基于超声波的管壁厚测量系统
- 格式:docx
- 大小:1.33 MB
- 文档页数:43
换热器管子内旋转超声检测技术肖 雄江苏中宇检测有限公司 江苏省南京市210012摘要:本文主要介绍换热器管子的内旋转(IRIS)超声检测技术,其主要用途是对在役的换热器管子进行壁厚测量,超声波探头通过对中装置在充满水的管子内部以螺旋的方式检测,通过计算机软件的相关处理,得到管子管壁的C扫描、B扫描、D扫描图像,通过分析便可以检测到一些壁厚减薄类的缺陷,包括表面的腐蚀、介质冲刷造成的冲蚀、管子振动造成的表面损伤等,并通过对比涡流检测,让用户更清楚地了解IRIS检测的优缺点,在实际检修过程中合理选择最佳的检测方法。
关键词:换热器管子;IRIS;涡流检测;测厚Heat exchanger tubes IRIS ultrasonic inspection technologyXIAO XiongJiangsu ZhongYu Nondestructive Test Co., Ltd Nanjing 210012 ChinaAbstract: This article introduces a technique based on ultrasonic thickness measuring technology-IRIS (Internal Rotary Inspection System internal rotation detection system). IRIS main purpose is for the heatexchanger tubes wall thickness measurement in service, the ultrasonic probe in centring devicesinside water-filled tube in a spiral manner testing, and processing by computer software, to obtain theimages of C-scan and B-scan and D-scan of the tube wall , image be used by the analysis softwarecan see some defects of wall thinning, including the corrosion of the tube surface, erosion caused bythe erosion medium, the tube surface damage caused by vibration, etc., and by comparing with theeddy current testing, the users can be more clearly understand the advantages and disadvantages ofIRIS testing in the actual need, easy to select different testing methods, to achieve the purposes ofbetter inspection.Key words: heat exchanger tubes; IRIS; eddy current testing; thickness measuring0 引言管式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、医学工业、动力、电力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中相比其它换热器类型的应用上占据绝对优势。
基于超声多普勒方法的管道流量测量研究共3篇基于超声多普勒方法的管道流量测量研究1基于超声多普勒方法的管道流量测量研究管道流量测量是现代工业生产中不可或缺的环节之一。
通常,流量的测量需要用到多种方法,例如机械测量、电磁式测量和超声波测量等。
其中,超声波测量是一种非接触式、无污染、精度高且操作简单的流量测量方法,因此被广泛应用于工业领域中。
本文将着重分析基于超声多普勒方法的管道流量测量研究。
超声多普勒方法测量原理基于多普勒效应。
当流体(如水或气体等)从管道中流过时,会存在不同的速度分布。
如果在管道的一侧放置一个超声传感器,可以通过检测回波和多普勒频移来确定管道内的平均流速。
在此基础上,可以根据不同的管道参数,计算出精确的流量值。
相比于其他方法,超声多普勒方法不仅依赖于管道壁内的垂直组分,还会受到一些外部因素的影响,例如流体涡流、流体的温度、压力、粘度等。
因此,需要对这些因素进行精确的修正,以保证测量结果的准确性。
在实际的管道流量测量中,为了避免误差,需要对测量环境进行精细的控制。
例如,必须确保管道内没有气泡,同时采用合适的管道尺寸和流体流速范围,以最大程度地减小测量误差。
此外,超声多普勒方法还受到各种噪声干扰的影响,例如环境声、机械振动等。
因此,需要采用合适的信号滤波技术来削除这些干扰信号。
超声多普勒方法在管道流量测量中的应用非常广泛。
例如,在化工行业中,测量管道内的流量可以用于调整化工工艺的生产能力和燃料消耗,从而提高生产效率和降低成本。
在环保领域中,管道流量测量可以用于测量废水和废气的排放量,从而控制环境污染。
此外,在石油和天然气行业中,测量管道流量可以用于监测油气生产和输送,从而保障行业的正常运作和安全生产。
总之,基于超声多普勒方法的管道流量测量是一种非常重要的技术手段,具有广阔的应用前景。
尽管存在一些实际应用中的限制,但通过对流体动力学、信号处理和计算方法的优化,相信这种技术将会在未来得到进一步的完善和发展,为各行业的生产和科研提供更加准确、可靠的数据支撑基于超声多普勒方法的管道流量测量技术是一种高精度、非接触式的测量手段,可广泛应用于化工、环保、石油等行业中的流量、场量、速度等参数测量。
《基于STM32单片机的高精度超声波测距系统的设计》篇一一、引言在现代电子技术的迅猛发展中,精确测量距离的设备扮演着重要的角色。
随着人类对于生活环境安全性的关注提升,对于各种设备的精度要求也在逐渐加强。
超声波测距技术以其非接触性、高精度、低成本等优点,在众多领域得到了广泛的应用。
本文将详细介绍基于STM32单片机的高精度超声波测距系统的设计。
二、系统概述本系统以STM32单片机为核心控制器,结合超声波测距模块,实现对目标物体的精确测距。
系统主要由STM32单片机、超声波测距模块、电源模块、信号处理模块和显示模块等组成。
通过单片机对超声波模块的控制,实现对目标的精确测距,并通过显示模块实时显示测距结果。
三、硬件设计1. STM32单片机:作为系统的核心控制器,负责整个系统的控制与数据处理。
STM32系列单片机具有高性能、低功耗的特点,能够满足系统对于精确度和稳定性的要求。
2. 超声波测距模块:采用高精度的超声波测距传感器,实现对目标物体的距离测量。
通过超声波的发送与接收,实现对目标的距离计算。
3. 电源模块:为系统提供稳定的电源支持,确保系统的正常工作。
电源模块需考虑到功耗问题,以实现系统的长时间运行。
4. 信号处理模块:对超声波测距模块的信号进行滤波、放大等处理,以提高测距的准确性。
5. 显示模块:实时显示测距结果,方便用户观察与操作。
四、软件设计1. 主程序:负责整个系统的控制与数据处理。
主程序通过控制超声波测距模块的发送与接收,获取目标物体的距离信息,并通过显示模块实时显示。
2. 超声波测距模块控制程序:控制超声波的发送与接收,实现对目标物体的距离测量。
通过计算超声波的发送与接收时间差,计算出目标物体的距离。
3. 数据处理程序:对获取的测距数据进行处理,包括滤波、计算等操作,以提高测距的准确性。
4. 显示程序:将处理后的测距结果显示在显示模块上,方便用户观察与操作。
五、系统实现1. 通过STM32单片机的GPIO口控制超声波测距模块的发送与接收,实现超声波的发送与接收功能。
基于stm32的超声波测距系统相比于传统的单片机,STM32单片机具有更高的时间测量分辨率,其主频与定时器频率高达72MHz,且该单片机在开启定时器的同时,会启动PWM通道驱动超声波发射器和通道捕捉回波信号,提高了测量的精度和准确性。
超声波测距是一种典型的非接触测量方式,在不同的传播介质中具有不同的传播速度其系统结构简单、成本低。
只有了解超声波测距的原理、了解STM32单片机才能设计出性能良好的STM32单片机的高精度超声波测距系统。
超声波测距的原理及检测方法超声波检测技术是基于非接触测量方式而逐渐发展起来的一门技术,这种非接触测量方式会经常出现在材料学、电子科学、测量学等学科当中。
超声波的产生是通过机械振动而得到,其传播速庶会随着传播介质的变化而变化。
超声波测距的实现主要是通过超声波的产生、传播与接收回波这三个主要过程。
目前,声波幅值检测法、渡越时间检测法和相位检测法是超声波测距的三种主要检测方法。
声波幅值检测法,容易受到传播介质的干扰,所以其测量精度较差。
渡越时间检测法,与其他两种检测方法相比,成本较低,测量范围较广,且实现简单,因此本文高精度超声波测距系统的设计决定采用渡越时间检测法。
相位检测法,在实际测量过程中,其测量精度要高于其他两种检测方法,但测量范围具有一定的局限性田。
STM32单片机的高精度超声波测距系统设计一、系统组成STM32单片机的高精度超声波测距系统的设计主要由STM32 单片机、超声波发射电路、接受电路、补偿电路和软件等构成。
该系统将STM32单片机作为整个系统的核心,通过协调各部分电路工作,进而实现高精度的超声波测距口。
二、系统硬件设计1.超声波发射电路超声波发射电路两个最主要的组成部分就是超声波探头和超声波激励电路。
超声波探头不仅是超声波发射电路的一个重要组成部分,更是整个超声波测距系统的重要组成部分。
它是超声波测距系统中用以发射或接受超声波信号的主要器件。
超声波激励电路的基本工作原理是首先利用相应的机理信号对一特定形式的电压进行处理之后,将其加载到超声波探头上,然后再通过超声波探头压电晶片将其自身所具有的电能转化为超声波信号图。
基于超声波传感器的测距系统设计课程设计说明书课程设计说明书成绩题目基于超声波传感器的测距系统设计课程名称检测技术及系统课程设计1.课程设计应达到的目的通过对本课程的设计,使学生掌握常见被测量的检测原理、方法和技术,了解国内外对这些工程量进行测控的系统组建原理,通过对检测系统的设计与分析,增强学生理解和运用所学知识来解决实际问题的能力,逐步掌握根据具体测控要求、性能指标设计出先进测控系统的方法和技术。
2.课程设计题目及要求题目:基于超声波传感器的测距系统设计要求:(1)测距范围:0~200mm,测距精度:±1mm;(2)根据题意,明确测距系统性能指标及系统能完成的功能;(3)根据系统要求,选择合适的传感器;(4)设计传感器测量电路;(5)选择单片机的品种、型号,设计单片机的外围测量电路;(6)计算有关的电路参数,有条件的情况下,根据实验室现有设备进行实验数据的测取,明确测量电路输出与被测非电量的关系;(7)画出系统原理框图(此部分放在说明书的开始);(8)画出系统电路图,最好用PROTEL画;(9)在说明书中详细说明本系统工作原理。
3.课程设计任务及工作量的要求〔包括课程设计计算说明书、图纸、实物样品等要求〕给出设计说明书一份;有条件的情况下尽量给出必要的实验数据;在说明书中附上完整的系统电路原理图(手画或用PROTEL画)。
4.主要参考文献李现明,吴皓编著.自动检测技术.北京:机械工业出版社,2009徐仁贵.单片微型计算机应用技术.北京:机械工业出版社.2001陈爱弟.Protel99实用培训教程.北京:人民邮电出版社.20005.课程设计进度安排起止日期工作内容13年6月3日布置设计任务,熟悉课题,查找资料;13年6月4日结合测控对象,选择合适的传感器,理解传感器性能;13年6月5日做实验,设计传感器测量电路,选择合适的单片机,设计其外围电路;13年6月6日设计电路参数,有条件情况下,在实验室进行实验,进一步理解测量电路输入输出关系;13年6月7日继续设计论证电路参数,完善系统设计方案;13年6月8日查找资料,理解系统各部分工作原理;13年6月9日理清系统说明要点,着手设计说明书的书写;13年6月13日书写设计说明书,充分理解系统每一部分作用;13年6月14日上午完善设计说明书,准备设计答辩。
管材壁厚测量方法
管材壁厚测量是用来检验管材壁厚关键特征值的一种重要方法。
它既可应用于检测质量,也可用于评估材料性能。
不仅管材壁厚的几何形状影响着管件的健康应用,而且壁厚的均匀性也是管件的使用性能的一个重要指标。
一般来说,有两种常见的管材壁厚测量技术:辐射检测和磁检测。
辐射检测的基本原理是通过检测管道内的辐射层来测量壁厚。
它包括X射线成像技术、热成像技术、超声波技术等。
辐射检测具有准确性高、测量范围广等优点。
磁检测技术基于磁田强度的变化来测量管道壁厚。
它包括永磁增强磁检测法、磁继电率检测法、磁相关检测法、磁差检测法等。
这种技术特别适用于测量铁磁性材料,抗侧壁厚测量精度较高,抗误差程度较高,并且适合在危险的环境中运行测量系统。
管材壁厚测量方法在工程实践中有着重要的地位,检测设备必须遵循技术规范,并根据现场工况和管件的要求,确定测量工艺的正确性。
首先,使用吸引器将测量装置固定在管道上,并确保测量装置的正确位置。
然后,根据设备和测量装置的使用说明,进行测量数据的采集,并拍摄照片作为测量数据的补充。
最后,通过计算和分析测量结果,给出最终测量意见。
管材壁厚的测量精度是管件钝化处理的一个重要参数,在批量生产和质量保证上有重要的意义。
它需要行业内技术人员严格按照安全操作流程,精心维护相关设备,准确控制影响精度的参数,以努力达到较高精度和稳定性。
此外还应加强风险认识,针对现场情况选择正确的技术指标和操作流程,有效保证管材壁厚测量的正确性、有效性和准确性。