和设计本节提要:转速控制的要求和调速指标;开环调速系统及其存在的问题;闭环调速系统的组成及其静特性;开环系统特性和闭环系统特性的关系;反馈控制规律;限流保护——电流截止负反馈1.5 反馈控制闭环直流调速系统的动态分析和设计反馈控制闭环直流调速系统的动态数学模型;反馈控制闭环直流调速系统的稳定条件; 动态校正——PI调节器的设计;系统设计举例与参数计算转速、电流双闭环直流调速系统和调节器的工程设计方法内容提要:转速、电流双闭环控制的直流调速系统是应用最广性能很好的直流调速系统。
习题课N N NN N NN N n D n n D s c s n s n D n n n n n S n n D ∆+∆=↓⇒↓=∆-∆=∆+∆=∆==D s n )1(N min 0min maxkn C I R n op e d op +∆=∆=∆∑1n cl opcl op op cl op D k s s ks n n )1(D 1s cl cl 00+==+== e s p C K K k α=第一章 闭环控制的直流调速系统1-1 为什么PWM —电动机系统比晶闸管—电动机系统能够获得更好的动态性能?答:PWM —电动机系统(1) 开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。
(2) 低速性能好,稳速精度高,调速范围宽,可达1:10000左右。
(3) 若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。
(4) 无需加电抗器,主回路电磁时间常数TL 小。
1-4 11135148515150151500min 0max 0min max ==--=∆-∆-==N N n n n n n n D1-694.116311513011113.4831168301151n 1111n ns 11)1( D )1(11n n 1n 1n 1212cl121212cl2cl12112122cl21112cl2cl12cl21cl1==++=++==⨯=⨯++=∆++=∆++=∆∆=++=+=+=++=∆∆+∆=∆+∆=∆k k D D k k n k k s k k D D D k D k D k k k n k n cl cl cl cl cl opop cl op op1-5某闭环调速系统的调速范围是1500~150r/min ,要求系统的静差率,那么系统允许的静态速降是多少?如果开环系统的静态速降是100r/min ,则闭环系统的开环放大倍数应有多大? 解7.31106.310011min /06.302.0102.01501min min 0min max =-=-∆∆=+∆=∆=-⨯=-=∆∆+∆=∆==cl op op cl N NN N n n K Kn n r s s n n n n n n n S n n D 1-7 某调速系统的调速范围D=20,额定转速nN ,=1500r/min,开环转速降落为240r/min ,若要求系统的静差率由10%减少到5%,则系统的开环增益将如何变化?解; s=0.1时,8.27133.82401min /33.8)1.01(201.01500)1(=-=-∆∆==-⨯⨯=-=∆cl op N N n n K r s D s n n S=5%时,8.59195.32401min /95.3)05.01(2005.01500)1(=-=-∆∆==-⨯⨯=-=∆cl op N N n n K r s D s n n 1-10 有一V-M 调速系统,电动机参数为:,35k ,5.1R ,2.1R m in,/r 1500n ,A 5,12I ,V 220U ,KW 2.2P S REC s N N N N =Ω=Ω=====要求:(1)计算开环速降和调速要求所允许的闭环速降。
第2章2-1 直流电动机有哪几种调速方法?各有哪些特点?(调速指标)答:调压调速,弱磁调速,转子回路串电阻调速。
特点略。
2-2 简述直流PWM变换器电路的基本结构。
(表2-3,P17主电路)答:直流PWM变换器基本结构如图,包括IGBT和续流二极管。
三相交流电经过整流滤波后送往直流PWM变换器,通过改变直流PWM变换器中IGBT的控制脉冲占空比,来调节直流PWM变换器输出电压大小,二极管起续流作用。
2-3 直流PWM变换器输出电压的特征是什么?答:脉动直流电压。
2=4 为什么直流PWM变换器-电动机系统比T-M系统能够获得更好的动态性能?答:PWM开关频率快、周期短。
直流PWM变换器和晶闸管整流装置均可看作是一阶惯性环节。
其中直流PWM变换器的时间常数Ts等于其IGBT控制脉冲周期(1/fc),而晶闸管整流装置的时间常数Ts通常取其最大失控时间的一半(1/(2mf))。
因fc通常为kHz级,而f通常为工频(50或60Hz),m为一周内整流电压的脉波数,通常也不会超过20,故直流PWM变换器时间常数通常比晶闸管整流装置时间常数更小,从而响应更快,动态性能更好。
2=5 在直流脉宽调速系统中,当电动机停止不动时,电枢两端是否还有电压?电路中是否还有电流?为什么?答:电枢两端还有电压,因为在直流脉宽调速系统中,电动机电枢两端电压仅取决于直流PWM变换器的输出。
电枢回路中还有电流,因为电枢电压和电枢电阻的存在。
2-6 直流PWM变换器主电路中反并联二极管有何作用?如果二极管断路会产生什么后果?答:为电动机提供续流通道。
若二极管断路则会使电动机在电枢电压瞬时值为零时产生过电压。
电枢电压不可控,无法调速2-7 直流PWM变换器的开关频率是否越高越好?为什么?答:不是。
受器件约束。
因为若开关频率非常高,当给直流电动机供电时,有可能导致电枢电流还未上升至负载电流时,就已经开始下降了,从而导致平均电流总小于负载电流,电机无法运转。
基于PWM控制的直流电机自动调速系统设计一、引言直流电机是工业中最常见的电动机之一,其工作原理简单,结构紧凑,控制方便,广泛应用于各行各业。
为了满足不同工况下的运行需求,需要设计一个自动调速系统来调整直流电机的转速。
本文将基于PWM控制方法设计一个直流电机自动调速系统。
二、系统设计1.系统结构直流电机自动调速系统的基本结构包括传感器、控制器、电源和执行器。
传感器用于检测电机的转速,控制器根据检测到的转速信号进行处理,并通过PWM控制方法调整电机的输入电压,从而实现自动调速。
2.传感器选择直流电机的转速检测一般使用霍尔效应传感器来实现。
霍尔传感器可以直接测量电机转子的位置,并根据位置变化来计算转速。
传感器输出的信号经过放大和处理后,可以作为控制器的输入信号。
3.控制器设计控制器是整个自动调速系统的核心部分。
控制器接收传感器的转速信号,并通过PID算法对电机的转速进行调节。
PID算法是一种经典的控制方法,可以根据当前的偏差、偏差变化率和偏差积分值来计算控制量。
在本系统中,控制器输出的控制量即为PWM信号。
4.PWM控制方法PWM(Pulse Width Modulation)控制方法是一种通过调整脉冲宽度来控制输出电压的方法。
在本系统中,PWM控制方法可以通过改变PWM信号的占空比来调整电机的输入电压。
当需要提高电机转速时,增加PWM信号的占空比;当需要降低电机转速时,减小PWM信号的占空比。
通过反馈控制,控制器可以根据实际转速信号不断调整PWM信号的占空比,从而实现电机的自动调速。
5.电源选择在直流电机自动调速系统中,电源需要提供稳定的直流电压以供电机正常工作。
一般可选择线性稳压器或开关稳压器来提供所需的直流电压。
在选择电源时,需要考虑电机的功率和电源的效率,以确保系统的稳定性和可靠性。
6.执行器选择执行器是将控制信号转换为实际操作的部分。
在直流电机自动调速系统中,执行器可选择光耦隔离器和驱动芯片来实现PWM信号控制。
直流电机双闭环调速--⾃动控制原理与系统⼀、单闭环调速系统存在的问题①⽤⼀个调节器综合多种信号,各参数间相互影响,②环内的任何扰动,只有等到转速出现偏差才能进⾏调节,因⽽转速动态降落⼤。
③电流截⽌负反馈环节限制起动电流,不能充分利⽤电动机的过载能⼒获得最快的动态响应,起动时间较长。
电流截⽌负反馈单闭环直流调速系统最佳理想起动过程最佳理想起动过程:在电机最⼤电流(转矩)受限制条件下,希望充分利⽤电机的允许过载能⼒,最好是在过渡过程中始终保持电流(转矩)为允许的最⼤值。
缺点:改进思路:为了获得近似理想的过渡过程,并克服⼏个信号综合在⼀个调节器输⼊端的缺点,最好的办法就是将主要的被调量转速与辅助被调量电流分来加以控制,⽤两个调节器分别调节转速和电流,构成转速、电流双闭环调速系统。
⼆、转速、电流双闭环调速系统的组成双闭环调速系统其原理图双闭环直流调速系统双闭环直流调速系统静态结构图静态结构图系统特点(1)两个调节器,⼀环嵌套⼀环;速度环是外环,电流环是内环。
(2)两个PI调节器均设置有限幅;⼀旦PI调节器限幅(即饱和),其输出量为恒值,输⼊量的变化不再影响输出,除⾮有反极性的输⼊信号使调节器退出饱和;即饱和的调节器暂时隔断了输⼊和输出间的关系,相当于使该调节器处于断开。
⽽输出未达限幅时,调节器才起调节作⽤,使输⼊偏差电压在调节过程中趋于零,⽽在稳态时为零。
(3)电流检测采⽤三相交流电流互感器;(4)电流、转速均实现⽆静差。
由于转速与电流调节器采⽤PI调节器,所以系统处于稳态时,转速和电流均为⽆静差。
转速调节器ASR输⼊⽆偏差,实现转速⽆静差。
三、双闭环调速系统的静特性双闭环系统的静特性如图所⽰特点:1)n0-A 的特点①ASR不饱和。
②ACR不饱和。
或n0为理想空载转速。
此时转速n与负载电流⽆关,完全由给定电压所决定。
电流给定有如下关系??因ASR不饱和,,故。
n0A这段静特性从⼀直延伸到。
2)A—B段①ASR饱和。
转速电流双闭环直流调速系统直流调速系统是一种基于电动机转速等控制参数,控制电动机输出转矩和速度,从而实现对生产现场机械化设备的控制,保护和自动化控制的一种电气控制系统。
该系统的作用不仅在于简化操作流程,提高生产效率和产品质量,还能保护成本昂贵的机械设备,提高生产安全性和稳定性。
本文将对传统的直流调速系统进行改进,引入转速电流双闭环控制算法,以提高系统稳定性和性能精度。
一、直流调速系统的基本原理直流调速系统核心是由一组功率电子器件和控制回路组成的控制电路,它通过调节直流电动机电磁场中的旋转子、定子电磁能量转换比例,实现对电机转速和扭矩的调速和控制。
传统直流调速系统由电源、整流器、PWM变换器、逆变器和电机组成。
其中,电源常用交流电源,整流器将其转换为直流电源供给PWM变换器,PWM变换器通过调节开关时间,改变直流电压的大小和方向,输出可控的交流电源。
逆变器将输出的交流电源进一步变换转化为所需的方向、大小和频率的电源供给电机,并通过反馈调速回路实现对电机转速和扭矩的精确控制。
虽然传统直流调速系统具有结构简单、故障率低、性能稳定等优点,但同时也存在缺点,如控制精度低、抗干扰能力差、控制性能难以满足高精度或高动态性能的要求等问题。
因此,我们需要将目光放在对直流调速系统的提升上,寻找解决控制精度低和抗干扰能力差的解决方案。
转速电流双闭环控制系统是在传统直流调速系统的基础上,增加了电流控制环节,并通过转速电流双闭合控制算法,实现对控制性能的提升,具体包括两个闭合回路:(1)速度控制回路:电动机的转速是该传动系统动作的基础,对于常见的机械传动来说,转速的稳定性直接影响机械精度和运动平顺度。
如图1所示,速度控制回路根据电机的实际转速和给定的转速进行比较,求出误差值,然后进行电路调节,调整终端直流电压的大小和方向,从而控制电动机的输出扭矩和速度。
(2)电流控制回路:通过实现比例积分补偿算法,控制实际输出电流与设定电流的误差,从而实现电机负载扭矩的控制。
基于PID控制的直流电机调速系统1绪论1.1本课程的选题背景PID控制器(按闭环系统误差的比例、积分和微分进行控制的调节器)自30年代末期出现以来,在工业控制领域得到了很大的发展和广泛的应用。
它的结构简单,参数易于调整,在长期应用中已积累了丰富的经验。
特别是在工业过程控制中,由于被控制对象的精确的数学模型难以建立,系统的参数经常发生变化,运用控制理论分析综合不仅要耗费很大代价,而且难以得到预期的控制效果。
在应用计算机实现控制的系统中,PID很容易通过编制计算机语言实现。
由于软件系统的灵活性,PID算法可以得到修正和完善,从而使数字PID具有很大的灵活性和适用性,其中数字PID控制器是由软件编程在计算机内部实现的。
PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。
直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。
随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。
到目前为止,已经出现了多种PWM控制技术。
PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。
由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。
在电机控制系统开发中,常常需要消耗各种硬件资源,系统构建时间长,而在调试时很难对硬件系统进行修改,从而延长开发周期。
随着计算机仿真技术的出现和发展,可用计算机对电机控制系统进行仿真,从而减小系统开发开支和周期。
计算机仿真可分为整体仿真和实时仿真。
整体仿真是对系统各个时间段对各个对象进行计算和分析,从而对各个对象的变化情况有直观的整体的了解,即能对系统进行精确的预测,如Proteus就是一个典型的实时仿真软件。