基于内容的视频检索
- 格式:ppt
- 大小:3.82 MB
- 文档页数:74
基于内容的视频检索技术1、什么是基于内容的视频检索技术视频检索技术区别于传统的基于关键字检索的主要特点体现在,它是以图像处理、模式识别、计算机视觉、图像理解等领域的知识为基础,借鉴认知科学、人工智能、数据库管理及人机交互、信息检索等技术领域的知识与数据表示方法,通过引入新的媒体数据表示、数据模型,以及有效的检索算法和友好的人机界面,实现基于内容的视频检索功能。
视频检索技术相对于传统的基于文本的检索方法有两个突出特点:突破了传统的基于表达式检索的局限性,直接对视频的内容进行分析,完全由计算机自动实现提取特征和语义的过程,避免了人工描述的主观性,利用这些内容建立特征索引,实现基于内容的检索;采用相似性匹配的方法进行查询。
2、需要使用哪些技术一、视频镜头检测技术。
由于视频内容丰富,不易建立索引,可以将其从大到小划分为视频、场景、镜头及关键帧4个层次,其中,镜头是视频检索的基本单位,是摄像机一次操作所拍摄的图像序列。
对视频建立索引,首先要将视频分割为镜头。
镜头检测即找到镜头与镜头之间的切换,并找到切换前后的差异。
镜头切换包括渐变和突变,针对不同的情况需使用不同的检测技术。
二、关键帧提取技术。
检测出镜头之后,要进行镜头关键帧的提取。
镜头关键帧是反映镜头主要内容的一帧或几帧图像,因而需要它描述准确且存储数据量尽量小,计算不宜太复杂。
3、基于内容的视频检索技术的现状基于内容的视频检索系统大致分为索引、查询和检索3个模块。
索引模块运用镜头检测、关键帧提取、视频聚类、特征提取等技术对视频信息进行预处理,从而建立视频特征索引,以此作为视频检索的基础和依据;查询模块主要负责实现人机交互,并能通过用户的反馈信息对检索逐步求精;检索模块主要实现视频特征索引与用户提交的查询条件的相似度计算、特征匹配,并根据相关度排序后提交用户查询结果。
用户行为的知识是提高检索系统性能的一个渠道,包括用户熟知的主题、用户提出的确切问题和用户的行为。
基于内容的视频检索与关键技术简述作者:马晨晨周政龙门来源:《新学术论丛》2013年第04期1.引言随着多媒体技术的发展和信息高速公路的出现,数字视频的存储和传输技术都取得了重大的进展。
如何能在海量的视频中找到需要的资料,是视频检索要解决的问题。
传统的视频检索只能通过快进和快退等顺序的方法人工查找,因而是一件非常繁琐耗时的工作,这显然已无法满足多媒体数据库的要求。
用户往往希望只要给出例子或特征描述,系统就能自动地找到所需的视频片断点,即实现基于内容的视频检索。
2.基于内容的视频检索基于内容的视频检索(Content Based Video Retrieval, CBVR)指根据视频的内容及上下文关系,对大规模视频数据库中的视频数据进行检索。
主要特点:直接从视频数据中提取信息线索,它是一种近似匹配,在没人工参与的情况下自动提取并描述视频的特征和内容。
它融合了图像理解、模式识别、计算机视觉等技术。
基于内容的视频检索的过程是先将视频流通过镜头边界检测分割为镜头,并在镜头内选关键帧,再提取镜头的运动特征和关键帧中的视觉特征,作为一种检索机制存入视频数据库,最后根据用户提交的查询按一定特征进行视频检索,将检索结果按相似性程度交给用户,用户可优化查询结果,系统会依用户意见灵活优化检索结果。
特征的提取和检索算法的优劣决定了系统的效率和性能。
3.关键技术视频包含着丰富的内容。
一般对视频采用分层的表达方式表示视频。
一个视频可以表示为场景、镜头、帧几个层次。
帧是视频最基本组成单元,镜头边界检测是视频层次化的基础。
3.1镜头边界检测实现基于内容的视频检索首先要将视频数据自动地分割为镜头,称为镜头边界检测或场景转换检测。
镜头的切换有突变和渐变,突变表现为在相邻两帧之间发生的突变性的镜头转换。
(1)基于像素的镜头检测方法利用视频两帧对应像素之差的绝对值之和作为帧间差,当大于某个阈值m时,则认为有镜头的切换。
缺点是对噪声和物体运动敏感,易造成误识别。
基于内容的视频检索技术综述[摘要]随着多媒体技术及计算机网络技术的迅速发展,多媒体已广泛地应用于如公共信息业、广告、教育、医学、商业及娱乐等多个领域。
数字视频的传播也变得越来越容易,数字电视、多媒体广播、视频会议已经开始逐步走入人们的日常生活中,视频也己经逐渐成为人类信息传播的主流载体之一。
当今,人们面临的问题已不再是视频内容的匮乏,而是面对浩如烟海的视频信息,如何快速、有效地找到自己需要的内容,已经成为了迫切的需求。
故本文分析了现有的视频检索理论框架,对以文字信息为主要特征的视频检索系统关键技术进行了研究。
[关键词] 基于内容的检索;视频检索技术;检索系统随着多媒体技术和网络技术的飞速发展,视频在多个领域得到广泛地应用。
对这些海量的而且包含大量非结构化信息的数据进行组织、表达、管理、查询和检索成为迫切的需求。
因此基于内容的视频检索成为近年来研究的热点。
1、研究背景自 20 世纪 90 年代以来,随着多媒体技术及计算机网络技术的迅速发展,多媒体已广泛地应用于如公共信息业、广告、教育、医学、商业及娱乐等多个领域。
数字视频的传播也变得越来越容易,数字电视、多媒体广播、视频会议已经开始逐步走入人们的日常生活中,视频己经逐渐成为人类信息传播的主流载体之一。
当今人们面临的问题已不再是视频内容的匮乏,而是面对浩如烟海的视频信息,如何快速、有效地找到自己需要的内容,已经成为迫切的需求。
当用户希望从浩瀚的视频数据库中检索感兴趣的资源时,却发现传统的基于关键词的数据库检索方法难以实现。
其主要原因在于:一方面,在许多情况下很难用一个或多个关键词来充分描述视频中的丰富信息,而且这种描述也存在很大的主观性;另一方面,用户很难将其需求清晰地表达出来,而且这种表达和媒体自身的描述也存在很大差异。
为了实现对视频等多媒体信息的有效检索,人们开始研究视频中包涵的“内容”。
因此,基于内容的视频检索技术应运而生,并成为一个新的研究领域。
基于内容的视频检索Content-Based Video Retrieval (CBVR)视频是集图像、声音、文字等为一体的综合性媒体,在众多媒体种类中携带的信息量最大。
随着互联网技术的发展和网络带宽的提升,网络视频数据量成爆炸式增长,如何对互联网上的海量视频数据进行检索已成为国内外的研究热点,是新一代搜索引擎的主要研究内容。
视频检索是通过对海量的非结构化的视频数据进行结构化分析,提取视频内容的特征(包含语义特征),在此基础上实现从内容上对视频进行检索。
原始视频要根据其内容建立索引,需要有一种算法,在无人参与的情况下,能够自动提取并描述视频的特征和内容。
与传统文本检索相比,视频检索存在很大的技术难度。
首先,视频内容的特征难以提取与处理,特别是语义特征的提取存在很大的困难。
其次,视频检索在索引建立、查询处理以及人机交互等方面都与传统的文本搜索存在很大区别,还有一些技术难题有待解决。
视频检索的基本流程:结构化分析→特征提取→语义提取→高维索引→检索反馈→浏览应用动态特征静态特征提取镜头的特征及关键帧的视觉特征存入视频数据库。
在建库后,利用相似度的测量实现基于内容的检索。
1.结构化分析对于视频可以按照如下结构进行分层:视频序列→→→→场景→→→→→→→→镜头→→→→→→→→→帧video scene shot frame(不一定时间连续)(时空连续)(静止画面)(最小语义单元)(摄像机的一次拍摄)(胶片的一格)各层都可以用一些属性来描述。
视频序列的属性主要包括场景的个数和持续时间;场景的属性包括标题、持续时间、镜头数目、开始镜头、结束镜头等;镜头的属性包括持续时间、开始帧号、结束帧号、代表帧集合、特征空间向量等;帧有大量的属性,包括直方图、轮廓图、DC及AC分量图等。
视频结构化分析是指对视频进行镜头分割、关键帧提取和场景分割等处理,从而得到视频的结构化信息,并进一步为视频的检索和浏览提供基本访问单元。