矩阵键盘的键值计算及编程[严选材料]
- 格式:ppt
- 大小:783.50 KB
- 文档页数:2
矩阵键盘的编程⽅法——读取键值矩阵键盘的使⽤在单品机的学习当中⼗分⼴泛,可是对于许多新⼿,包括本⼈有时也是搞不明⽩,昨天晚上和今天早上的思考和同⾏们的讨论,终于有了点头绪,所以想记录下读取键盘的思路。
在单⽚机的学习版中,矩阵键盘通常如下图设计:下⾯就以按下S16键来讲解其思路:⾸先:P3的⾼位P3.4~P3.7输出为0,低位P3.0~P3.3输出为1;即P3=0x0F,当按下S16键后(有消抖动过程),P3.3的值为0,则P3的值更新为0x07;其次:P3的⾼位P3.4~P3.7输出为1,低位P3.0~P3.3输出为0;即P3=0xF0,当按下S16键后(有消抖动过程),P3.4的值为0,则P3的值更新为0xE0;最后将两个值相加得P3=0xE7;在keyscan()函数(假设我们的键盘扫描程序为unsigned char keyscan())返回其键盘的值供后续的程序调⽤,通常会有⼀个switch块根据其返回值来确定输出的是哪⼀个数值。
下⾯提供⼀段KeilC51语⾔的代码来解释⼀下:1. /*------------------------------------------------2. 键盘扫描程序3. ------------------------------------------------*/4. uchar keyscan( void ) //键盘扫描函数,使⽤⾏列反转扫描法5. {6. uchar cord_h,cord_l;//⾏列值中间变量7. P3 = 0x0f; //⾏线输出全为08. cord_h = P3 & 0x0f; //读⼊列线值9. if( cord_h != 0x0f ) //先检测有⽆按键按下10. {11. delay( 100 ); //去抖12. if( cord_h != 0x0f )13. {14. cord_h = P3 & 0x0f; //读⼊列线值15. P3 = cord_h | 0xf0; //输出当前列线值16. cord_l = P3 & 0xf0; //读⼊⾏线值17. return( cord_h + cord_l );//键盘最后组合码值18. }19. }20. return( 0xff ); //返回该值21. }22.⾸先把P3的⼝赋值为0x0f,同时把P3和0x0f赋值给cord_h(⾏的数值),倘若有按键按下,那么P3的值就会改变,随后cord_h的只也会随之变化,经过消抖之后记录cord_h的值,即cord_h = P3 & 0x0f;(若以S16为例,那么P3.3的值变为0,所以cord_h的值就会变为0x07;)接下来:P3 = cord_h | 0xf0;意在不改变P3的第四位,把P3的⾼四位赋为⾼电平,那么P3=0x0f7;到了关键的⼀步:cord_l = P3 & 0xf0;我当初以为cord_l=0xf0呢,结果就和程序运⾏的不⼀样喽,最后还是问了我的同⾏(⾮常感谢刘伟同志!指点迷津!),其实在第⼆个if语⾔内,S16已经被按下了的,所以P3的值⽴刻就变为0x0e的了,以⾄于cord_l=0x0e,最后返回⾏和列的和return( cord_h + cord_l );(0xe7)。
单片机矩阵键盘的编程I/O端口输出1的端口与输出0的端口对接的时候会检验出原来的端口是0 第一个,这个是错误程序#include<reg52.h>void delay1ms(unsigned int i) //延时函数{unsigned char j;while(i--){for(j=0;j<115;j++) //1ms基准延时程序{;}}}void main(){while(1){P1=0xf0; //建立初始状态,每一行赋值0,每一列赋予1unsigned chars[16]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0 x86,0x8e}; //数码管灯unsigned int l; //分别代表作列与行unsigned int r;if(P1!=0xf0) //检验有没有按键被按下{delay1ms(15); //避免前沿抖动,延时大约15msswitch(P1) //检验有没有键盘被按下{ //如果按下了就检验是哪一列被按下了case 0x70: //p1^7被按下l=4;case 0xB0: //p1^6被按下l=3;case 0xD0: //p1^5被按下l=2;case 0xE0: //p1^4被按下l=1;default:break;}P1=0xf; 、 //每一列赋予1,每一行赋予0switch(P1) //检验哪一行的按键被按下{case 0xE: //p1^0被按下r=1;case 0xD: //p1^2被按下r=2;case 0xB://p1^3被按下r=3;case 0x7:r=4;//p1^4被按下default:break;}//已经知道哪一个按键被按下r=r*l; //得到的数在数值上等于要显示的数目P1=s8[r] //数码管亮}delay1ms(15); //避免后延抖动}}错误的地方在于P1=0xf; 、 //每一列赋予1,每一行赋予0switch(P1) //检验哪一行的按键被按下{这是因为如果没有再次判断当P1!=0XF的时候,就可能出现没有符合case之中的情况而直接运行default这种情况。
矩阵键盘编程键盘结构与类型独立式按键键盘由若干独立式按键组成。
独立式按键指每个按键作为一位占用一根I/O口线,直接用I/O口线构成单个按键电路。
独立式按键键盘可分为中断方式和查询方式两种。
独立式按键键盘优点是配置灵活,软件结构简单,操作速度快;缺点是按键多时I/O口浪费较大,故只在按键数目不多时采用。
行列式键盘(矩阵式键盘)用I/O口线组成行、列结构,按键设置在行列的交点上。
在按键较多时可节省I/O口线,如4×8行列结构可构成32个键的键盘。
行列式键盘键输入过程及接口软件应解决的任务键开关状态的可靠输入主要应解决抖动问题。
对按键编码以便识别对按键编码,使不同的按键有不同的键值或键号。
按键状态的输入方式有中断方式与查询方式两种。
编制键盘程序检测有无按键按下、去抖动、按键信息的逻辑处理、输出确定的键号等。
行列式键盘(矩阵式键盘)及接口程序设计行列式键盘的结构及键值赋值方法键盘行线的一端经上拉电阻接+5v电源,另一端接单片机的输入口(因而各输入口均被钳位于高电平)。
各列线的一端接单片机的输出口,另一端悬空。
按键设置在行列线的交点上,行、列线分别连接到按键的两端,按键按下则相应交点的行列线接通。
由图可见,矩阵式键盘接口的设计思想是把键盘既作为输入设备又作为输出设备对待的。
为了让CPU能识别是哪个按键被按下,必须给每个按键都分配一个键号(一般以十进制数表示)。
例如,4×4列矩阵式键盘共16个按键,键号依次按顺序排列为0~15。
对行列式键盘的每个按键,还有一个更重要的概念:键值或者说键码。
键值是一个可表征按键状态的8位数据,不同的按键有不同的键值。
按键后根据键值便能转到相应的键处理子程序,实现键盘的数据输入功能或命令处理功能。
同一个按键的键值和键号可以相同,也可以不相同,这主要取决于键盘的结构与采用的编码方法。
对行列式键盘来说,识别被按键的位置也就是找出被按键所在行和列的坐标值。
对于4行×4列行列式键盘,被按键所在行和列的坐标值为两个4位数据;而对于8行×8列行列式键盘,则为两个8位数据。
4×4矩阵键盘的工作原理与编程ME300B单片机学习开发系统应用之三---4×4矩阵键盘的工作原理与编程作者:山西太原贵国庆本文介绍如何在ME300B型51/AVR单片机学习开发系统上使用数码管显示4×4矩阵键盘的键值。
一、硬件工作原理的简单介绍该实验使用ME300B上的8位数码管显示电路和4×4矩阵键盘电路。
现将这二部分的电路工作原理进行简单的介绍:1、4×4矩阵键盘的工作原理矩阵键盘又称为行列式键盘,它是用4条I/O线作为行线,4条I/O线作为列线组成的键盘。
在行线和列线的每一个交叉点上,设置一个按键。
这样键盘中按键的个数是4×4个。
这种行列式键盘结构能够有效地提高单片机系统中I/O口的利用率。
图1为ME300B矩阵键盘电路图,行线接P1.4-P1.7,列线接P1.0-P1.3。
地显示。
图3 数码管电路数码管不同位显示的时间间隔可以通过调整延时程序的延时长短来完成。
数码管显示的时间间隔也能够确定数码管显示时的亮度,若显示的时间间隔长,显示时数码管的亮度将亮些,若显示的时间间隔短,显示时数码管的亮度将暗些。
若显示的时间间隔过长的话,数码管显示时将产生闪烁现象。
所以,在调整显示的时间间隔时,即要考虑到显示时数码管的亮度,又要数码管显示时不产生闪烁现象。
在ME300B单片机开发系统中使用数码管来显示信息时,要将JP2的2、3端短接。
见图3二、演示程序的编程方法1、4×4矩阵键盘的编程方法:1.1、先读取键盘的状态,得到按键的特征编码。
先从P1口的高四位输出低电平,低四位输出高电平,从P1口的低四位读取键盘状态。
再从P1口的低四位输出低电平,高四位输出高电平,从P1口的高四位读取键盘状态。
将两次读取结果组合起来就可以得到当前按键的特征编码。
使用上述方法我们得到16个键的特征编码。
举例说明如何得到按键的特征编码:假设“1”键被按下,找其按键的特征编码。
实验五矩阵键盘实验一、实验内容1、编写程序,做到在键盘上每按一个数字键(0-F)用发光二极管将该代码显示出来。
按其它键退出。
2、加法设计计算器,实验板上有12个按键,编写程序,实现一位整数加法运算功能。
可定义“A”键为“+”键,“B”键为“=”键。
二、实验目的1、学习独立式按键的查询识别方法。
2、非编码矩阵键盘的行反转法识别方法。
三、实验说明1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。
2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。
3、识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。
这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。
由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。
行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。